410
Views
1
CrossRef citations to date
0
Altmetric
Review

Epigenetic signatures in gastric cancer: current knowledge and future perspectives

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1063-1075 | Received 20 Sep 2022, Accepted 13 Dec 2022, Published online: 20 Dec 2022

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Shi H, Wang H, Pan J, et al. Comparing prognostic value of preoperative platelet indexes in patients with resectable gastric cancer. Sci Rep. 2022;12(1):1–11.
  • LAUREN P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classificATION. Acta Pathol Microbiol Scand. 1965;64(1):31–49.
  • Berlth F, Bollschweiler E, Drebber U, et al. Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. World J Gastroenterol. 2014;20(19):5679–5684.
  • Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020 cited 2022 Dec 9;76(2):182.
  • Bass AJ, Thorsson V, Shmulevich I, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–209.
  • Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449–456.
  • Matsusaka K, Kaneda A, Nagae G, et al. Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res. 2011;71(23):7187–7197.
  • Padmanabhan N, Ushijima T, Tan P. How to stomach an epigenetic insult: the gastric cancer epigenome. Nat Clin Pract Gastroenterol Hepatol. 2017;14(8):467–478.
  • Tang SY, Zhou PJ, Meng Y, et al. Gastric cancer: an epigenetic view. World J Gastrointest Oncol. 2022;14(1):90–109.
  • Stanland LJ, Luftig MA. The role of EBV-induced hypermethylation in gastric cancer tumorigenesis. [cited 2022 Dec 9]. Available from: www.mdpi.com/journal/viruses.
  • Hoßfeld U, Watts E, Levit GS. Valentin Haecker (1864-1927) as a pioneer of phenogenetics: building the bridge between genotype and phenotype. Epigenetics. 2017;12(4):247–253.
  • Roadmap epigenomics project - overview [Internet]. [cited 2022 Apr 29]. Available from: http://www.roadmapepigenomics.org/overview.
  • Bouyahya A, Mechchate H, Oumeslakht L, et al. The role of epigenetic modifications in human cancers and the use of natural compounds as epidrugs: mechanistic pathways and pharmacodynamic actions. Biomolecules. 2022;12(3):367.
  • Alshammari E, Zhang Y, Sobota J, et al. Aberrant DNA methylation of tumor suppressor genes and oncogenes as cancer biomarkers .In Sahu Saura C, editor. Genomic and epigenomic biomarkers of toxicology and disease. Chichester, UK: John Wiley & Sons; 2022. p. 251–271. DOI:10.1002/9781119807704.ch12
  • Sun X, Huang X, Lu X, et al. The expression and clinical significance of the tRNA aspartic acid methyltransferase 1 protein in gastric cancer. Int J Clin Oncol. 2021;26(12):2229–2236.
  • Mensah IK, Norvil AB, AlAbdi L, et al. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer. 2021;3(4):zcab045.
  • Purkait S, Patra S, Mitra S, et al. Elevated expression of DNA methyltransferases and enhancer of zeste homolog 2 in Helicobacter pylori - gastritis and gastric carcinoma. Dig Dis. 2022;40(2):156–167.
  • Alagia A, Gullerova M. The methylation game: epigenetic and epitranscriptomic dynamics of 5-methylcytosine. Front Cell Dev Biol. 2022;10. DOI:10.3389/fcell.2022.915685
  • Qi J, Cui D, Q-N W, et al. Targeting Wnt/β-catenin signaling by TET1/FOXO4 inhibits metastatic spreading and self-renewal of cancer stem cells in gastric cancer. Cancers (Basel). 2022;14(13):3232.
  • Tedaldi G, Molinari C, José CS, et al. Genetic and epigenetic alterations of cdh1 regulatory regions in hereditary and sporadic gastric cancer. Pharmaceuticals. 2021;14(5):457.
  • Tan P, Yeoh KG. Genetics and molecular pathogenesis of gastric adenocarcinoma. Gastroenterology. 2015;149(5):1153–1162.e3.
  • Park JH, Park J, Choi JK, et al. Identification of DNA methylation changes associated with human gastric cancer. BMC Med Genomics. 2011;4:4.
  • Wang H, Li NS, He C, et al. Discovery and validation of novel methylation markers in Helicobacter pylori-associated gastric cancer. Dis Markers. 2021;2021:1–11.
  • Hu XY, Ling ZN, Hong LL, et al. Circulating methylated THBS1 DNAs as a novel marker for predicting peritoneal dissemination in gastric cancer. J Clin Lab Anal. 2021;35(9). DOI:10.1002/jcla.23936.
  • Xu G, Fan L, Zhao S, et al. Neuronal pentraxin II (NPTX2) hypermethylation promotes cell proliferation but inhibits cell cycle arrest and apoptosis in gastric cancer cells by suppressing the p53 signaling pathway. Bioengineered. 2021;12(1):1311–1323.
  • Teng JJ, Zhao WJ, Zhang XL, et al. Downregulation of promoter methylation gene PRDM5 contributes to the development of tumor proliferation and predicts poor prognosis in gastric cancer. J Cancer. 2021;12(22):6921.
  • Bidar N, Rezaei T, Amini M, et al. ZNF677 downregulation by promoter hypermethylation as a driver event through gastric tumorigenesis. Exp Mol Pathol. 2021;121:104663.
  • Ignatavicius P, Dauksa A, Zilinskas J, et al. DNA methylation of HOXA11 gene as prognostic molecular marker in human gastric adenocarcinoma. Diagnostics (Basel). 2022;12(7):1686.
  • Padmanabhan N, Kyon HK, Boot A, et al. Highly recurrent CBS epimutations in gastric cancer CpG island methylator phenotypes and inflammation. Genome Biol. 2021;22(1):22.
  • Li Y, Yang Y, Lu Y, et al. Predictive value of CHFR and MLH1 methylation in human gastric cancer. Gastric Cancer. 2015;18(2):280.
  • Kurumizaka H, Kujirai T, Takizawa Y. contributions of histone variants in nucleosome structure and function. J Mol Biol. 2021;433(6):166678.
  • Kim MS, Li SH, Yoo NJ, et al. Frameshift mutations of tumor suppressor gene EP300 in gastric and colorectal cancers with high microsatellite instability. Hum Pathol. 2013;44(10):2064–2070.
  • Chen L, Fei Y, Zhao Y, et al. Expression and prognostic analyses of HDACs in human gastric cancer based on bioinformatic analysis. Medicine (USA). 2021;100(27):e26554.
  • Meng X, Zhao Y, Liu J, et al. Comprehensive analysis of histone modification-associated genes on differential gene expression and prognosis in gastric cancer. Exp Ther Med. 2019;18:2219–2230.
  • Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer. 2020;1875(1):188498.
  • Cao L, Ren Y, Guo X, et al. Downregulation of SETD7 promotes migration and invasion of lung cancer cells via JAK2/STAT3 pathway. Int J Mol Med. 2020;45:1616–1626.
  • Shang W, Wang Y, Liang X, et al. SETDB1 promotes gastric carcinogenesis and metastasis via upregulation of CCND1 and MMP9 expression. J Pathol. 2021;253(2):148–159.
  • Xu Z, Xia Y, Xiao Z, et al. Comprehensive profiling of JMJD3 in gastric cancer and its influence on patient survival. Sci Rep. 2019;9(10):1–10.
  • Li Y, Guo D, Sun R, et al. Methylation patterns of Lys9 and Lys27 on histone H3 correlate with patient outcome in gastric cancer. Dig Dis Sci. 2019;64(2):439–446.
  • Piao L, Che N, Li H, et al. SETD8 promotes stemness characteristics and is a potential prognostic biomarker of gastric adenocarcinoma. Exp Mol Pathol. 2020;117:104560.
  • Lee DH, Kim GW, Jeon YH, et al. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J. 2020;34(3):3461–3484.
  • Kwon OH, Park JL, Kim M, et al. Aberrant up-regulation of LAMB3 and LAMC2 by promoter demethylation in gastric cancer. Biochem Biophys Res Commun. 2011;406(4):539–545.
  • Cheng LL, Itahana Y, Lei ZD, et al. TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-Deazaneplanocin A (DZNep). Clin Cancer Res. 2012;18(15):4201–4212.
  • Zhang J, Liu X, Chen J, et al. HDAC3-mediated repression of LncRNA-LET regulates gastric cancer cell growth proliferation, invasion, migration, and apoptosis via MiR-548k. J Environ Pathol Toxicol Oncol. 2021;40(4):21–32.
  • Zhang G, Xu Y, Wang S, et al. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol. 2019;234(4):5163–5174.
  • Noguchi A, Kikuchi K, Zheng H, et al. SIRT1 expression is associated with a poor prognosis, whereas DBC1 is associated with favorable outcomes in gastric cancer. Cancer Med. 2014;3(6):1553–1561.
  • Wen LY, Xia R, Lu K, et al. LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer. 2017;16:39.
  • Mitani Y, Oue N, Hamai Y, et al. Histone H3 acetylation is associated with reduced p21(WAF1/CIP1) expression by gastric carcinoma. J Pathol. 2005;205(1):65–73.
  • Chen Y, Ren B, Yang J, et al., The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduct Target Ther. 2020;5(1):1–13.
  • Aziz N, Hong YH, Jo M, et al. Molecular signatures of JMJD10/MINA53 in gastric cancer. Cancers (Basel). 2020;12(5):1141.
  • Chen P, Qian Q, Zhu Z, et al. Increased expression of EHMT2 associated with H3K9me2 level contributes to the poor prognosis of gastric cancer. Oncol Lett. 2020;20:1734–1742.
  • Yuan L, Xu ZY, Ruan SM, et al. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol Cancer. 2020;19(1):1–22.
  • Bure IV, Nemtsova MV, Zaletaev DV. Roles of E-cadherin and noncoding RNAs in the epithelial–mesenchymal transition and progression in gastric cancer. Int J Mol Sci. 2019;20(12):2870.
  • Wei L, Sun J, Zhang N, et al. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer. 2020;19(1):1–17.
  • Xia W, Zhang Q, Li Q, et al. Relationship between long non-coding RNA TUG1 and prognosis of patients with gastric carcinoma: a protocol for systematic review and meta-analysis. Medicine (Baltimore). 2020;99(49):e23522.
  • Gao M, Liu L, Zhang D, et al. Long non-coding RNA NEAT1 serves as sponge for miR-365a-3p to promote gastric cancer progression via regulating ABCC4. Onco Targets Ther. 2020;13:3977–3985.
  • Liu J, Li Z, Yu G, et al. LINC01232 promotes gastric cancer proliferation through interacting with EZH2 to inhibit the transcription of KLF2. J Microbiol Biotechnol. 2021;31(10):1358–1365.
  • Zong W, Feng W, Jiang Y, et al. LncRNA CTC-497E21.4 promotes the progression of gastric cancer via modulating miR-22/NET1 axis through RhoA signaling pathway. Gastric Cancer. 2020;23(2):228–240.
  • Luo M, Liang C, Luo M, et al. LncRNA LINC00483 promotes gastric cancer development through regulating MAPK1 expression by sponging miR-490-3p. Biol Res. 2020;53(1):53.
  • Tao Y, Wan X, Fan Q, et al. Long non-coding RNA OIP5-AS1 promotes the growth of gastric cancer through the miR-367-3p/HMGA2 axis. Digestive Liver Dis. 2020;52(7):773–779.
  • Xu Y, Dong M, Wang J, et al. LINC01436 inhibited miR-585-3p expression and upregulated MAPK1 expression to promote gastric cancer progression. Dig Dis Sci. 2021;66(6):1885–1894.
  • Wu Q, Ma J, Wei J, et al. lncRNA SNHG11 promotes gastric cancer progression by activating the Wnt/β-catenin pathway and oncogenic autophagy. Mol Ther. 2021;29(3):1258–1278.
  • Zhang F, Li Y, Xu W, et al. Long non-coding RNA ZFAS1 regulates the malignant progression of gastric cancer via the microRNA-200b-3p/Wnt1 axis. Biosci Biotechnol Biochem. 2019;83(7):1289–1299.
  • Zhou Y, Sha Z, Yang Y, et al. lncRNA NEAT1 regulates gastric carcinoma cell proliferation, invasion and apoptosis via the miR-500a-3p/XBP-1 axis. Mol Med Rep. 2021;24(1):1–10.
  • Wang S, Zhu W, Qiu J, et al. lncRNA SNHG4 promotes cell proliferation, migration, invasion and the epithelial-mesenchymal transition process via sponging miR-204-5p in gastric cancer. Mol Med Rep. 2021;23:1–11.
  • Ma J, Zhao G, Du J, et al. LncRNA FENDRR inhibits gastric cancer cell proliferation and invasion via the miR-421/SIRT3/Notch-1 axis. Cancer Manag Res. 2021;13:9175.
  • Huangfu L, Fan B, Wang G, et al. Novel prognostic marker LINC00205 promotes tumorigenesis and metastasis by competitively suppressing miRNA-26a in gastric cancer. Cell Death Discov. 2021;8(1):1–10.
  • Tian CX, Wu H, lin LH, et al. PADI4 promotes epithelial-mesenchymal transition(EMT) in gastric cancer via the upregulation of interleukin 8. BMC Gastroenterol. 2022;22(1):1–12.
  • Pan T, Yu Z, Jin Z, et al. Tumor suppressor lnc-CTSLP4 inhibits EMT and metastasis of gastric cancer by attenuating HNRNPAB-dependent Snail transcription. Mol Ther Nucleic Acids. 2021;23:1288–1303.
  • Wang L, Xiao B, Yu T, et al. lncRNA PVT1 promotes the migration of gastric cancer by functioning as ceRNA of miR-30a and regulating Snail. J Cell Physiol. 2021;236(1):536–548.
  • Wang F, Zhu W, Yang R, et al. LncRNA ZEB2-AS1 contributes to the tumorigenesis of gastric cancer via activating the Wnt/β-catenin pathway. Mol Cell Biochem. 2019;456(1–2):73–83.
  • Tang J, Huang F, Wang H, et al. Knockdown of TPT1-AS1 inhibits cell proliferation, cell cycle G1/S transition, and epithelial–mesenchymal transition in gastric cancer. Bosn J Basic Med Sci. 2021;21(1):39–46.
  • Zhang C, Liang Y, Zhang CD, et al. The novel role and function of LINC01235 in metastasis of gastric cancer cells by inducing epithelial-mesenchymal transition. Genomics. 2021;113(3):1504–1513.
  • Liu L, Zhang C, Wang J, et al. A high level of lncFGD5-AS1 inhibits epithelial-to-Mesenchymal transition by regulating the miR-196a-5p/SMAD6/BMP axis in gastric Cancer. BMC Cancer. 2021;21(1):1–14.
  • Rao J, Fu J, Meng C, et al. LncRNA SNHG3 promotes gastric cancer cells proliferation, migration, and invasion by targeting miR-326. J Oncol. 2021;2021:1–11.
  • Chen Y, Zhang R. Long non-coding RNA AL139002.1 promotes gastric cancer development by sponging microRNA-490-3p to regulate Hepatitis A virus cellular receptor 1 expression. Bioengineered. 2021;12(1):1927–1938.
  • Liu Z, Hu K, Wang X, et al. lncRNA ACTA2-AS1 inhibits malignant phenotypes of gastric cancer cells. Open Med. 2022;17(1):266–279.
  • Li C, Wang H, Meng S, et al. lncRNA GAS8-AS1 regulates cancer cell proliferation and predicts poor survival of patients with gastric cancer. Oncol Lett. 2022;23(1):1–8.
  • Diesch J, Zwick A, Garz AK, et al. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics. 2016;8:8.
  • Schneider BJ, Shah MA, Klute K, et al., Phase I study of epigenetic priming with azacitidine prior to standard neoadjuvant chemotherapy for patients with resectable gastric and esophageal adenocarcinoma: evidence of tumor hypomethylation as an indicator of major histopathologic response. Clin Cancer Res. 2017;23(11):2673.
  • Moro H, Hattori N, Nakamura Y, et al. Epigenetic priming sensitizes gastric cancer cells to irinotecan and cisplatin by restoring multiple pathways. Gastric Cancer. 2020;23(1):105–115.
  • Mehdipour P, Chen R, De Carvalho DD. The next generation of DNMT inhibitors. Nat Cancer. 2021;2(10):1000–1001.
  • Tan W, Zhou W, Gang YH, et al. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo. Biochem Biophys Res Commun. 2013;430(1):250–255.
  • Dai W, Liu S, Zhang J, et al. Vorinostat triggers miR-769–5p/3p-mediated suppression of proliferation and induces apoptosis via the STAT3-IGF1R-HDAC3 complex in human gastric cancer. Cancer Lett. 2021;521:196–209.
  • Zou XM, Li YL, Wang H, et al. Gastric cancer cell lines induced by trichostatin A. World J Gastroenterol. 2008;14(30):4810.
  • Regel I, Merkl L, Friedrich T, et al. Pan-histone deacetylase inhibitor panobinostat sensitizes gastric cancer cells to anthracyclines via induction of CITED2. Gastroenterology. 2012;143(1):99–109.e10.
  • Tsai CH, Li CH, Liao PL, et al. Aza-PBHA, a potent histone deacetylase inhibitor, inhibits human gastric-cancer cell migration via PKCα-mediated AHR-HDAC interactions. Biochim Biophys Acta, Mol Cell Res. 2020;1867(2):118564.
  • Zhang W, Niu J, Ma Y, et al. The synergistic antitumor activity of chidamide in combination with bortezomib on gastric cancer. Onco Targets Ther. 2020;13:3823.
  • Jahani M, Khanahmad H, Nikpour P. Evaluation of the effects of valproic acid treatment on cell survival and epithelial-mesenchymal transition-related features of human gastric cancer cells. J Gastrointest Cancer. 2021;52(2):676–681.
  • Erdmann A, Halby L, Fahy J, et al. Targeting DNA methylation with small molecules: what’s next? J Med Chem. 2015;58(6):2569–2583.
  • Paşa S, Erdogan O, Cevik O. Design, synthesis and investigation of procaine based new Pd complexes as DNA methyltransferase inhibitor on gastric cancer cells. Inorg Chem Commun. 2021;132:108846.
  • Zhu F, Xu Y, Pan J, et al. Epigallocatechin gallate protects against MNNG-induced precancerous lesions of gastric carcinoma in rats via PI3K/Akt/mTOR pathway. Evid Based Complement Alternat Med. 2021;2021:8846813.
  • Yang DD, Chen ZH, Yu K, et al. METTL3 promotes the progression of gastric cancer via targeting the MYC pathway. Front Oncol. 2020;10:115.
  • Huang W, Chen TQ, Fang K, et al. N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol. 2021;14(1):1–19.
  • Song Z, Wei Z, Wang Q, et al. The role of DOT1L in the proliferation and prognosis of gastric cancer. Biosci Rep. 2020;40(1). DOI:10.1042/BSR20193515.
  • wei WS, Sheng H, Zheng F, et al. Hesperetin promotes DOT1L degradation and reduces histone H3K79 methylation to inhibit gastric cancer metastasis. Phytomedicine. 2021;84:153499.
  • Liu M, Yao B, Gui T, et al. PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression. Theranostics. 2020;10(10):4437.
  • Siu LL, Rasco DW, Vinay SP, et al. METEOR-1: a phase I study of GSK3326595, a first-in-class protein arginine methyltransferase 5 (PRMT5) inhibitor, in advanced solid tumours. Ann Oncol. 2019;30:v159.
  • Ma P, Jia G, Song Z. Monobenzone, a novel and potent KDM1A inhibitor, suppresses migration of gastric cancer cells. Front Pharmacol. 2021;12:640949.
  • Kang SK, Bae HJ, Kwon WS, et al. Transcriptome analysis of iBET-151, a BET inhibitor alone and in combination with paclitaxel in gastric cancer cells. Genomics Inform. 2020;18(4):1–11.
  • Liao X, Qian X, Zhang Z, et al. ARV-825 demonstrates antitumor activity in gastric cancer via MYC-Targets and G2M-checkpoint signaling pathways. Front Oncol. 2021;11:4205.
  • Zhou S, Zhang S, Wang L, et al. BET protein inhibitor JQ1 downregulates chromatin accessibility and suppresses metastasis of gastric cancer via inactivating RUNX2/NID1 signaling. Oncogenesis. 2020;9(3):1–14.
  • Kim TW. Cinnamaldehyde induces autophagy-mediated cell death through ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol Sin. 2021;43(3):712–723.
  • Wanga XZ, Gu JL, Gao M, et al. Peperomin E induces promoter hypomethylation of metastatic-suppressor genes and attenuates metastasis in poorly differentiated gastric cancer. Cell Physiol Biochem. 2018;50(6):2341–2364.
  • Zhong X, Liu D, Jiang Z, et al. Chrysin induced cell apoptosis and inhibited invasion through regulation of TET1 expression in gastric cancer cells. Onco Targets Ther. 2020;13:3277.
  • Fan X, Hu X, Han T, et al. Association between RUNX3 promoter methylation and gastric cancer: a meta-analysis. 2011. [cited 2022 Dec 9]; Available from: http://www.biomedcentral.com/1471-230X/11/92.
  • Kolesnikova EV, Tamkovich SN, Bryzgunova OE, et al. Circulating DNA in the blood of gastric cancer patients. Ann N Y Acad Sci. 2008 cited 2022 Dec 9;1137(1):226–231.
  • Pimson C, Ekalaksananan T, Pientong C, et al. Aberrant methylation of PCDH10 and RASSF1A genes in blood samples for non-invasive diagnosis and prognostic assessment of gastric cancer. 2016
  • Guo X, Lv X, Ru Y, et al. Circulating exosomal gastric cancer-associated long noncoding RNA1 as a biomarker for early detection and monitoring progression of gastric cancer: a multiphase study. JAMA Surg. 2020 cited 2022 December 9;155(7):572–579.
  • Kampmann M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol. Internet]. 2018 [cited 2022 Sept 20];13:406. Available from.;(2):.
  • Nuñez JK, Chen J, Pommier GC, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184(9):2503–2519.e17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.