2,581
Views
1
CrossRef citations to date
0
Altmetric
Review

Advancing cervical cancer diagnosis and screening with spectroscopy and machine learning

, , ORCID Icon, & ORCID Icon
Pages 375-390 | Received 17 Jan 2023, Accepted 13 Apr 2023, Published online: 19 Apr 2023

References

  • Cancer Research UK, “Cervical cancer incidence statistics.” https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/cervical-cancer/incidence#heading-Two (accessed Oct. 14, 2022).
  • World Health Organization, “Cervical cancer.” https://www.who.int/news-room/fact-sheets/detail/cervical-cancer (accessed Oct. 14, 2022).
  • Tsu VD, Njama-Meya D, Lim J, et al. Opportunities and challenges for introducing HPV testing for cervical cancer screening in sub-Saharan Africa. Prev Med. 2018 Sep;114:205–208. DOI:10.1016/j.ypmed.2018.07.012
  • Randall TC, Ghebre R. Challenges in prevention and care delivery for women with cervical cancer in sub-Saharan Africa. In: Frontiers in oncologyVol. 6. JUN. Frontiers Research Foundation;Jun. 28, 2016. DOI:10.3389/fonc.2016.00160
  • Swanson M, Ueda S, Chen L, et al. Evidence-based improvisation: facing the challenges of cervical cancer care in Uganda. Gynecol Oncol Rep. 2018 May;24:30–35. DOI:10.1016/j.gore.2017.12.005
  • Rasul VH, Moghdam ZB, Karim MA, et al. Challenges in delivery and performance of a cervical cancer prevention program in the Kurdistan Region of the Iraq health system. Int J Gynecol Obst. 2019 Jan;144(1):80–84.
  • Hoque MR, Haque E, Karim MR. Cervical cancer in low-income countries: a Bangladeshi perspective. In: International Journal of Gynecology and Obstetrics. Jan. 1, 2021. Vol. 1521. John Wiley and Sons Ltdp. 19–25. DOI:10.1002/ijgo.13400
  • Of Health D, Care S, Caulfield M, et al., “New national cervical screening campaign launches – as nearly 1 in 3 don’t take up screening offer,” Opinium conducted an online survey with a nationally representative sample of 3,003 women (and people with a cervix) aged 25 to 64. The online survey ran from 7 January to 17 January 2021. https://www.gov.uk/government/news/new-national-cervical-screening-campaign-launches-as-nearly-1-in-3-dont-take-up-screening-offer (accessed Oct. 14, 2022).
  • Fuzzell LN, Perkins RB, Christy SM, et al. Cervical cancer screening in the United States: challenges and potential solutions for underscreened groups. In: Preventive MedicineVol. 144. Academic Press Inc;Mar. 1, 2021.DOI: 10.1016/j.ypmed.2020.106400
  • Zhang S, Xu H, Zhang L, et al. Cervical cancer: epidemiology, risk factors and screening. Chin J Cancer Res. 2020;32(6):720–728.
  • Mo J, Zheng W, Low JJH, et al. High wavenumber raman spectroscopy for in vivo detection of cervical dysplasia. Anal Chem. 2009 Nov;81(21):8908–8915. DOI:10.1021/ac9015159
  • Traynor D, Duraipandian S, Bhatia R, et al. Development and validation of a Raman spectroscopic classification model for Cervical Intraepithelial Neoplasia (CIN). Cancers (Basel). 2022 Apr;14(7). DOI:10.3390/cancers14071836
  • Ramos IR, Meade AD, Ibrahim O, et al. Raman spectroscopy for cytopathology of exfoliated cervical cells. Faraday Dis. 2016;187:187–198.
  • Wang J, Li L, Yang P, et al. Identification of cervical cancer using laser-induced breakdown spectroscopy coupled with principal component analysis and support vector machine. Lasers Med Sci. 2018 Aug;33(6):1381–1386.
  • Arbyn M, Bruni L, Kelly D, et al. Tackling cervical cancer in Europe amidst the COVID-19 pandemic. Lancet Public Health. 2020 Aug;5(8):e425.
  • Baker MJ, Byrne HJ, Chalmers J, et al. Clinical applications of infrared and Raman spectroscopy: state of play and future challenges . In: Analyst. 2018;143(8):1735–1757. DOI:10.1039/c7an01871a
  • Ma Y, Liang F, Zhu M, et al. FT-IR combined with PSO-CNN algorithm for rapid screening of cervical tumors. Photodiagn Photodyn Ther. 2022 Sep;39:103023.
  • Xue P, Wang J, Qin D, et al. Deep learning in image-based breast and cervical cancer detection: a systematic review and meta-analysis. NPJ Digit Med. 2022 Dec;5(1). DOI:10.1038/s41746-022-00559-z
  • Wang J, Zheng C-X, Ma C-L, et al. Raman spectroscopic study of cervical precancerous lesions and cervical cancer. Lasers Med Sci. 2021;36(9):1855–1864. DOI:10.1007/s10103-020-03218-5/Published
  • Chang SK, Mirabal YN, Atkinson EN, et al., “Combination of fluorescence and reflectance spectroscopy for in vivo detection of cervical pre-cancers,” in Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2002, vol. 3, p. 2265–2266. DOI:10.1109/iembs.2002.1053274
  • Yuan C, Yao Y, Cheng B, et al. The application of deep learning based diagnostic system to cervical squamous intraepithelial lesions recognition in colposcopy images. Sci Rep. 2020 Dec;10(1). DOI:10.1038/s41598-020-68252-3
  • Zhu X, Li X, Ong K, et al. Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nat Commun. 2021 Dec;12(1). DOI:10.1038/s41467-021-23913-3
  • Gentleman R, Carey VJ. Unsupervised machine learning. In: Hahne F, Huber W, Gentleman R Falcon S editors. Bioconductor Case Studies. Springer: NY(NY). 2008p. 137–157. DOI:10.1007/978-0-387-77240-0_10
  • Meza Ramirez CA, Greenop M, Ashton L, et al. Applications of machine learning in spectroscopy. Appl Spectrosc Rev. 2021 Nov;56(8–10):733–763. DOI:10.1080/05704928.2020.1859525
  • Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc A Math Phys Eng Sci. 2016 Apr;374(2065):20150202.
  • Nielsen F. Hierarchical Clustering. In: Nielsen F editor. Introduction to HPC with MPI for data science. Springer International Publishing: Cham. 2016p. 195–211. DOI:10.1007/978-3-319-21903-5_8
  • Pham DT, Dimov SS, Nguyen CD. Selection of K in K-means clustering. Proc Inst Mech Eng C J Mech Eng Sci. 2005 Jan;219(1):103–119. DOI:10.1243/095440605X8298
  • Sinaga KP, Yang M-S. Unsupervised K-Means clustering algorithm. IEEE Access. 2020;8:80716–80727.
  • Wang J, Su X, “An improved K-Means clustering algorithm,” in 2011 IEEE 3rd International Conference on Communication Software and Networks, 2011, p. 44–46. DOI:10.1109/ICCSN.2011.6014384
  • Ding C, He X, “K -means clustering via principal component analysis,” in Twenty-first international conference on Machine learning - ICML ’04, 2004, p. 29. DOI:10.1145/1015330.1015408
  • Sharma A, Paliwal KK. Linear discriminant analysis for the small sample size problem: an overview. Int J Mach Learn Cyber. 2015 Jun;6(3):443–454.
  • Tharwat A, Gaber T, Ibrahim A, et al. Linear discriminant analysis: a detailed tutorial. AI Commun. 2017;30(2):169–190.
  • Pohar M, Blas M, Turk S. Comparison of logistic regression and linear discriminant analysis: a simulation study. Adv Methodol Statis. 2004;1:143–161.
  • Xue J, “Do unbalanced data have a negative effect on LDA?”
  • Cramer RD. Partial Least Squares (PLS): its strengths and limitations. Perspect Drug Discovery Des. 1993;1(2):269–278.
  • Liu C, Zhang X, Nguyen TT, et al. Partial least squares regression and principal component analysis: similarity and differences between two popular variable reduction approaches . In: General psychiatry .2022. Vol. 351. DOI:10.1136/gpsych-2021-100662
  • Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003 Mar;17(3):166–173. DOI:10.1002/cem.785
  • Ben-Hur A, Weston J, “A user’s guide to support vector machines.” [Online]. Available: http://mloss.org
  • Jakkula V, “Tutorial on support vector machine (SVM).”
  • Cunningham P, Delany SJ. K-Nearest neighbour classifiers-a tutorial. In: ACM computing surveys. Jul. 1, 2021. Vol. 546. Association for Computing Machinery. DOI:10.1145/3459665
  • Udell M, Horn C, Zadeh R, Stephen. Boyd, and Now Publishers., Generalized low rank models.
  • Gallego AJ, Calvo-Zaragoza J, Valero-Mas JJ, et al. Clustering-based k-nearest neighbor classification for large-scale data with neural codes representation. Pattern Recognit. 2018 Feb;74:531–543. DOI:10.1016/j.patcog.2017.09.038
  • Sur P, Candès EJ. A modern maximum-likelihood theory for high-dimensional logistic regression. Proc Natl Acad Sci U S A. 2019;116(29):14516–14525.
  • Cheng Q, Varshney PK, Arora MK. Logistic regression for feature selection and soft classification of remote sensing data. IEEE Geosci Remote Sens Lett. 2006 Oct;3(4):491–494.
  • Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol. 2007 Mar;165(6):710–718. DOI:10.1093/aje/kwk052
  • Biau G, Scornet E, “A random forest guided tour,” Nov. 2015, [Online]. Available: http://arxiv.org/abs/1511.05741
  • Myles AJ, Feudale RN, Liu Y, et al. An introduction to decision tree modeling. J Chemomet. 2004 Jun;18(6):275–285.
  • Gregorutti B, Michel B, Saint-Pierre P. Correlation and variable importance in random forests. Oct. 2013. DOI:10.1007/s11222-016-9646-1
  • da Silva IN, Hernane Spatti D, Andrade Flauzino R, et al. Artificial neural networks. Cham: Springer International Publishing; 2017. DOI:10.1007/978-3-319-43162-8.
  • Krose BJA, van der Smagt P. An introduction to neural networks. 8th ed. The University of Amsterdam; 1996.
  • Dietterich TG. Ensemble methods in machine learning. Mult Classifier Syst. 2000;1857:1–15. DOI:10.1007/3-540-45014-9_1
  • Brownlee B. Ensemble Learning Algorithms With Python: Make Better Predictions with Bagging, Boosting, and Stacking Machine Learning Mistery. 2021.
  • Pedregosa F, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12(85):2825–2830. [Online]. Available: http://jmlr.org/papers/v12/pedregosa11a.html
  • Duraipandian S, Zheng W, Ng J, et al. In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques. Analyst. 2011 Oct;136(20):4328–4336. DOI:10.1039/c1an15296c.
  • González-Solís JL, Rodríguez‐López J, Martínez‐Espinosa JC, et al. “Detection of cervical cancer analyzing blood samples with Raman spectroscopy and multivariate analysis,” in AIP Conference Proceedings, 2010, vol. 1226, p. 91–95. DOI:10.1063/1.3453792
  • Kanter EM, Vargis E, Majumder S, et al. Application of Raman spectroscopy for cervical dysplasia diagnosis. J Biophoto. 2009 Feb;2(1–2):81–90.
  • Liu W, Jin X, Li J, et al . Study of cervical precancerous lesions detection by spectroscopy and support vector machine. Minimally Invasive Ther All Technol. 2021;30(4):208–214.
  • Purandare NC, Patel II, Trevisan J, et al. Biospectroscopy insights into the multi-stage process of cervical cancer development: probing for spectral biomarkers in cytology to distinguish grades. Analyst. 2013 Jul;138(14):3909–3916.
  • Ye N, Liu C, Shi P. Metabolomics analysis of cervical cancer, cervical intraepithelial neoplasia and chronic cervicitis by 1H NMR spectroscopy. Eur J Gynaecol Oncol. 2015 Jun;36:174–180. DOI:10.12892/ejgo2613.2015
  • Zhang H, Chen C, Ma C, et al. Feature fusion combined with Raman spectroscopy for early diagnosis of cervical cancer. IEEE Photonics J. 2021 Jun;13(3). DOI:10.1109/JPHOT.2021.3075958
  • Alves Melo IM, Pereira Viana MR, Pupin B, et al. PCR-RFLP and FTIR-based detection of high-risk human papilloma virus for cervical cancer screening and prevention. Biochem Biophys Rep. 2021;26:100993.
  • Chen C, Wang J, Chen C, et al. Rapid and efficient screening of human papillomavirus by Raman spectroscopy based on GA-SVM. Optik (Stuttg). 2020 May;210: DOI:10.1016/j.ijleo.2020.164514
  • Daniel A, Prakasarao A, Dornadula K, et al. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer. Spectrochim Acta A Mol Biomol Spectrosc. 2016;152:58–63.
  • Feng S, Lin D, Lin J, et al. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst. 2013 Jun;138(14):3967–3974.
  • Lyng FM, Faoláin EÓ, Conroy J, et al. Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp Mol Pathol. 2007 Apr;82(2):121–129.
  • Pereira Viana MR, Martins Alves Melo I, Pupin B, et al. Molecular detection of HPV and FT-IR spectroscopy analysis in women with normal cervical cytology. Photodiagn Photodyn Ther. 2020 Mar;29:101592.
  • Raja P, Aruna P, Koteeswaran D, et al. Characterization of blood plasma of normal and cervical cancer patients using NIR raman spectroscopy. Vib Spectrosc. 2019;102:1–7.
  • Sitter B, Bathen T, Hagen B, et al. Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy. Magn Resonance Mate Phys, Biol Med. 2004 Mar;16(4):174–181. DOI:10.1007/s10334-003-0025-5
  • Zhang H, Chen C, Gao R, et al. Rapid identification of cervical adenocarcinoma and cervical squamous cell carcinoma tissue based on Raman spectroscopy combined with multiple machine learning algorithms. Photodiagn Photodyn Ther. 2021 Mar;33:102104.
  • Zheng C, Qing S, Wang J, et al. Diagnosis of cervical squamous cell carcinoma and cervical adenocarcinoma based on Raman spectroscopy and support vector machine. Photodiagn Photodyn Ther. 2019 Sep;27:156–161.
  • Barik AK, M SP, N M, et al. A micro-Raman spectroscopy study of inflammatory condition of human cervix: probing of tissues and blood plasma samples. Photodiagn Photodyn Ther. 2022 Sep;39. DOI:10.1016/j.pdpdt.2022.102948
  • Bonnier F, Traynor D, Kearney P, et al. Processing ThinPrep cervical cytological samples for Raman spectroscopic analysis. Anal Methods. 2014 Oct;6(19):7831–7841.
  • Cohenford MA, Godwin TA, Cahn F, et al. Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis. Gynecol Oncol. 1997;66(1):59–65.
  • Duraipandian S, Zheng W, Ng J, et al. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo. Anal Chem. 2012 Jul;84(14):5913–5919. DOI:10.1021/ac300394f
  • Duraipandian S, Traynor D, Kearney P, et al. Raman spectroscopic detection of high-grade cervical cytology: using morphologically normal appearing cells. Sci Rep. 2018 Dec;8(1):1–8. DOI:10.1038/s41598-018-33417-8
  • Huang Z, Mo J, Zheng W, et al. Combining near-infrared autofluorescence and Raman spectroscopy improves the in vivo detection of cervical precancer. 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, 04-09 May 2008, San Jose, CA, USA. 2008;1–2.
  • Jusman Y, Sulaiman, SN, Isa, NAM, et al. Capability of new features from FTIR spectral of cervical cells for cervical precancerous diagnostic system using MLP networks.TENCON 2009 - 2009 IEEE Region 10 Conference, 23-26 January 2009, Singapore .2009. DOI:10.1109/TENCON.2009.5396006
  • Li P, Highfield PE, Lang ZQ, et al. A data-driven modelling based approach to evaluating prognostic value of electrical impedance spectroscopy for cervical cancer diagnosis. IFAC-Papersonline. 2021;54(15):203–208.
  • Pandey K, Tandon M, Pradhan A, et al. Can optical handheld probe based on co-polarized and cross-polarized fluorescence spectroscopy become the face of cervical cancer screening in future in developing countries? Indian J Gynecol Oncol. 2020 Dec;18(4):1–7.
  • Prabitha VG, Suchetha S, Jayanthi JL, et al. Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study. Lasers Med Sci. 2016 Jan;31(1):67–75.
  • Sanaz HT, Aghamiri SMR, Farzaneh F, et al., “Optical spectroscopy combined with neural network classification improves diagnosis of cervical precancerous lesions,” in 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012, 2012, p. 344–347. DOI:10.1109/ICBME.2012.6519705
  • Wood BR, Chiriboga L, Yee H, et al. Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. Gynecol Oncol. 2004 Apr;93(1):59–68. DOI:10.1016/j.ygyno.2003.12.028
  • Halliwell DE, Kyrgiou M, Mitra A, et al. Tracking the impact of excisional cervical treatment on the cervix using biospectroscopy. Sci Rep. 2016 Dec;6. DOI:10.1038/srep38921
  • Mo H, Yang L, Wu G, et al. Rapid and non-invasive screening of high-risk human papillomavirus using Fourier transform infrared spectroscopy and multivariate analysis. Optik. 2020 March;206. DOI:10.1016/j.ijleo.2020.164292
  • Paraskevaidi M, Cameron SJS, Whelan E, et al. Laser-assisted rapid evaporative ionisation mass spectrometry (LA-REIMS) as a metabolomics platform in cervical cancer screening. EBioMedicine. 2020 Oct;60:103017.
  • Rymsza T, Ribeiro EA, Das C LF, et al. Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening. Spectrochim Acta A Mol Biomol Spectrosc. 2018 May;196:238–246.
  • Vargis E, Tang YW, Khabele D, et al. Near-infrared raman microspectroscopy detects high-risk human papillomaviruses1. Transl Oncol. 2012;5(3):172–179.
  • Kelly JG, Angelov PP, Trevisan J, et al. Robust classification of low-grade cervical cytology following analysis with ATR-FTIR spectroscopy and subsequent application of self-learning classifier eClass. Anal Bioanal Chem. 2010 Nov;398(5):2191–2201.
  • Romeo MJ, Wood BR, Quinn MA, et al. Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy. Biopoly - Biospectros Sec. 2003;72(1):69–76.
  • Duraipandian S, Mo J, Zheng W, et al. Near-infrared Raman spectroscopy for assessing biochemical changes of cervical tissue associated with precarcinogenic transformation. Analyst. 2014;139(21):5379–5386.
  • González-Solís JL, Martínez-Espinosa JC, Torres-González LA, et al. Cervical cancer detection based on serum sample Raman spectroscopy. Lasers Med Sci. 2014;29(3):979–985.
  • Karunakaran V, Saritha VN, Joseph MM, et al. Diagnostic spectro-cytology revealing differential recognition of cervical cancer lesions by label-free surface enhanced Raman fingerprints and chemometrics. Nanomedicine. 2020 Oct;29:102276.
  • Njoroge E, Alty SR, Gani MR, et al., “Classification of cervical cancer cells using FTIR data,” in Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2006, p. 5338–5341. DOI:10.1109/IEMBS.2006.260024
  • El-Tawil SG, Adnan R, Muhamed ZN, et al. Comparative study between Pap smear cytology and FTIR spectroscopy: a new tool for screening for cervical cancer. Pathology. 2008;40(6):600–603.
  • Ostrowska KM, Garcia A, Meade AD, et al. Correlation of p16INK4A expression and HPV copy number with cellular FTIR spectroscopic signatures of cervical cancer cells. Analyst. 2011 Apr;136(7):1365–1373.
  • Zhang Y, Wang Z, Wu L, et al. Dual peptides modified fluorescence-SERS dual mode imaging nanoprobes with improved cancer cell targeting efficiency. RSC Adv. 2016;6(84):81046–81052.
  • Lu D, Xia J, Deng Z, et al. Detection of squamous cell carcinoma antigen in cervical cancer by surface-enhanced Raman scattering-based immunoassay. Anal Methods. 2019 Jun;11(21):2809–2818.
  • Xia J, Liu Y, Ran M, et al. The simultaneous detection of the squamous cell carcinoma antigen and cancer antigen 125 in the cervical cancer serum using nano-Ag polydopamine nanospheres in an SERS-based lateral flow immunoassay. RSC Adv. 2020 Aug;10(49):29156–29170.
  • Liu Y, Ran M, Sun Y, et al. A sandwich SERS immunoassay platform based on a single-layer Au–Ag nanobox array substrate for simultaneous detection of SCCA and survivin in serum of patients with cervical lesions. RSC Adv. 2021 Nov;11(58):36734–36747.
  • Sun Y, Wang Y, Lu W, et al. A novel surface-enhanced Raman scattering probe based on Au nanoboxes for dynamic monitoring of caspase-3 during cervical cancer cell apoptosis. J Mater Chem B. 2021 Jan;9(2):381–391.
  • Ostrowska KM, Malkin A, Meade A, et al. Investigation of the influence of high-risk human papillomavirus on the biochemical composition of cervical cancer cells using vibrational spectroscopy. Analyst. 2010;135(12):3087–3093. DOI:10.1039/c0an00571a
  • Shaikh R, Dora TK, Chopra S, et al. In vivo Raman spectroscopy of human uterine cervix: exploring the utility of vagina as an internal control. J Biomed Opt. 2014 Aug;19(8):087001.
  • Duraipandian S, Zheng W, Ng J, et al. Non-invasive analysis of hormonal variations and effect of postmenopausal vagifem treatment on women using in vivo high wavenumber confocal raman spectroscopy. Analyst. 2013 Jul;138(14):4120–4128. DOI:10.1039/c3an00526g.
  • Kanter EM, Majumder, S, Vargis E, et al. Multiclass discrimination of cervical precancers using Raman spectroscopy. J Raman Spectroscopy. 2009 Feb;40(2):205–211. DOI:10.1002/jrs.2108
  • World Health Organization, “Global strategy to accelerate the elimination of cervical cancer as a public health problem,” 2020.
  • Health Scotland P, “Cervical screening.” https://www.healthscotland.scot/health-topics/screening/cervical-screening (accessed Oct. 14, 2022).
  • Public Health Wales, “Cervical screening wales.” https://phw.nhs.wales/services-and-teams/cervical-screening-wales/ (accessed Oct. 14, 2022).
  • Public Health England, “Cervical screening: programme overview.” https://www.gov.uk/guidance/cervical-screening-programme-overview (accessed Oct. 14, 2022).
  • Falcaro M, CastañonA, Ndlela B, et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet. 2021 Dec;398(10316):2084–2092. DOI:10.1016/S0140-6736(21)02178-4
  • Cancer Research UK, “About cervical screening.” https://www.cancerresearchuk.org/about-cancer/cervical-cancer/getting-diagnosed/screening/about (accessed Oct. 14, 2022).
  • Legood R, Smith M, Lew J, et al. Cost effectiveness of human papillomavirus test of cure after treatment for cervical intraepithelial neoplasia in England: economic analysis from NHS sentinel sites study. BMJ. 2012 Oct;345(oct31 4):e7086. DOI:10.1136/bmj.e7086