531
Views
0
CrossRef citations to date
0
Altmetric
Review

Updates in diagnosing polycystic ovary syndrome-related infertility

, , , &
Pages 123-132 | Received 12 Oct 2022, Accepted 03 Feb 2023, Published online: 01 Mar 2023

References

  • Gleicher N, Darmon S, Patrizio P, et al. Reconsidering the Polycystic Ovary Syndrome (PCOS). Biomedicines. 2022 Jun 25;10(7):1505.
  • The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised. 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004 Jan;19(1):41–47.
  • Teede H, Gibson-Helm M, Norman RJ, et al. Polycystic ovary syndrome: perceptions and attitudes of women and primary health care physicians on features of PCOS and renaming the syndrome. J Clin Endocrinol Metab. 2014 Jan;99(1):E107–11.
  • Gibson-Helm M, Teede H, Dunaif A, et al. Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2017 Feb 1;102(2):604–612.
  • Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018 Aug;110(3):364–379.
  • Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010 Jun;30(8):41.
  • Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016 Aug;11(2):16057.
  • Joham AE, Norman RJ, Stener-Victorin E, et al. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022 Sep;10(9):668–680.
  • Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018 Sep 1;33(9):1602–1618.
  • Munro MG, Critchley HOD, Fraser IS, et al. The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. Int J Gynaecol Obstet. 2018 Dec;143(3):393–408.
  • Kostopoulou E, Anagnostis P, Bosdou JK, et al. Polycystic ovary syndrome in adolescents: pitfalls in diagnosis and management. Curr Obes Rep. 2020 9;Sep(3):193–203.
  • Spritzer PM, Marchesan LB, Santos BR, et al. Hirsutism, normal androgens and diagnosis of PCOS. Diagnostics (Basel). 2022 Aug 9;12(8):1922.
  • Brown ZA, Louwers YV, Fong SL, et al. The phenotype of polycystic ovary syndrome ameliorates with aging. Fertil Steril. 2011 Nov;96(5):1259–1265.
  • Palomba S, Daolio J, La Sala GB. Oocyte competence in women with polycystic ovary syndrome. Trends Endocrinol Metab. 2017 Mar;28(3):186–198.
  • Palomba S, Piltonen TT, Giudice LC. Endometrial function in women with polycystic ovary syndrome: a comprehensive review. Hum Reprod Update. 2021 Apr 21;27(3):584–618.
  • Kałużna M, Człapka-Matyasik M, Wachowiak-Ochmańska K, et al. Effect of central obesity and hyperandrogenism on selected inflammatory markers in patients with PCOS: a WHtR-matched case-control study. J Clin Med. 2020 Sep 20;9(9):3024.
  • Fauser BC, Tarlatzis BC, Rebar RW, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertility and Sterility. 2012 Jan;97(1):28–38.e25.
  • Oliveira FR, Mamede M, Bizzi MF, et al. Brown adipose tissue activity is reduced in women with polycystic ovary syndrome. Eur J Endocrinol. 2019 Nov;181(5):473–480.
  • Rocha AL, Oliveira FR, Azevedo RC, et al. Recent advances in the understanding and management of polycystic ovary syndrome. F1000Res. 2019 Apr;26(8):F1000 Faculty Rev–565.
  • Kaya MG, Yildirim S, Calapkorur B, et al. Metformin improves endothelial function and carotid intima media thickness in patients with PCOS. Gynecol Endocrinol. 2015 May;31(5):401–405.
  • Kocer D, Bayram F, Diri H. The effects of metformin on endothelial dysfunction, lipid metabolism and oxidative stress in women with polycystic ovary syndrome. Gynecol Endocrinol. 2014 May;30(5):367–371.
  • Lin AL, Gonzalez R Jr., Carey KD, et al. Estradiol-17 beta affects estrogen receptor distribution and elevates progesterone receptor content in baboon aorta. Arteriosclerosis. 1986 Sep-Oct;6(5):495–504.
  • Dehghani Firoozabadi A, Dehghani Firouzabadi R, Eftekhar M, et al. Maternal and neonatal outcomes among pregnant women with different polycystic ovary syndrome phenotypes: a cross-sectional study. Int J Reprod BioMed. 2020 May;18(5):339–346.
  • Liu S, Mo M, Xiao S, et al. Pregnancy Outcomes of Women With Polycystic Ovary Syndrome for the First In Vitro Fertilization Treatment: a Retrospective Cohort Study With 7678 Patients. Front Endocrinol (Lausanne). 2020;11:575337.
  • Li Y, Zhang J, Liu YD, et al. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome. RNA Biol. 2020 Dec;17(12):1798–1810.
  • Motahari Rad H, Mowla SJ, Ramazanali F, et al. Characterization of altered microRNAs related to different phenotypes of polycystic ovarian syndrome (PCOS) in serum, follicular fluid, and cumulus cells. Taiwan J Obstet Gynecol. 2022 Sep;61(5):768–779.
  • Tian-Min Y, Suxia L, Shufang D, et al. Combined transcriptomic and metabolomic analysis of women with polycystic ovary syndrome. Dis Markers. 2022;2022:4000424.
  • Bongrani A, Plotton I, Mellouk N, et al. High androgen concentrations in follicular fluid of polycystic ovary syndrome women. ReprodBiol Endocrinol. 2022 Jun 14;20(1):88.
  • Mansoori A, Amoochi-Foroushani G, Zilaee M, et al. Serum and follicular fluid chemerin and chemerin mRNA expression in women with polycystic ovary syndrome: systematic review and meta-analysis. Endocrinology, Diabetes & Metabolism. 2022 Jan;5(1):e00307.
  • Yu L, Liu M, Wang Z, et al. Correlation between steroid levels in follicular fluid and hormone synthesis related substances in its exosomes and embryo quality in patients with polycystic ovary syndrome. ReprodBiol Endocrinol. 2021 May 17;19(1):74.
  • Bongrani A, Mellouk N, Ramé C, et al. Vaspin, a novel adipokine in woman granulosa cells physiology and PCOS pathogenesis? J Endocrinol. 2021 Apr;249(1):57–70.
  • Song WY, Wang Y, Hou XM, et al. Different expression and localization of aquaporin 7 and aquaporin 9 in granulosa cells, oocytes, and embryos of patients with polycystic ovary syndrome and the negatively correlated relationship with insulin regulation. Fertil Steril. 2021 Feb;115(2):463–473.
  • Butler AE, Ramachandran V, Hayat S, et al. Expression of microRNA in follicular fluid in women with and without PCOS. Sci Rep. 2019 Nov 8;9(1):16306.
  • Li Y, Xiang Y, Song Y, et al. Dysregulated miR-142, −33b and −423 in granulosa cells target TGFBR1 and SMAD7: a possible role in polycystic ovary syndrome. Mol Hum Reprod. 2019 Oct 28;25(10):638–646.
  • Liu L, Yin TL, Chen Y, et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol. 2019;185:142–149.
  • Cui X, Jing X, Wu X, et al. Abnormal expression levels of BMP15/Smad1 are associated with granulosa cell apoptosis in patients with polycystic ovary syndrome. Mol Med Rep. 2017 Dec;16(6):8231–8236.
  • Roche J, Ramé C, Reverchon M, et al. Apelin (APLN) and Apelin Receptor (APLNR) in Human Ovary: expression, Signaling, and Regulation of Steroidogenesis in Primary Human Luteinized Granulosa Cells. Biol Reprod. 2016 Nov;95(5):104.
  • Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J. 2016 Jun 1;473(11):1483–1501.
  • Heidarzadehpilehrood R, Pirhoushiaran M, Abdollahzadeh R, et al. A Review on CYP11A1, CYP17A1, and CYP19A1 Polymorphism Studies: candidate Susceptibility Genes for Polycystic Ovary Syndrome (PCOS) and Infertility. Genes (Basel). 2022 Feb 5;13(2):302.
  • Stener-Victorin E, Padmanabhan V, Walters KA, et al. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev. 2020 Jul 1;41(4):bnaa010.
  • Corrie L, Gulati M, Singh SK, et al. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. Life Sci. 2021 Sep;1(280):119753.
  • Deswal R, Yadav A, Dang AS. Sex hormone binding globulin - an important biomarker for predicting PCOS risk: a systematic review and meta-analysis. Syst Biol Reprod Med. 2018 Feb;64(1):12–24.
  • Olivier LS, Evliyaoglu O, Weiskirchen R, et al. Investigation of soluble anti-Müllerian hormone receptor type 2 as a biomarker for diagnosis of female fertility disorders. Reprod Biomed Online. 2019 Dec;39(6):1017–1025.
  • Daan NM, Koster MP, de Wilde MA, et al. Biomarker profiles in women with PCOS and PCOS offspring; a pilot study. PloS one. 2016;11(11):e0165033.
  • Long W, Zhao C, Ji C, et al. Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cell Physiol Biochem. 2014;33(5):1304–1315.
  • Xie L, Jiang X, Chen Y, et al. 3 CpG methylation biomarkers for the diagnosis of Polycystic Ovary Syndrome (PCOS) in blood samples. Comb Chem High Throughput Screen. 2022;25(8):1304–1313.
  • Alves MT, de Souza IDP, Ferreira CN, et al. Galectin-3 is a potential biomarker to insulin resistance and obesity in women with polycystic ovary syndrome. Gynecol Endocrinol. 2020 Sep;36(9):760–763.
  • Carvalho LML, Ferreira CN, de Oliveira DKD, et al. Haptoglobin levels, but not Hp1-Hp2 polymorphism, are associated with polycystic ovary syndrome. J Assist Reprod Genet. 2017 Dec;34(12):1691–1698.
  • Rocha ALL, Faria LC, Tcm G, et al. Non-alcoholic fatty liver disease in women with polycystic ovary syndrome: systematic review and meta-analysis. J Endocrinol Invest. 2017 Dec;40(12):1279–1288.
  • Silva IS, Ferreira CN, Costa LBX, et al. Polycystic ovary syndrome: clinical and laboratory variables related to new phenotypes using machine-learning models. J Endocrinol Invest. 2022 Mar;45(3):497–505.
  • Day F, Karaderi T, Jones MR, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018 Dec;14(12):e1007813.
  • Naessen T, Kushnir MM, Chaika A, et al. Steroid profiles in ovarian follicular fluid in women with and without polycystic ovary syndrome, analyzed by liquid chromatography-tandem mass spectrometry. Fertil Steril. 2010 Nov;94(6):2228–2233.
  • Yang Z, Zhou W, Zhou C, et al. Steroid metabolome profiling of follicular fluid in normo- and hyperandrogenic women with polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2021;206:105806.
  • Tsigkou A, Luisi S, De Leo V, et al. High serum concentration of total inhibin in polycystic ovary syndrome. Fertil Steril. 2008 Nov;90(5):1859–1863.
  • Jiao J, Shi B, Wang T, et al. Characterization of long non-coding RNA and messenger RNA profiles in follicular fluid from mature and immature ovarian follicles of healthy women and women with polycystic ovary syndrome. Hum Reprod. 2018 Sep 1;33(9):1735–1748.
  • Ambekar AS, Kelkar DS, Pinto SM, et al. Proteomics of follicular fluid from women with polycystic ovary syndrome suggests molecular defects in follicular development. J Clin Endocrinol Metab. 2015 Feb;100(2):744–753.
  • Russo N, Russo M, Daino D, et al. Polycystic ovary syndrome: brain-derived neurotrophic factor (BDNF) plasma and follicular fluid levels. Gynecol Endocrinol. 2012 Apr;28(4):241–244.
  • Fang L, Wang S, Li Y, et al. High GDF-8 in follicular fluid is associated with a low pregnancy rate in IVF patients with PCOS. Reproduction. 2020 Jul;160(1):11–19.
  • Liu Y, Li S, Tao T, et al. Intrafollicular fibroblast growth factor 13 in polycystic ovary syndrome: relationship with androgen levels and oocyte developmental competence. J Ovarian Res. 2018 Sep 26;11(1):87.
  • He T, Liu Y, Zhao S, et al. Comprehensive assessment the expression of core elements related to IGFIR/PI3K pathway in granulosa cells of women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2019;233:134–140.
  • Kristensen SG, Kumar A, Mamsen LS, et al. Intrafollicular concentrations of the oocyte-secreted factors GDF9 and BMP15 vary inversely in polycystic ovaries. J Clin Endocrinol Metab. 2022 Jul 14;107(8):e3374–e3383.
  • Grondahl ML, Borup R, Vikesa J, et al. The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase II. Mol Hum Reprod. 2013 Sep;19(9):600–617.
  • Patil K, Hinduja I, Mukherjee S. Alteration in angiogenic potential of granulosa-lutein cells and follicular fluid contributes to luteal defects in polycystic ovary syndrome. Hum Reprod. 2021 Mar 18; 36(4):1052–1064.
  • Berisha B, Schams D, Rodler D, et al. Angiogenesis in the ovary - the most important regulatory event for follicle and corpus luteum development and function in cow - an overview. Anat Histol Embryol. 2016 Apr;45(2):124–130.
  • Henríquez S, Kohen P, Xu X, et al. Significance of pro-angiogenic estrogen metabolites in normal follicular development and follicular growth arrest in polycystic ovary syndrome. Hum Reprod. 2020 Jul 1;35(7):1655–1665.
  • Artini PG, Ruggiero M, Parisen Toldin MR, et al. Vascular endothelial growth factor and its soluble receptor in patients with polycystic ovary syndrome undergoing IVF. Hum Fertil (Camb). 2009 Mar;12(1):40–44.
  • Adams J, Liu Z, Ren YA, et al. Enhanced Inflammatory Transcriptome in the Granulosa Cells of Women With Polycystic Ovarian Syndrome. J Clin Endocrinol Metab. 2016 Sep;101(9):3459–3468.
  • Tosatti JAG, Sóter MO, Ferreira CN, et al. The hallmark of pro- and anti-inflammatory cytokine ratios in women with polycystic ovary syndrome. Cytokine. 2020;134:155187.
  • Feng Y, Qi J, Xue X, et al. Follicular free fatty acid metabolic signatures and their effects on oocyte competence in non-obese PCOS patients. Reproduction. 2022 May 23;164(1):1–8.
  • Zhu Q, Yao Y, Xu L, et al. Elevated SAA1 promotes the development of insulin resistance in ovarian granulosa cells in polycystic ovary syndrome. ReprodBiol Endocrinol. 2022 Jan 3;20(1):4.
  • Lai Y, Ye Z, Mu L, et al. Elevated Levels of Follicular Fatty Acids Induce Ovarian Inflammation via ERK1/2 and Inflammasome Activation in PCOS. J Clin Endocrinol Metab. 2022 Jul 14;107(8):2307–2317.
  • Liu Y, Li Z, Wang Y, et al. IL-15 participates in the pathogenesis of polycystic ovary syndrome by affecting the activity of granulosa cells. Front Endocrinol (Lausanne). 2022;13:787876.
  • Liu Y, Liu H, Li Z, et al. The release of peripheral immune inflammatory cytokines promote an inflammatory cascade in PCOS patients via altering the follicular microenvironment. Front Immunol. 2021;12:685724.
  • Zhang H, Wang X, Xu J, et al. IL-18 and IL-18 binding protein concentration in ovarian follicular fluid of women with unexplained infertility to PCOS during in vitro fertilization. J Reprod Immunol. 2020;138:103083.
  • Li Z, Zhu Y, Li H, et al. Leukaemia inhibitory factor in serum and follicular fluid of women with polycystic ovary syndrome and its correlation with IVF outcome. Reprod Biomed Online. 2018 Apr;36(4):483–489.
  • Zhang T, Tian F, Huo R, et al. Detection of dendritic cells and related cytokines in follicular fluid of patients with polycystic ovary syndrome. Am J Reproduct Immunol. 2017;78:3.
  • Miao C, Chen Y, Fang X, et al. Identification of the shared gene signatures and pathways between polycystic ovary syndrome and endometrial cancer: an omics data based combined approach. PloS one. 2022;17(7):e0271380.
  • Hu M, Zhang Y, Li X, et al. Alterations of endometrial epithelial-mesenchymal transition and MAPK signalling components in women with PCOS are partially modulated by metformin in vitro. Mol Hum Reprod. 2020 May 15;26(5):312–326.
  • Younas K, Quintela M, Thomas S, et al. Delayed endometrial decidualisation in polycystic ovary syndrome; the role of AR-MAGEA11. J Mol Med (Berl). 2019 Sep;97(9):1315–1327.
  • Kim JY, Song H, Kim H, et al. Transcriptional profiling with a pathway-oriented analysis identifies dysregulated molecular phenotypes in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2009 Apr;94(4):1416–1426.
  • Piltonen TT, Chen JC, Khatun M, et al. Endometrial stromal fibroblasts from women with polycystic ovary syndrome have impaired progesterone-mediated decidualization, aberrant cytokine profiles and promote enhanced immune cell migration in vitro. Hum Reprod. 2015 May;30(5):1203–1215.
  • Qiao J, Wang L, Li R, et al. Microarray evaluation of endometrial receptivity in Chinese women with polycystic ovary syndrome. Reprod Biomed Online. 2008 Sep;17(3):425–435.
  • Alikhani M, Amjadi F, Mirzaei M, et al. Proteome analysis of endometrial tissue from patients with PCOS reveals proteins predicted to impact the disease. Mol Biol Rep. 2020 Nov;47(11):8763–8774.
  • Maliqueo M, Lara HE, Sánchez F, et al. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2013 Feb;166(2):151–155.
  • Sun M, Sun B, Qiao S, et al. Elevated maternal androgen is associated with dysfunctional placenta and lipid disorder in newborns of mothers with polycystic ovary syndrome. Fertil Steril. 2020 Jun;113(6):1275–1285.e2.
  • Palomba S, Falbo A, Chiossi G, et al. Early trophoblast invasion and placentation in women with different PCOS phenotypes. Reprod Biomed Online. 2014 Sep;29(3):370–381.
  • Palomba S, Russo T, Falbo A, et al. Macroscopic and microscopic findings of the placenta in women with polycystic ovary syndrome. Hum Reprod. 2013 Oct;28(10):2838–2847.
  • Zhang Q, Bao ZK, Deng MX, et al. Fetal growth, fetal development, and placental features in women with polycystic ovary syndrome: analysis based on fetal and placental magnetic resonance imaging. J Zhejiang Univ Sci B. 2020 Dec.;21(12):977–989.
  • Palomba S, de Wilde MA, Falbo A, et al. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015 Sep-Oct;21(5):575–592.
  • Cecchin E, Stocco G. Pharmacogenomics and personalized medicine. Genes (Basel). 2020 Jun 22;11(6):679.
  • Nicholson WT, Formea CM, Matey ET, et al. Considerations when applying pharmacogenomics to your practice. Mayo Clin Proc. 2021 Jan;96(1):218–230.
  • Roque M, Bianco B, Christofolini DM, et al. Pharmacogenetic algorithm for individualized controlled ovarian stimulation in assisted reproductive technology cycles. Panminerva Med. 2019 Mar;61(1):76–81.
  • Robin C, Hennart B, Broly F, et al. Could Cytochrome P450 2D6, 3A4 and 3A5 Polymorphisms Explain the Variability in Clinical Response to Clomiphene Citrate of Anovulatory PCOS Women? Front Endocrinol (Lausanne). 2021;12:718917.
  • Valkenburg O, van Santbrink EJ, König TE, et al. Follicle-stimulating hormone receptor polymorphism affects the outcome of ovulation induction in normogonadotropic (World Health Organization class 2) anovulatory subfertility. Fertil Steril. 2015 Apr;103(4):1081–1088.e3.
  • Overbeek A, Kuijper EA, Hendriks ML, et al. Clomiphene citrate resistance in relation to follicle-stimulating hormone receptor Ser680Ser-polymorphism in polycystic ovary syndrome. Hum Reprod. 2009 Aug;24(8):2007–2013.
  • Legro RS, Barnhart HX, Schlaff WD, et al. Ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene. J Clin Endocrinol Metab. 2008 Mar;93(3):792–800.
  • Nelson DR. The cytochrome p450 homepage. Hum Genomics. 2009 Oct;4(1):59–65.
  • Kim MJ, Byeon JY, Kim YH, et al. Effect of the CYP2D6*10 allele on the pharmacokinetics of clomiphene and its active metabolites. Arch Pharm Res. 2018 Mar;41(3):347–353.
  • Mürdter TE, Kerb R, Turpeinen M, et al. Genetic polymorphism of cytochrome P450 2D6 determines oestrogen receptor activity of the major infertility drug clomiphene via its active metabolites. Hum Mol Genet. 2012 Mar 1;21(5):1145–1154.
  • Livshyts G, Podlesnaja S, Kravchenko S, et al. A distribution of two SNPs in exon 10 of the FSHR gene among the women with a diminished ovarian reserve in Ukraine. J Assist Reprod Genet. 2009 Jan;26(1):29–34.
  • García-Jiménez G, Zariñán T, Rodríguez-Valentín R, et al. Frequency of the T307A, N680S, and −29G>A single-nucleotide polymorphisms in the follicle-stimulating hormone receptor in Mexican subjects of Hispanic ancestry. ReprodBiol Endocrinol. 2018 Oct 19;16(1):100.
  • Yan Y, Gong Z, Zhang L, et al. Association of follicle-stimulating hormone receptor polymorphisms with ovarian response in Chinese women: a prospective clinical study. PloS one. 2013;8(10):e78138.
  • Ganesh V, Venkatesan V, Koshy T, et al. Association of estrogen, progesterone and follicle stimulating hormone receptor polymorphisms with in vitro fertilization outcomes. Syst Biol Reprod Med. 2018 Aug;64(4):260–265.
  • Čuš M, Vlaisavljević V, Repnik K, et al. Could polymorphisms of some hormonal receptor genes, involved in folliculogenesis help in predicting patient response to controlled ovarian stimulation? J Assist Reprod Genet. 2019 Jan;36(1):47–55.
  • de Castro F, Morón FJ, Montoro L, et al. Pharmacogenetics of controlled ovarian hyperstimulation. Pharmacogenomics. 2005 Sep;6(6):629–637.
  • Conforti A, Vaiarelli A, Cimadomo D, et al. Pharmacogenetics of FSH action in the female. Front Endocrinol (Lausanne). 2019;10:398.
  • Paschalidou C, Anagnostou E, Mavrogianni D, et al. The effects of follicle-stimulating hormone receptor (FSHR) −29 and Ser680Asn polymorphisms in IVF/ICSI. Horm Mol Biol Clin Investig. 2020 Mar 2;41(2):20190058.
  • Alviggi C, Conforti A, Santi D, et al. Clinical relevance of genetic variants of gonadotrophins and their receptors in controlled ovarian stimulation: a systematic review and meta-analysis. Hum Reprod Update. 2018 Sep 1;24(5):599–614.
  • Wu XQ, Xu SM, Liu JF, et al. Association between FSHR polymorphisms and polycystic ovary syndrome among Chinese women in north China. J Assist Reprod Genet. 2014 Mar;31(3):371–377.
  • Singhasena W, Pantasri T, Piromlertamorn W, et al. Follicle-stimulating hormone receptor gene polymorphism in chronic anovulatory women, with or without polycystic ovary syndrome: a cross-sectional study. ReprodBiol Endocrinol. 2014 Sep;2(12):86.
  • Laven JSE. Follicle Stimulating Hormone Receptor (FSHR) Polymorphisms and Polycystic Ovary Syndrome (PCOS). Front Endocrinol (Lausanne). 2019;10:23.
  • Valkenburg O, Uitterlinden AG, Piersma D, et al. Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. Hum Reprod. 2009 Aug;24(8):2014–2022.
  • Dolfin E, Guani B, Lussiana C, et al. FSH-receptor Ala307Thr polymorphism is associated to polycystic ovary syndrome and to a higher responsiveness to exogenous FSH in Italian women. J Assist Reprod Genet. 2011 Sep;28(10):925–930.
  • Rama Raju GA, Cheemakurthi R, Prathigudupu K, et al. Role of Lh polymorphisms and r-hLh supplementation in GnRh agonist treated ART cycles: a cross sectional study. Eur J Obstet Gynecol Reprod Biol. 2018;222:119–125.
  • Almawi WY, Hubail B, Arekat DZ, et al. Leutinizing hormone/choriogonadotropin receptor and follicle stimulating hormone receptor gene variants in polycystic ovary syndrome. J Assist Reprod Genet. 2015 Apr;32(4):607–614.
  • Liu AL, Liao HQ, Zhou J, et al. The role of FTO variants in the susceptibility of polycystic ovary syndrome and in vitro fertilization outcomes in Chinese women. Gynecol Endocrinol. 2018 Aug;34(8):719–723.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.