129
Views
0
CrossRef citations to date
0
Altmetric
Systematic Review

Diagnostic accuracy of clinically applied nanoparticle-based biosensors at detecting SARS-CoV-2 RNA and surface proteins in pharyngeal swabs compared to RT-PCR as a reference test

ORCID Icon, , , &
Pages 881-894 | Received 14 Jun 2022, Accepted 10 Oct 2022, Published online: 19 Oct 2022

References

  • Maneeprakorn W, Bamrungsap S, Wiriyachaiporn N, et al. Inorganic nanoparticle-based biosensors for point-of-care diagnostics. In: Lau WJ, Faungnawakij K, Piyachomkwan K, et al.,editors. Handb nanotechnol appl environ energy, Agric Med. Elsevier. 2021:597–632.
  • Adhikary S, Chaturvedi S, Chaturvedi SK, et al. COVID-19 spreading prediction and impact analysis by using artificial intelligence for sustainable global health assessment. Springer Proc Earth Environ Sci. 2021;375–386.
  • Rahimpour E, Lotfipour F, Jouyban A. A minireview on nanoparticle-based sensors for the detection of coronaviruses. Bioanalysis. 2021;13:1837–1850.
  • Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21:1109.
  • Shan B, Broza YY, Li W, et al. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS Nano. 2020;14:12125–12132.
  • Büyüksünetçi YT, Çitil BE, Tapan U, et al. Development and application of a SARS-CoV-2 colorimetric biosensor based on the peroxidase-mimic activity of γ-Fe2O3 nanoparticles. Microchim Acta. 2021;188:335.
  • Atikana A, Sukmarini L, Hariyatun, et al. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples using real-time reverse transcription polymerase chain reaction (qRT-PCR). IOP Conf Ser Earth Environ Sci. 2021;762:012026.
  • Shirvaliloo M, Sheervalilou R, Bannazadeh Baghi H. Accuracy of nanoparticle-based biosensors for diagnosis of COVID-19 compared to RT-PCR as a reference test: protocol for a systematic review [Internet]. PROSPERO. 2021;CRD42021254021 [cited 2022 June 10]. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021254021
  • Frandsen TF, Bruun Nielsen MF, Lindhardt CL, et al. Using the full PICO model as a search tool for systematic reviews resulted in lower recall for some PICO elements. J Clin Epidemiol. 2020;127:69–75.
  • Wade R, Corbett M, Eastwood A. Quality assessment of comparative diagnostic accuracy studies: our experience using a modified version of the QUADAS-2 tool. Res Synth Methods. 2013;4:280–286.
  • McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021;12:55–61.
  • Brooks ZC, Das S. COVID-19 Testing. Am J Clin Pathol. 2020;154:575–584.
  • Panahi A, Sadighbayan D, Forouhi S, et al. Recent advances of field-effect transistor technology for infectious diseases. Biosensors (Basel). 2021;11:103.
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
  • Eissa S, Zourob M. Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Anal Chem. 2021;93:1826–1833.
  • Jiang ZW, Zhao TT, Li CM, et al. 2D MOF-Based photoelectrochemical aptasensor for SARS-CoV-2 spike glycoprotein detection. ACS Appl Mater Interfaces. 2021;13:49754–49761.
  • Rahmati Z, Roushani M, Hosseini H, et al. Electrochemical immunosensor with Cu2O nanocube coating for detection of SARS-CoV-2 spike protein. Microchim Acta. 2021;188:105.
  • Sampad MJN, Zhang H, Yuzvinsky TD, et al. Optical trapping assisted label-free and amplification-free detection of SARS-CoV-2 RNAs with an optofluidic nanopore sensor. Biosens Bioelectron. 2021;194:113588.
  • Tang Z, Nouri R, Dong M, et al. Rapid detection of novel coronavirus SARS-CoV-2 by RT-LAMP coupled solid-state nanopores. Biosens Bioelectron. 2022;197:113759.
  • Zhang Q, Li J, Li Y, et al. SARS-CoV-2 detection using quantum dot fluorescence immunochromatography combined with isothermal amplification and CRISPR/Cas13a. Biosens Bioelectron. 2022;202:113978.
  • Bujang MA, Adnan TH. Requirements for minimum sample size for sensitivity and specificity analysis. J Clin Diagn Res. 2016 [/October/01];10:YE01–YE06.
  • Eissa S, Alhadrami HA, Al-Mozaini M, et al. Voltammetric-based immunosensor for the detection of SARS-CoV-2 nucleocapsid antigen. Microchim Acta. 2021;188:199.
  • Li J, Wu D, Yu Y, et al. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosens Bioelectron. 2021;183:113206.
  • Zhao H, Zhang Y, Chen Y, et al. Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics. Biosens Bioelectron. 2021;194:113629.
  • López-Valls M, Escalona-Noguero C, Rodríguez-Díaz C, et al. CASCADE: naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal Chim Acta. 2022;1205:339749.
  • Li S, Jiang W, Huang J, et al. Highly sensitive and specific diagnosis of COVID-19 by reverse transcription multiple cross-displacement amplification-labelled nanoparticles biosensor. Eur Respir J. 2020;56:2002060.
  • Zhu X, Wang X, Han L, et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens Bioelectron. 2020;166:112437.
  • Carrillo RJD, Sarmiento AD, Ang MAC, et al. Validation of snort-spit saliva in detecting COVID-19 using RT-PCR and rapid antigen detection test. Acta Med Philipp. 2021;55:211–215.
  • Chauhan N, Soni S, Jain U. Optimizing testing regimes for the detection of COVID-19 in children and older adults. Expert Rev Mol Diagn. 2021;21:999–1016.
  • Yip CCY, Leung KH, ACK N, et al. Comparative evaluation of a dual-target real-time RT-PCR assay for COVID-19 diagnosis and assessment of performance in pooled saliva and nasopharyngeal swab samples. Expert Rev Mol Diagn. 2021;21:741–747.
  • Della VB, Cennamo M, Minopoli A, et al. Colorimetric test for fast detection of SARS-COV-2 in nasal and throat swabs. ACS Sens. 2020;5:3043–3048.
  • Ferreira AL, De Lima LF, Torres MDT, et al. Low-cost optodiagnostic for minute-time scale detection of SARS-CoV-2. ACS Nano. 2021;15:17453–17462.
  • Liang J, Teng P, Xiao W, et al. Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples. J Nanobiotechnology. 2021;19:273.
  • Shoaib N, Noureen N, Faisal A, et al. Factors associated with cycle threshold values (Ct-values) of SARS-CoV2-rRT-PCR. Mol Biol Rep. 2022;49:4101–4106.
  • Martin J. How has the COVID-19 pandemic impacted PCR? Biotechniques. 2020;69:404–405.
  • Munne K, Bhanothu V, Bhor V, et al. Detection of SARS-CoV-2 infection by RT-PCR test: factors influencing interpretation of results. VirusDisease. 2021;32:187–189.
  • Klein F. SARS-CoV-2: PCR-Test aus dem speichel möglich. Pneumologie. 2021;75:493.
  • Madrid Carbajal CJ, González Budiño T, Iscar Urrutia M, et al. PCR in sputum for the diagnosis of COVID-19 in a case with infrequent radiological pattern. Arch Bronconeumol. 2021;57:70–71.
  • Abdullah M, Sudrajat DG, Muzellina VN, et al. The value of anal swab RT-PCR for COVID-19 diagnosis in adult Indonesian patients. BMJ Open Gastroenterol. 2021;8:e000590.
  • Moreira VM, Mascarenhas P, Machado V, et al. Diagnosis of SARS-Cov-2 infection by RT-PCR using specimens other than naso- and oropharyngeal swabs: a systematic review and meta-analysis. Diagnostics. 2021;11:363.
  • Ibrahimi N, Delaunay-Moisan A, Hill C, et al. Screening for SARS-CoV-2 by RT-PCR: saliva or nasopharyngeal swab? Rapid review and meta-analysis. In: Darlix J-LE, editor. PLoS One. 2021. Vol. 16. pp. e0253007.
  • Diao K, Yu TF. Development and challenges of COVID-19 diagnostic methods in two areas: RT-PCR tests and serology tests. In: Zhu T, Anpo M, Sharifi A, editors. E3S Web Conf. 2021;271:03044.
  • Pu R, Liu S, Ren X, et al. The screening value of RT-LAMP and RT-PCR in the diagnosis of COVID-19: systematic review and meta-analysis. J Virol Methods. 2022;300:114392.
  • Ferreira CE, Bonvehi PE, de la Torre JCG, et al. Algorithms for testing COVID-19 focused on use of RT-PCR and high-affinity serological testing: a consensus statement from a panel of Latin American experts. Int J Infect Dis. 2021;103:260–267.
  • Pecoraro V, Negro A, Pirotti T, et al. Estimate false‐negative RT‐PCR rates for SARS‐CoV‐2. A systematic review and meta‐analysis. Eur J Clin Invest. 2022;52:e13706.
  • Ishak A, AlRawashdeh MM, Esagian SM, et al. Diagnostic, prognostic, and therapeutic value of droplet digital PCR (ddPCR) in COVID-19 patients: a systematic review. J Clin Med. 2021;10:5712.
  • Rodríguez-Grande C, Catalán P, Alcalá L, et al. Different dynamics of mean SARS-CoV-2 RT-PCR Ct values between the first and second COVID-19 waves in the Madrid population. Transbound Emerg Dis. 2021;68:3103–3106.
  • Mahgoub Ibrahim MM, Colucci ME, Veronesi L, et al. Virological surveillance of SARS-CoV-2 in an Italian Northern area: differences in gender, age and real time RT PCR cycle threshold (Ct) values in three epidemic periods. Acta Biomed. 2021;92:e2021416.
  • John N, Soni R, Majumdar DJ. Evaluation of the E gene RT-PCR Ct values in clinical samples from symptomatic and asymptomatic COVID-19 patients. J Pure Appl Microbiol. 2021;15:677–680.
  • Engelmann I, Alidjinou EK, Ogiez J, et al. Preanalytical issues and cycle threshold values in SARS-CoV-2 Real-Time RT-PCR testing: should test results include these? ACS Omega. 2021;6:6528–6536.
  • Velavan TP, Meyer CG. COVID-19: a PCR-defined pandemic. Int J Infect Dis. 2021;103:278–279.
  • Serrano-Cumplido A, Ruiz Garcia A, Segura-Fragoso A, et al. Application of the PCR number of cycle threshold value (Ct) in COVID-19. Semergen. 2021;47:337–341.
  • Ibrahim N, Jamaluddin ND, Tan LL, et al. A review on the development of gold and silver nanoparticles-based biosensor as a detection strategy of emerging and pathogenic RNA virus. Sensors. 2021;21:5114.
  • Grant SA, Heits B, Kleiboeker S. Development of an optical biosensor utilizing gold nanoparticles to detect porcine reproductive and respiratory syndrome virus. Sens Lett. 2006;4:246–252.
  • Tessaro L, Aquino A, de CAPA, et al. A systematic review on gold nanoparticles based-optical biosensors for Influenza virus detection. Sens Actuators Rep. 2021;3:100060.
  • Ge Y, Zhou Q, Zhao K, et al. Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor. Int J Nanomedicine. 2017;12:2645–2656.
  • Steinmetz M, Lima D, Viana AG, et al. A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika Virus detection. Biosens Bioelectron. 2019;141:111351.
  • Beduk D, Ilton de Oliveira Filho J, Beduk T, et al. “All In One” SARS-CoV-2 variant recognition platform: machine learning-enabled point of care diagnostics. Biosens Bioelectron X. 2022;10:100105.
  • Durmus C, Balaban Hanoglu S, Harmanci D, et al. Indiscriminate SARS-CoV-2 multivariant detection using magnetic nanoparticle-based electrochemical immunosensing. Talanta. 2022;243:123356.
  • Lee T, Kim GH, Kim SM, et al. Label-free localized surface plasmon resonance biosensor composed of multi-functional DNA 3 way junction on hollow Au spike-like nanoparticles (HAuSN) for avian influenza virus detection. Colloids Surf B Biointerfaces. 2019;182:110341.
  • Alafeef M, Dighe K, Moitra P, et al. Monitoring the viral transmission of SARS-CoV-2 in still waterbodies using a lanthanide-doped carbon nanoparticle-based sensor array. ACS Sustain Chem Eng. 2022;10:245–258.
  • Vaquer A, Alba-Patiño A, Adrover-Jaume C, et al. Nanoparticle transfer biosensors for the non-invasive detection of SARS-CoV-2 antigens trapped in surgical face masks. Sensors Actuators B Chem. 2021;345:130347.
  • Dighe K, Moitra P, Alafeef M, et al. A rapid RNA extraction-free lateral flow assay for molecular point-of-care detection of SARS-CoV-2 augmented by chemical probes. Biosens Bioelectron. 2022;200:113900.
  • Figueroa S, Freire-Paspuel B, Vega-Mariño P, et al. High sensitivity-low cost detection of SARS-CoV-2 by two steps end point RT-PCR with agarose gel electrophoresis visualization. Sci Rep. 2021;11:21658.
  • Sriwijitalai W, Wiwanitkit V. Cost–utility analysis for chest CT versus RT-PCR for COVID-19 detection. Int J Prev Med. 2020;11:67.
  • Arroyo-Currás N, Sadeia M, Ng AK, et al. An electrochemical biosensor exploiting binding-induced changes in electron transfer of electrode-attached DNA origami to detect hundred nanometer-scale targets. Nanoscale. 2020;12(26):13907–13911.
  • Soleymani L, Li F. Mechanistic challenges and advantages of biosensor miniaturization into the nanoscale. ACS Sens. 2017;2:458–467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.