154
Views
1
CrossRef citations to date
0
Altmetric
Meta-analysis

Clinical prognostic value of the SMYD2/3 as new epigenetic biomarkers in solid cancer patients: a systematic review and meta-analysis

, , , , ORCID Icon &
Pages 937-951 | Received 26 Jan 2022, Accepted 02 Nov 2022, Published online: 17 Nov 2022

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.
  • Zhang Y, Li M, Gao X, et al. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol. 2019;12(1):137.
  • Lin J, Ma L, Zhang D, et al. Tumour biomarkers-tracing the molecular function and clinical implication. Cell Prolif. 2019;52(3):e12589.
  • Vougiouklakis T, Bernard BJ, Nigam N, et al. Clinicopathologic significance of protein lysine methyltransferases in cancer. Clin Epigenetics. 2020;12(1). Doi:10.1186/s13148-020-00897-3.
  • Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8(9). Doi:10.1101/cshperspect.a019505.
  • Leinhart K, Brown M. SET/MYND lysine methyltransferases regulate gene transcription and protein activity. Genes (Basel). 2011;2(1):210–218.
  • Tracy CM, Warren JS, Szulik M, et al. The Smyd family of methyltransferases: role in cardiac and skeletal muscle physiology and pathology. Curr Opin Physiol. 2018;1:140–152.
  • Liu D, Wang X, Shi E, et al. Comprehensive analysis of the value of SMYD family members in the prognosis and immune infiltration of malignant digestive system tumors. Front Genet. 2021;12:699910.
  • Yang L, Jin M, Jeong KW. Histone H3K4 methyltransferases as targets for drug-resistant cancers. Biology (Basel). 2021;10(7):581.
  • Jaiswal D, Turniansky R, Moresco J, et al. Function of the MYND domain and C-terminal region in regulating the subcellular localization and catalytic activity of the SMYD family lysine methyltransferase set5. Mol Cell Biol. 2020;40(2):e00341–19.
  • Wang Z, Schwartz RJ, Liu J, et al. Smyd1 orchestrates early heart development through positive and negative gene regulation. Front Cell Dev Biol. 2021;9:654682.
  • Li D, Niu Z, Yu W, et al. SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin. Nucleic Acids Res. 2009;37(21):7059–7071.
  • Yan L, Liu H, Sun G, et al. Inhibition of SMYD2 suppresses tumor progression by down-regulating microRNA-125b and attenuates multi-drug resistance in renal cell carcinoma. European Urology Open Science. 2020; 19: e1481.
  • Meng FC, Liu X, Lin CW, et al. SMYD2 suppresses APC2 expression to activate the Wnt/beta-catenin pathway and promotes epithelial-mesenchymal transition in colorectal cancer. Am J Cancer Res. 2020;10(3):997–+.
  • Kojima M, Sone K, Oda K, et al. The histone methyltransferase SMYD2 is a novel therapeutic target for the induction of apoptosis in ovarian clear cell carcinoma cells. Oncol Lett. 2020;20(5):1.
  • Sun JJ, Li HL, Ma H, et al. SMYD2 promotes cervical cancer growth by stimulating cell proliferation. Cell Biosci. 2019;9(1):75.
  • Zuo SR, Zuo XC, He Y, et al. Positive expression of SMYD2 is associated with poor prognosis in patients with primary hepatocellular carcinoma. J Cancer. 2018;9(2):321–330.
  • Cho HS, Hayami S, Toyokawa G, et al. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia. 2012;14(6):476–486.
  • Shang L, Wei MJ. Inhibition of SMYD2 sensitized cisplatin to resistant cells in NSCLC through activating p53 pathway. Front Oncol. 2019;9:9.
  • Bottino C, Peserico A, Simone C, et al. SMYD3: an oncogenic driver targeting epigenetic regulation and signaling pathways. Cancers (Basel). 2020;12(1):142.
  • Jiang YH, Lyu TJ, Che XX, et al. Overexpression of SMYD3 in ovarian cancer is associated with ovarian cancer proliferation and apoptosis via methylating H3K4 and H4K20. J Cancer. 2019;10(17):4072–4084.
  • Fu WQ, Liu N, Qiao Q, et al. Structural basis for substrate preference of SMYD3, a SET domain-containing protein lysine methyltransferase. J Biol Chem. 2016;291(17):9173–9180.
  • Yoshioka Y, Suzuki T, Matsuo Y, et al. Protein lysine methyltransferase SMYD3 is involved in tumorigenesis through regulation of HER2 homodimerization. Cancer Med. 2017;6(7):1665–1672.
  • Hu LP, Zhu YT, Qi C, et al. Identification of Smyd4 as a potential tumor suppressor gene involved in breast cancer development. Cancer Res. 2009;69(9):4067–4072.
  • Kidder BL, He RS, Wangsa D, et al. SMYD5 controls heterochromatin and chromosome integrity during embryonic stem cell differentiation. Cancer Res. 2017;77(23):6729–6745.
  • Kidder BL, Hu G, Cui K, et al. SMYD5 regulates H4K20me3-marked heterochromatin to safeguard ES cell self-renewal and prevent spurious differentiation. Epigenetics Chromatin. 2017;10(1):8.
  • Nakakido M, Deng Z, Suzuki T, et al. Dysregulation of AKT pathway by SMYD2-mediated lysine methylation on PTEN. Neoplasia. 2015;17(4):367–373.
  • Obermann WM. A motif in HSP90 and P23 that links molecular chaperones to efficient estrogen receptor α methylation by the lysine methyltransferase SMYD2. J Biol Chem. 2018;293(42):16479–16487.
  • Li L, Zhou JX, Calvet JP, et al. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis. 2018;9(2):17.
  • Reynoird N, Mazur PK, Stellfeld T, et al. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev. 2016;30(7):772–785.
  • Hamamoto R, Toyokawa G, Nakakido M, et al. SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett. 2014;351(1):126–133.
  • Piao L, Kang D, Suzuki T, et al. The histone methyltransferase SMYD2 methylates PARP1 and promotes poly (ADP-ribosyl) ation activity in cancer cells. Neoplasia. 2014;16(3):257–264. e2.
  • Zeng Y, Qiu R, Yang Y, et al. Regulation of EZH2 by SMYD2-mediated lysine methylation is implicated in tumorigenesis. Cell Rep. 2019;29(6):1482–1498. e4.
  • Zhang X, Tanaka K, Yan J, et al. Regulation of estrogen receptor α by histone methyltransferase SMYD2-mediated protein methylation. Proc Nat Acad Sci. 2013;110(43):17284–17289.
  • Huang J, Perez-Burgos L, Placek BJ, et al. Repression of p53 activity by Smyd2-mediated methylation. Nature. 2006;444(7119):629–632.
  • Giakountis A, Moulos P, Sarris ME, et al. Smyd3-associated regulatory pathways in cancer. Semin Cancer Biol. 2017;42:70–80.
  • Yoshioka Y, Suzuki T, Matsuo Y, et al. SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1. Oncotarget. 2016;7(46):75023.
  • Kunizaki M, Hamamoto R, Silva FP, et al. The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3. Cancer Res. 2007;67(22):10759–10765.
  • Kim H, Heo K, Kim JH, et al. Requirement of histone methyltransferase SMYD3 for estrogen receptor-mediated transcription. J Biol Chem. 2009;284(30):19867–19877.
  • Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6(8):731–740.
  • Zhu CL, Huang Q. Overexpression of the SMYD3 promotes proliferation, migration, and invasion of pancreatic cancer. Dig Dis Sci. 2020;65(2):489–499.
  • Lai Y, Yang Y. SMYD2 facilitates cancer cell malignancy and xenograft tumor development through ERBB2-mediated FUT4 expression in colon cancer. Mol Cell Biochem. 2020;477:2149–2159.
  • Chandra P, Dixit R, Pratap A, et al. Analysis of SET and MYND domain-containing protein 3 (SMYD3) expression in gallbladder cancer: a pilot study. Indian J Surg Oncol. 2020;12(Suppl 1):111–117.
  • Shen B, Tan MY, Mu XY, et al. Upregulated SMYD3 promotes bladder cancer progression by targeting BCLAF1 and activating autophagy. Tumor Biol. 2016;37(6):7371–7381.
  • Wang GL, Huang Y, Yang FL, et al. High expression of SMYD3 indicates poor survival outcome and promotes tumour progression through an IGF-1R/AKT/E2F-1 positive feedback loop in bladder cancer. Aging-US. 2020;12(3):2030–2048.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Bmj. 2009;339(jul21 1):b2535.
  • Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17(24):2815–2834.
  • Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–605.
  • Thorlund K, Imberger G, Johnston BC, et al. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS One. 2012;7(7):e39471.
  • Melsen WG, Bootsma MC, Rovers MM, et al. The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. Clin Microbiol Infect. 2014;20(2):123–129.
  • Ohtomo-Oda R, Komatsu S, Mori T, et al. SMYD2 overexpression is associated with tumor cell proliferation and a worse outcome in human papillomavirus-unrelated nonmultiple head and neck carcinomas. Hum Pathol. 2016;49:145–155.
  • Ren HL, Wang Z, Chen Y, et al. SMYD2-OE promotes oxaliplatin resistance in colon cancer through MDR1/P-glycoprotein via MEK/ERK/AP1 pathway. Oncol Targets Ther. 2019;12:2585–2594.
  • Xu W, Chen F, Fei X, et al. Overexpression of SET and MYND Domain-Containing Protein 2 (SMYD2) Is Associated with Tumor Progression and Poor Prognosis in Patients with Papillary Thyroid Carcinoma. Med Sci Monit. 2018;24:7357–7365. Doi:10.12659/MSM.910168.
  • Pires-Luís AS, Vieira-Coimbra M, Vieira FQ, et al. Expression of histone methyltransferases as novel biomarkers for renal cell tumor diagnosis and prognostication. Epigenetics. 2015;10(11):1033–1043.
  • Komatsu S, Ichikawa D, Hirajima S, et al. Overexpression of SMYD2 contributes to malignant outcome in gastric cancer. Br J Cancer. 2015;112(2):357–364.
  • Komatsu S, Imoto I, Tsuda H, et al. Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis. 2009;30(7):1139–1146.
  • Yue FR, Wei ZB, Yan RZ, et al. SMYD3 promotes colon adenocarcinoma (COAD) progression by mediating cell proliferation and apoptosis. Exp Ther Med. 2020;20(5):11.
  • Liu C, Liu L, Wang K, et al. VHL-HIF-2 alpha axis-induced SMYD3 upregulation drives renal cell carcinoma progression via direct trans-activation of EGFR. Oncogene. 2020;39(21):4286–4298.
  • Li J, Zhao LF, Pan YJ, et al. SMYD3 overexpression indicates poor prognosis and promotes cell proliferation, migration and invasion in non-small cell lung cancer. Int J Oncol. 2020;57(3):756–766.
  • Zhou ZY, Jiang H, Tu KS, et al. ANKHD1 is required for SMYD3 to promote tumor metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):11.
  • Zhang LW, Jin Y, Yang H, et al. SMYD3 promotes epithelial ovarian cancer metastasis by downregulating p53 protein stability and promoting p53 ubiquitination. Carcinogenesis. 2019;40(12):1492–1503.
  • Wang Y, Xie BH, Lin WH, et al. Amplification of SMYD3 promotes tumorigenicity and intrahepatic metastasis of hepatocellular carcinoma via upregulation of CDK2 and MMP2. Oncogene. 2019;38(25):4948–4961.
  • Wang T, Wu H, Liu S, et al. SMYD3 controls a Wnt-responsive epigenetic switch for ASCL2 activation and cancer stem cell maintenance. Cancer Lett. 2018;430:11–24.
  • Ma SJ, Liu YM, Zhang YL, et al. Correlations of EZH2 and SMYD3 gene polymorphisms with breast cancer susceptibility and prognosis. Biosci Rep. 2018;38(1). DOI:10.1042/BSR20170656.
  • Lobo J, Rodrigues Â, Antunes L, et al. High immunoexpression of Ki67, EZH2, and SMYD3 in diagnostic prostate biopsies independently predicts outcome in patients with prostate cancer. Urol Oncol. 2018;36(4):161.e7–161.e17.
  • Liu NQ, Sun SX, Yang XQ. Prognostic significance of stromal SMYD3 expression in colorectal cancer of TNM stage I-III. Int J Clin Exp Pathol. 2017;10(8):8901–8907.
  • Fei X, Ma Y, Liu XW, et al. Overexpression of SMYD3 is predictive of unfavorable prognosis in hepatocellular carcinoma. Tohoku J Exp Med. 2017;243(3):219–226.
  • Liu Y, Luo XG, Deng JY, et al. SMYD3 overexpression was a risk factor in the biological behavior and prognosis of gastric carcinoma. Tumor Biol. 2015;36(4):2685–2694.
  • Liu Y, Deng JY, Luo XG, et al. Overexpression of SMYD3 was associated with increased STAT3 activation in gastric cancer. Med Oncol. 2015;32(1):11.
  • Liu HG, Liu Y, Kong FM, et al. Elevated levels of SET and MYND domain-containing protein 3 are correlated with overexpression of transforming growth factor-beta 1 in gastric cancer. J Am Coll Surg. 2015;221(2):579–590.
  • Dai B, Wan WQ, Zhang P, et al. SET and MYND domain-containing protein 3 is overexpressed in human glioma and contributes to tumorigenicity. Oncol Rep. 2015;34(5):2722–2730.
  • Vieira FQ, Costa-Pinheiro P, Ramalho-Carvalho J, et al. Deregulated expression of selected histone methylases and demethylases in prostate carcinoma. Endocr Relat Cancer. 2013;21(1):51–61.
  • Bernard BJ, Nigam N, Burkitt K, et al. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin Epigenetics. 2021;13(1):45.
  • Yi X, Jiang XJ, Fang ZM. Histone methyltransferase SMYD2: ubiquitous regulator of disease. Clin Epigenetics. 2019;11(1):112.
  • Rugo HS, Jacobs I, Sharma S, et al. The promise for histone methyltransferase inhibitors for epigenetic therapy in clinical oncology: a narrative review. Adv Ther. 2020;37(7):3059–3082.
  • Chandramouli B, Chillemi G. Conformational dynamics of lysine methyltransferase Smyd2. Insights into the different substrate crevice characteristics of Smyd2 and Smyd3. J Chem Inf Model. 2016;56(12):2467–2475.
  • Fabini E, Manoni E, Ferroni C, et al. Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: current trends. Future Med Chem. 2019;11(8):901–921.
  • Song JP, Liu YF, Chen Q, et al. Expression patterns and the prognostic value of the SMYD family members in human breast carcinoma using integrative bioinformatics analysis. Oncol Lett. 2019;17(4):3851–3861.
  • Liu SP, Cheng K, Zhang H, et al. Methylation status of the nanog promoter determines the switch between cancer cells and cancer stem cells. Adv Sci. 2020;7(5):11.
  • Mazur PK, Reynoird N, Khatri P, et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature. 2014;510(7504):283–+.
  • Fenizia C, Bottino C, Corbetta S, et al. SMYD3 promotes the epithelial-mesenchymal transition in breast cancer. Nucleic Acids Res. 2019;47(3):1278–1293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.