50
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Genomic determinants of biological aggressiveness and poor prognosis of pancreatic cancers: KRAS and beyond

& ORCID Icon
Pages 355-362 | Received 14 Feb 2024, Accepted 24 Apr 2024, Published online: 06 May 2024

References

  • Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer. Lancet. 2020;395(10242):2008–2020. doi: 10.1016/S0140-6736(20)30974-0
  • Connor AA, Gallinger S. Next generation sequencing of pancreatic ductal adenocarcinoma: right or wrong? Expert Rev Gastroenterol Hepatol. 2017;11(7):683–694. doi: 10.1080/17474124.2017.1324296
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492
  • Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–2921. doi: 10.1158/0008-5472.CAN-14-0155
  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023 Jan;73:(1):17–48.
  • WHO Classification of Tumours Editorial Board. Digestive system tumours. Int Agency Res Cancer. 2019.
  • Herbst B, Zheng L. Precision medicine in pancreatic cancer: treating every patient as an exception. Lancet Gastroenterol Hepatol. 2019;4(10):805–810. doi: 10.1016/S2468-1253(19)30175-X
  • Luchini C, Capelli P, Scarpa A. Pancreatic ductal adenocarcinoma and its variants. Surg Pathol Clin. 2016;9(4):547–560. doi: 10.1016/j.path.2016.05.003
  • Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, et al. Pancreatic cancer: advances and challenges. Cell. 2023;186(8):1729–1754. doi: 10.1016/j.cell.2023.02.014
  • Hosein AN, Dougan SK, Aguirre AJ, et al. Translational advances in pancreatic ductal adenocarcinoma therapy. Nat Cancer. 2022;3(3):272–286. doi: 10.1038/s43018-022-00349-2
  • Gkountakos A, Singhi AD, Westphalen CB, et al. Fusion genes in pancreatic tumors. Trends Cancer. 2024. [Epub ahead of print]. doi: 10.1016/j.trecan.2024.01.009
  • Philip PA, Azar I, Xiu J. Molecular characterization of KRAS wild-type tumors in patients with pancreatic adenocarcinoma. Clin Cancer Res. 2022;28(12):2704–2714. doi: 10.1158/1078-0432.CCR-21-3581
  • Tuli R, Lo S, Koo J, et al. Anaplastic lymphoma kinase rearrangement and response to crizotinib in pancreatic ductal adenocarcinoma. JCO Precis Oncol. 2017;1:1–5. doi: 10.1200/PO.17.00016
  • Jones MR, Williamson LM, Topham JT, et al. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clin Cancer Res. 2019;25(15):4674–4681. doi: 10.1158/1078-0432.CCR-19-0191
  • Gower A, Golestany B, Gong J, et al. Novel ALK fusion, PPFIBP1-ALK, in pancreatic ductal adenocarcinoma responsive to Alectinib and lorlatinib. JCO Precis Oncol. 2020;4(4):865–870.
  • Gupta M, Sherrow C, Krone ME, et al. Targeting the NTRK Fusion Gene in pancreatic acinar cell carcinoma: a case report and review of the literature. J Natl Compr Canc Netw. 2021 Jan 6;19(1):10–15. doi: 10.6004/jnccn.2020.7641
  • Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA-Mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317–327. doi: 10.1056/NEJMoa1903387
  • Pant S, Maitra A, Yap TA. PARP inhibition - opportunities in pancreatic cancer. Nat Rev Clin Oncol. 2019;16(10):595–596. doi: 10.1038/s41571-019-0257-6
  • Mattiolo P, Kryklyva V, Brosens LA, et al. Refining targeted therapeutic approaches in pancreatic cancer: from histology and molecular pathology to the clinic. Expert Opin Ther Targets. 2022;26(1):1–4. doi: 10.1080/14728222.2022.2021397
  • Anbil S, Reiss KA. Targeting BRCA and PALB2 in pancreatic cancer. Curr Treat Options Oncol. 2024;25(3):346–363. Epub ahead of print. doi: 10.1007/s11864-023-01174-0
  • LaRose M, Manji GA, Bates SBB. Beyond BRCA: diagnosis and management of homologous recombination repair deficient pancreatic cancer. Semin Oncol. 2023;51(1–2):S36–44. doi: 10.1053/j.seminoncol.2023.11.001
  • Golan T, Raitses-Gurevich M, Beller T, et al. Strategies for the management of patients with pancreatic cancer with PARP inhibitors. Cancer Treat Res. 2023;186:125–142. doi: 10.1007/978-3-031-30065-3_8
  • Westphalen CB, Fine AD, André F, et al. Pan-cancer Analysis of homologous recombination repair-associated gene alterations and genome-wide loss-of-heterozygosity score. Clin Cancer Res. 2022;28(7):1412–1421.
  • Grant RC, Denroche R, Jang GH, et al. Clinical and genomic characterisation of mismatch repair deficient pancreatic adenocarcinoma. Gut. 2021 Oct;70(10):1894–1903. doi: 10.1136/gutjnl-2020-320730
  • Luchini C, Mafficini A, Chatterjee D, et al. Histo-molecular characterization of pancreatic cancer with microsatellite instability: intra-tumor heterogeneity, B2M inactivation, and the importance of metastatic sites. Virchows Arch. 2022;480(6):1261–1268. doi: 10.1007/s00428-021-03205-3
  • Lawlor RT, Mattiolo P, Mafficini A, et al. Tumor mutational burden as a potential biomarker for immunotherapy in pancreatic cancer: systematic review and still-open questions. Cancers (Basel). 2021;13(13):3119. doi: 10.3390/cancers13133119
  • Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10.
  • Luchini C, Scarpa A. Microsatellite instability in pancreatic and ampullary carcinomas: histology, molecular pathology, and clinical implications. Hum Pathol. 2023;132:176–182. doi: 10.1016/j.humpath.2022.06.009
  • Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–1806. doi: 10.1126/science.1164368
  • Waddell N, Pajic M, Patch AM, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501. doi: 10.1038/nature14169
  • Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52. doi: 10.1038/nature16965
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–404. doi: 10.1158/2159-8290.CD-12-0095
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioportal. Sci Signal. 2013;6(269):l1. doi: 10.1126/scisignal.2004088
  • Luo J. KRAS mutation in pancreatic cancer. Semin Oncol. 2021;48(1):10–18. doi: 10.1053/j.seminoncol.2021.02.003
  • Singhi AD, George B, Greenbowe JR, et al. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might Be Targeted with existing drugs or used as biomarkers. Gastroenterology. 2019;156(8):2242–2253.e4. doi: 10.1053/j.gastro.2019.02.037
  • Luchini C, Veronese N, Nottegar A, et al. Liquid biopsy as surrogate for tissue for molecular profiling in pancreatic cancer: a meta-analysis towards precision medicine. Cancers (Basel). 2019;11(8):1152. doi: 10.3390/cancers11081152
  • Wang K, Wang X, Pan Q, et al. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer. 2023;22(1):167. doi: 10.1186/s12943-023-01870-3
  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–774. doi: 10.1038/nrc3106
  • Hu ZI, O’Reilly EM. Therapeutic developments in pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2024;21(1):7–24. doi: 10.1038/s41575-023-00840-w
  • Park SW, Davison JM, Rhee J, et al. Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology. 2008;134(7):2080–2090. doi: 10.1053/j.gastro.2008.02.084
  • Riva G, Pea A, Pilati C, et al. Histo-molecular oncogenesis of pancreatic cancer: from precancerous lesions to invasive ductal adenocarcinoma. World J Gastrointest Oncol. 2018;10(10):317–327. doi: 10.4251/wjgo.v10.i10.317
  • Cowan RW, Maitra A. Genetic progression of pancreatic cancer. Cancer J. 2014;20(1):80–84. doi: 10.1097/PPO.0000000000000011
  • Bernard V, Fleming J, Maitra A. Molecular and genetic basis of pancreatic carcinogenesis: which concepts may be clinically relevant? Surg Oncol Clin N Am. 2016;25(2):227–238. doi: 10.1016/j.soc.2015.11.003
  • Kim ST, Lim DH, Jang KT, et al. Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Mol Cancer Ther. 2011;10(10):1993–1999. doi: 10.1158/1535-7163.MCT-11-0269
  • Windon AL, Loaiza-Bonilla A, Jensen CE, et al. A KRAS wild type mutational status confers a survival advantage in pancreatic ductal adenocarcinoma. J Gastrointest Oncol. 2018;9(1):1–10. doi: 10.21037/jgo.2017.10.14
  • Luchini C, Paolino G, Mattiolo P, et al. KRAS wild-type pancreatic ductal adenocarcinoma: molecular pathology and therapeutic opportunities. J Exp Clin Cancer Res. 2020 Oct 28;39(1):227. doi: 10.1186/s13046-020-01732-6
  • Lupinacci RM, Bachet JB, André T, et al. Pancreatic ductal adenocarcinoma harboring microsatellite instability/DNA mismatch repair deficiency. Towards personalized medicine. Surg Oncol. 2019;28:121–127. doi: 10.1016/j.suronc.2018.11.019
  • Luchini C, Brosens LAA, Wood LD, et al. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. Gut. 2021;70(1):148–156. doi: 10.1136/gutjnl-2020-320726
  • Ben-Ammar I, Rousseau A, Nicolle R, et al. Precision medicine for KRAS wild-type pancreatic adenocarcinomas. Eur J Cancer. 2024 Jan;197:113497. doi: 10.1016/j.ejca.2023.113497
  • Yousef A, Yousef M, Chowdhury S, et al. Impact of KRAS mutations and co-mutations on clinical outcomes in pancreatic ductal adenocarcinoma. NPJ Precis Oncol. 2024;8(1):27.
  • Strickler JH, Satake H, George TJ, et al. Sotorasib in KRAS p.G12C-Mutated advanced pancreatic cancer. N Engl J Med. 2023;388(1):33–43. doi: 10.1056/NEJMoa2208470
  • de Jesus VHF, Mathias-Machado MC, de Farias JPF, et al. Targeting KRAS in pancreatic ductal adenocarcinoma: the Long Road to cure. Cancers (Basel). 2023;15(20):5015. doi: 10.3390/cancers15205015
  • Muller M, Tougeron D. KRAS G12C inhibitors: also a new promising new targeted therapy in advanced pancreatic adenocarcinoma? Transl Cancer Res. 2023;12(12):3227–3232. doi: 10.21037/tcr-23-1629
  • Kim D, Xue JY, Lito P. Targeting KRAS(G12C): from inhibitory mechanism to modulation of antitumor effects in patients. Cell. 2020;183(4):850–859. doi: 10.1016/j.cell.2020.09.044
  • Collisson EA, Bailey P, Chang DK, et al. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2019;16(4):207–220. doi: 10.1038/s41575-019-0109-y
  • Moffitt RA, Marayati R, Flate EL, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47(10):1168–1178. doi: 10.1038/ng.3398
  • Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–5003.
  • Kottakis F, Bardeesy N. Gene signatures from pancreatic cancer tumor and stromal cells predict disease outcome. Nat Genet. 2015;47(10):1102–1103. doi: 10.1038/ng.3408
  • Taherian M, Wang H, Wang H. Pancreatic ductal adenocarcinoma: molecular pathology and predictive biomarkers. Cells. 2022;11(19):3068. doi: 10.3390/cells11193068
  • Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer. 2022;22(3):131–142. doi: 10.1038/s41568-021-00418-1
  • Martens S, Lefesvre P, Nicolle R, et al. Different shades of pancreatic ductal adenocarcinoma, different paths towards precision therapeutic applications. Ann Oncol. 2019;30(9):1428–1436. doi: 10.1093/annonc/mdz181
  • Karamitopoulou E. Emerging prognostic and predictive factors in pancreatic cancer. Mod Pathol. 2023;36(11):100328. doi: 10.1016/j.modpat.2023.100328
  • Martinelli P, Carrillo-de Santa Pau E, Cox T, et al. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut. 2017;66(9):1665–1676. doi: 10.1136/gutjnl-2015-311256
  • de Andrés MP, Jackson RJ, Felipe I, et al. GATA4 and GATA6 loss-of-expression is associated with extinction of the classical programme and poor outcome in pancreatic ductal adenocarcinoma. Gut. 2023;72(3):535–548. doi: 10.1136/gutjnl-2021-325803
  • Brunton H, Caligiuri G, Cunningham R, et al. HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Rep. 2020;31(6):107625. doi: 10.1016/j.celrep.2020.107625
  • Dreyer SB, Upstill-Goddard R, Paulus-Hock V, et al. Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology. 2021;160(1):362–377.e13.
  • D’Agosto S, Pezzini F, Veghini L, et al. Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene. 2022;41(38):4371–4384. doi: 10.1038/s41388-022-02432-5
  • Malinova A, Veghini L, Real FX, et al. Cell lineage infidelity in PDAC progression and therapy resistance. Front Cell Dev Biol. 2021;9:795251. doi: 10.3389/fcell.2021.795251
  • Williams HL, Dias Costa A, Zhang J, et al. Spatially resolved single-cell assessment of pancreatic cancer expression subtypes reveals Co-expressor phenotypes and extensive intratumoral heterogeneity. Cancer Res. 2023;83(3):441–455. doi: 10.1158/0008-5472.CAN-22-3050
  • Chan-Seng-Yue M, Kim JC, Wilson GW, et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet. 2020;52(2):231–240. doi: 10.1038/s41588-019-0566-9
  • Iacobuzio-Donahue CA, Fu B, Yachida S, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009;27(11):1806–1813. doi: 10.1200/JCO.2008.17.7188
  • Ecker BL, Tao AJ, Janssen QP, et al. Genomic biomarkers associated with response to induction chemotherapy in patients with localized pancreatic ductal adenocarcinoma. Clin Cancer Res. 2023;29(7):1368–1374. doi: 10.1158/1078-0432.CCR-22-3089
  • Simbolo M, Silvestris N, Malleo G, et al. Clinical and genomic characterization of pancreatic ductal adenocarcinoma with signet-Ring/Poorly cohesive cells. Mod Pathol. 2023;36(9):100251. doi: 10.1016/j.modpat.2023.100251
  • Opitz FV, Haeberle L, Daum A, et al. Tumor microenvironment in pancreatic intraepithelial neoplasia. Cancers (Basel). 2021;13(24):6188. doi: 10.3390/cancers13246188
  • Liffers ST, Godfrey L, Frohn L, et al. Molecular heterogeneity and commonalities in pancreatic cancer precursors with gastric and intestinal phenotype. Gut. 2023;72(3):522–534. doi: 10.1136/gutjnl-2021-326550
  • Singhi AD, Wood LD. Early detection of pancreatic cancer using DNA-based molecular approaches. Nat Rev Gastroenterol Hepatol. 2021;18(7):457–468. doi: 10.1038/s41575-021-00470-0
  • Basturk O, Berger MF, Yamaguchi H, et al. Pancreatic intraductal tubulopapillary neoplasm is genetically distinct from intraductal papillary mucinous neoplasm and ductal adenocarcinoma. Mod Pathol. 2017;30(12):1760–1772. doi: 10.1038/modpathol.2017.60
  • Paolino G, Esposito I, Hong SM, et al. Intraductal tubulopapillary neoplasm (ITPN) of the pancreas: a distinct entity among pancreatic tumors. Histopathology. 2022;81(3):297–309. doi: 10.1111/his.14698
  • Gross C, Engleitner T, Lange S, et al. Whole exome sequencing of biliary tubulopapillary neoplasms reveals common mutations in chromatin remodeling genes. Cancers (Basel). 2021;13(11):2742. doi: 10.3390/cancers13112742
  • Mafficini A, Simbolo M, Shibata T, et al. Integrative characterization of intraductal tubulopapillary neoplasm (ITPN) of the pancreas and associated invasive adenocarcinoma. Mod Pathol. 2022;35(12):1929–1943. doi: 10.1038/s41379-022-01143-2
  • Foulkes WD, Flanders TY, Pollock PM, et al. The CDKN2A (p16) gene and human cancer. Mol Med. 1997;3(1):5–20. doi: 10.1007/BF03401664
  • Schutte M, Hruban RH, Geradts J, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57(15):3126–3130.
  • Maitra A, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Best pract res Clin Gastroenterol. 2006;20(2):211–226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.