484
Views
0
CrossRef citations to date
0
Altmetric
Review

Improving the diagnosis of tuberculosis: old and new laboratory tools

, ORCID Icon, , , & ORCID Icon
Pages 487-496 | Received 22 Dec 2023, Accepted 28 May 2024, Published online: 05 Jun 2024

References

  • World Health Organisation. Global Tuberculosis report 2022. Geneva; 2022 [cited 2024 Mar 21]. Available from: https://apps.who.int/bookorders
  • England K, Masini T, Fajardo E. Detecting tuberculosis: rapid tools but slow progress. Public Health Action. 2019 Nov 2;9(3):80–83. doi: 10.5588/pha.19.0013
  • Shingadia D, and Burgner D. Mycobacterial Infections. In: Taussig LM, Landau LI, editors. Pediatric Respiratory Medicine. 2nd ed. Philadelphia, USA:Mosby; 2008. doi: 10.1016/B978-032304048-8.50043-8
  • Steingart KR, Henry M, Ng V, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006;6(9):570–581. doi: 10.1016/S1473-3099(06)70578-3
  • Rasool G, Khan AM, Mohy-Ud-Din R, et al. Detection of mycobacterium tuberculosis in afb smear-negative sputum specimens through MTB culture and GeneXpert® MTB/RIF assay. Int J Immunopathol Pharmacol. 2019;33:205873841982717. doi: 10.1177/2058738419827174
  • World Health Organization. Module 3: Diagnosis. WHO consolidated guidelines on tuberculosis Rapid diagnostics for tuberculosis detection. 3rd ed. 2021.
  • Maitra A, Solanki P, Sadouki Z, et al. Improving the drug development pipeline for mycobacteria: modelling antibiotic exposure in the hollow fibre infection model. Antibiotics. 2021 Dec 1;10(12):1515. doi: 10.3390/antibiotics10121515
  • Joloba ML, Johnson JL, Feng PJI, et al. What is the most reliable solid culture medium for tuberculosis treatment trials? Tuberculosis. 2014;94(3):311–316. doi: 10.1016/j.tube.2014.03.002
  • Pheiffer C, Carroll † NM, Beyers N, et al. Time to detection of Mycobacterium tuberculosis in BACTEC systems as a viable alternative to colony counting. Int J Tuberc Lung Dis. 2008;12(7):792–798.
  • Morgan MA, Horstmeier CD, Deyoung DR, et al. Comparison of a radiometric method (BACTEC) and conventional culture media for recovery of mycobacteria from smear-negative specimens. J Clin Microbiol. 1983;18(2):384–388. doi: 10.1128/jcm.18.2.384-388.1983
  • Satta G, Lipman M, Smith GP, et al. Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential? Clin Microbiol Infect. 2018;24:604–609. doi: 10.1016/j.cmi.2017.10.030
  • Louie A, Duncanson B, Myrick J, et al. Activity of moxifloxacin against mycobacterium tuberculosis in acid phase and nonreplicative-persister phenotype phase in a hollow-fiber infection model. Antimicrob Agents Chemother. 2018;62(12). doi: 10.1128/AAC.01470-18
  • Mukamolova GV, Turapov O, Malkin J, et al. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am J Respir Crit Care Med. 2010 Jan 15;181(2):174–180. doi: 10.1164/rccm.200905-0661OC
  • Rosser A, Stover C, Pareek M, et al. Resuscitation-promoting factors are important determinants of the pathophysiology in Mycobacterium tuberculosis infection. Crit Rev Microbiol. 2017;43:621–630. doi: 10.1080/1040841X.2017.1283485
  • Van Loon W, Gomez MP, Jobe D, et al. Use of resuscitation promoting factors to screen for tuberculosis infection in household-exposed children in the Gambia. BMC Infect Dis. 2020 Jul 2;20(1). doi: 10.1186/s12879-020-05194-1
  • Shield CG, Swift BMC, McHugh TD, et al. Application of bacteriophages for mycobacterial infections, from diagnosis to treatment. Microorganisms. 2021 Nov 1;9(11):2366. doi: 10.3390/microorganisms9112366
  • Penn-Nicholson A, Gomathi SN, Ugarte-Gil C, et al. A prospective multicentre diagnostic accuracy study for the truenat tuberculosis assays. Eur Respir J. 2021 Nov 1;58(5):2100526. doi: 10.1183/13993003.00526-2021
  • Biswas S, Uddin MKM, Paul KK, et al. Xpert MTB/RIF Ultra assay for the detection of Mycobacterium tuberculosis in people with negative conventional Xpert MTB/RIF but chest imaging suggestive of tuberculosis in Dhaka, Bangladesh. Inter J Infect Dis. 2022 Jan 1;114:244–251. doi: 10.1016/j.ijid.2021.11.010
  • Singh UB, Singh M, Sharma S, et al. Expedited diagnosis of pediatric tuberculosis using Truenat MTB-Rif Dx and GeneXpert MTB/RIF. Sci Rep [Internet]. 2023 Apr 28;13(1):6976. Available from: https://www.nature.com/articles/s41598-023-32810-2
  • Bruker. Tuberculosis rapid diagnostics of tuberculosis and its resistances your benefits with the TB product series from Hain Lifescience • Fast and reliable results • Step-wise diagnostics • Cost efficiency • CE-marked Innovation with Integrity PCR/MYCOBACTERIA IVD hain lifescience-a bruker company. 2023.
  • Lin M, Chen YW, Li YR, et al. Systematic evaluation of line probe assays for the diagnosis of tuberculosis and drug-resistant tuberculosis. Clinica Chimica Acta. 2022 Aug 1;533:183–218. doi: 10.1016/j.cca.2022.06.020
  • Vaezipour N, Fritschi N, Brasier N, et al. Towards accurate point-of-care tests for tuberculosis in children. Pathogens. 2022 Mar 1;11(3):327. doi: 10.3390/pathogens11030327
  • David A, de Vos M, Scott L, et al. Feasibility, ease-of-use, and operational characteristics of world health organization–recommended moderate-complexity automated nucleic acid amplification tests for the detection of tuberculosis and resistance to rifampicin and isoniazid. J Mol Diagn. 2023 Jan 1;25(1):46–56. doi: 10.1016/j.jmoldx.2022.10.001
  • WHO. Information sheet: practical considerations for implementation of the nipro genoscholar PZA-TB II assay. 2021.
  • MacLean E, Kohli M, Weber SF, et al. Advances in molecular diagnosis of tuberculosis. J Clin Microbiol. 2020;58(10). doi: 10.1128/JCM.01582-19
  • Olbrich L, Nliwasa M, Sabi I, et al. Rapid and accurate diagnosis of pediatric tuberculosis disease: a diagnostic accuracy study for pediatric Tuberculosis. Pediatr Infect Dis J. 2023 May 16;42(5):353–360. doi: 10.1097/INF.0000000000003853
  • Meldau R, Randall P, Pooran A, et al. Same-day tools, including xpert ultra and IRISA-TB, for rapid diagnosis of pleural tuberculosis: A prospective observational study. J Clin Microbiol. 2019;57(9). doi: 10.1128/JCM.00614-19
  • Sutherland JS, Van Der Spuy G, Gindeh A, et al. Diagnostic accuracy of the cepheid 3-gene host response fingerstick blood test in a prospective, multi-site study: interim results. Clin Infect Dis. 2022 Jun 15;74(12):2136–2141. doi: 10.1093/cid/ciab839
  • Amini S, Hoffner S, Allahyar Torkaman MR, et al. Direct drug susceptibility testing of Mycobacterium tuberculosis using the proportional method: a multicenter study. J Glob Antimicrob Resist. 2019 Jun 1;17:242–244. doi: 10.1016/j.jgar.2018.12.022
  • Yusoof KA, García JI, Schami A, et al. Tuberculosis phenotypic and genotypic drug susceptibility testing and immunodiagnostics: a review. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.870768
  • Becton D. BACTECTM MGITTM 960 SIRE kits for the antimycobacterial susceptibility testing of mycobacterium tuberculosis. 2019.
  • World Health Organisation. Optimized broth microdilution plate methodology for drug susceptibility testing of mycobacterium tuberculosis complex [Internet]. 2022 [cited 2024 Mar 21]. Available from: http://apps.who.int/bookorders
  • Lee J, Armstrong DT, Ssengooba W, et al. Sensititre MYCOTB MIC plate for testing mycobacterium tuberculosis susceptibility to first-and second-Line drugs. Antimicrob Agents Chemother. 2014 Jan;58(1):11–18. doi: 10.1128/AAC.01209-13
  • Solanki P, Lipman M, McHugh TD, et al. Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria. Front Microbiol. 2022 Nov 29;13:13. doi: 10.3389/fmicb.2022.1044515
  • Pillay S, Steingart KR, Davies GR, et al. Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst Rev. 2022;2022. doi: 10.1002/14651858.CD014841.pub2
  • Jouet A, Gaudin C, Badalato N, et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J. 2021 Mar 1;57(3):2002338. doi: 10.1183/13993003.02338-2020
  • Papaventsis D, Casali N, Kontsevaya I, et al. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin Microbiol Infect. 2017;23:61–68. doi: 10.1016/j.cmi.2016.09.008
  • Quail MA, Smith M, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012 Jul 24;13(1):341. doi: 10.1186/1471-2164-13-341
  • Cechova M. Probably correct: Rescuing repeats with short and long reads. Genes (Basel). 2021;12(1):1–13. doi: 10.3390/genes12010048
  • Quainoo S, Coolen JPM, van Hijum SAFT, et al. Whole-genome sequencing of bacterial pathogens: The future of nosocomial outbreak analysis. Clin Microbiol Rev. 2017;30(4):1015–1063. doi: 10.1128/CMR.00016-17
  • Kumar KR, Cowley MJ, Davis RL. Next-generation sequencing and emerging technologies. Semin Thromb Hemost. 2019;45(7):661–673. doi: 10.1055/s-0039-1688446
  • Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed And Biotech. 2012;2012. doi: 10.1155/2012/251364
  • Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies. Curr Protoc Mol Biol. 2018 Apr 1;122(1). doi: 10.1002/cpmb.59
  • Oxford Nanopore Technologies. MinION Starter Pack. 2023.
  • Oxford Nanopore Technologies. MinION Mk1B it requirements Overview [Internet]. [cited 2023 Jun 30]. Available from: https://www.techpowerup.com/gpu-specs/
  • Kent L, McHugh TD, Billington O, et al. Demonstration of Homology between IS6110 of Mycobacterium tuberculosis and DNAs of Other Mycobacterium spp. J Clin Microbiol. 1995;33(9):2290–2293. doi: 10.1128/jcm.33.9.2290-2293.1995
  • Goig GA, Cancino-Muñoz I, Torres-Puente M, et al. Articles whole-genome sequencing of mycobacterium tuberculosis directly from clinical samples for high-resolution genomic epidemiology and drug resistance surveillance: an observational study. Lancet Microbe. 2020;1(4):e175–e183. doi: 10.1016/S2666-5247(20)30060-4
  • Nilgiriwala K, Rabodoarivelo MS, Hall MB, et al. Genomic sequencing from sputum for tuberculosis disease diagnosis, lineage determination, and drug susceptibility prediction. J Clin Microbiol. 2023 Mar 23;61(3). doi: 10.1128/jcm.01578-22
  • Brown AC, Bryant JM, Einer-Jensen K, et al. Rapid whole-genome sequencing of mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol. 2015 Jul 1;53(7):2230–2237. doi: 10.1128/JCM.00486-15
  • Nimmo C, Doyle R, Burgess C, et al. Rapid identification of a Mycobacterium tuberculosis full genetic drug resistance profile through whole genome sequencing directly from sputum. Inter J Infect Dis. 2017 Sep 1;62:44–46. doi: 10.1016/j.ijid.2017.07.007
  • George S, Xu Y, Sanderson N, et al. MinION nanopore sequencing of multiple displacement amplified mycobacteria DNA 2 Direct from Sputum 3 4 5 short title: nanopore sequencing of mycobacteria DNA amplified direct from Sputum. doi: 10.1101/490417
  • de Araujo L, Cabibbe AM, Mhuulu L, et al. Implementation of targeted next-generation sequencing for the diagnosis of drug-resistant tuberculosis in low-resource settings: a programmatic model, challenges, and initial outcomes. Front Public Health. 2023;11:11. doi: 10.3389/fpubh.2023.1204064
  • Chen P, He Y, Sun W. Comparison of metagenomic next-generation sequencing technology, culture and GeneXpert MTB/RIF assay in the diagnosis of tuberculosis. J Thorac Dis. 2020 Aug 1;12(8):4014–4024. doi: 10.21037/jtd-20-1232
  • Ebenezer TE, Muigai AWT, Nouala S, et al. Africa: sequence 100,000 species to safeguard biodiversity Setting the agenda in research. Nature Picture Library. 2022;603(7901):388–392. doi: 10.1038/d41586-022-00712-4
  • H3Africa Human Heredity & Health in Africa [Internet]. 2023 [cited 2023 Jun 30]. Available from: https://h3africa.org/
  • Akintayo Akintola A, Tunde Aborode A, Aborode AT. Africa needs more bioinformaticians for population studies. Nature. 2022;605(7911):619–619. doi: 10.1038/d41586-022-01378-8
  • CABANA Partners. CABANA. Capacity building for bioinformatics in Latin America [Internet]. 2019 [cited 2023 Jun 30]. Available from: https://www.cabana.online/contact
  • EMBL-EBi. Mykrobe [Internet]. 2020 [cited 2023 Jun 30]. Available from: https://www.mykrobe.com/
  • Sekizuka T, Yamashita A, Murase Y, et al. TGS-TB: Total genotyping solution for Mycobacterium tuberculosis using short-read whole-genome sequencing. PLOS ONE. 2015 Nov 1;10(11):e0142951. doi: 10.1371/journal.pone.0142951
  • Phelan JE, O’Sullivan DM, Machado D, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019 Jun 24;11(1). doi: 10.1186/s13073-019-0650-x
  • Feuerriegel S, Schleusener V, Beckert P, et al. PhyResSE: A web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome sequencing data. J Clin Microbiol. 2015 Jun 1;53(6):1908–1914. doi: 10.1128/JCM.00025-15
  • Quagliaro P, Dziri S, Magdoud El Alaoui F, et al. Performances of bioinformatics tools for the analysis of sequencing data of Mycobacterium tuberculosis complex strains. Tuberculosis. 2023 Mar 1;139:102324. doi: 10.1016/j.tube.2023.102324
  • Satta G, Atzeni A, McHugh TD. Mycobacterium tuberculosis and whole genome sequencing: a practical guide and online tools available for the clinical microbiologist. Clin Microbiol Infect. Elsevier B.V.; 2017;23:69–72. doi: 10.1016/j.cmi.2016.09.005
  • Park M, Lalvani A, Satta G, et al. Evaluating the clinical impact of routine whole genome sequencing in tuberculosis treatment decisions and the issue of isoniazid mono-resistance. BMC Infect Dis. 2022 Dec 1;22(1). doi: 10.1186/s12879-022-07329-y
  • Olaru ID, Patel H, Kranzer K, et al. Turnaround time of whole genome sequencing for mycobacterial identification and drug susceptibility testing in routine practice. Clin Microbiol Infect. 2018 Jun 1;24(6):.e659.5–.e659.7. doi: 10.1016/j.cmi.2017.10.001
  • Bateson A, Ortiz Canseco J, McHugh TD, et al. Ancient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanid. J Antimicrob Chemother. 2022 May 29;77(6):1685–1693. doi: 10.1093/jac/dkac070
  • World Health Organisation. Tuberculosis in South-East Asia Region. 2023 [cited2024 Jun 03]. https://www.who.int/southeastasia/health-topics/tuberculosis
  • Perrin FMR, Woodward N, Phillips PPJ, et al. Radiological cavitation, sputum mycobacterial load and treatment response in pulmonary tuberculosis. Int J Tuberc Lung Dis. 2010;14(12):1596–1602.
  • Honeyborne I, McHugh TD, Phillips PPJ, et al. Molecular bacterial load assay, a culture-free biomarker for rapid and accurate quantification of sputum mycobacterium tuberculosis bacillary load during treatment. J Clin Microbiol. 2011 Nov;49(11):3905–3911. doi: 10.1128/JCM.00547-11
  • Honeyborne I, Mtafya B, Phillips PPJ, et al. The molecular bacterial load assay replaces solid culture for measuring early bactericidal response to antituberculosis treatment. J Clin Microbiol. 2014;52(8):3064–3067. doi: 10.1128/JCM.01128-14
  • Evangelopoulos D, Whittaker E, Honeyborne I, et al. Pediatric tuberculosis-human immunodeficiency virus co-infection in the United Kingdom highlights the need for better therapy monitoring tools: a case report. J Med Case Rep. 2017 Feb 26;11(1). doi: 10.1186/s13256-017-1222-6
  • Sabiiti W, Azam K, Farmer ECW, et al. Tuberculosis bacillary load, an early marker of disease severity: the utility of tuberculosis molecular bacterial load assay. Thorax. 2020;75(7):606–608. doi: 10.1136/thoraxjnl-2019-214238
  • Cui Z, Wang Y, Fang L, et al. Novel real-time simultaneous amplification and testing method to accurately and rapidly detect Mycobacterium tuberculosis complex. J Clin Microbiol. 2012 Mar;50(3):646–650. doi: 10.1128/JCM.05853-11
  • Friedrich SO, Rachow A, Saathoff E, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med. 2013 Aug;1(6):462–470. doi: 10.1016/S2213-2600(13)70119-X
  • Kayigire XA, Friedrich SO, Venter A, et al. Direct comparison of Xpert MTB/RIF assay with liquid and solid mycobacterial culture for quantification of early bactericidal activity. J Clin Microbiol. 2013 Jun;51(6):1894–1898. doi: 10.1128/JCM.03290-12
  • Minion J, Leung E, Talbot E, et al. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis. Eur Respir J. 2011;38(6):1398–1405. doi: 10.1183/09031936.00025711
  • Walter ND, Born SEM, Robertson GT, et al. Mycobacterium tuberculosis precursor rRNA as a measure of treatment-shortening activity of drugs and regimens. Nat Commun. 2021 Dec 1;12(1). doi: 10.1038/s41467-021-22833-6
  • Nogueira BMF, Krishnan S, Barreto‐Duarte B, et al. Diagnostic biomarkers for active tuberculosis: progress and challenges. EMBO Mol Med. 2022 Dec 7;14(12). doi: 10.15252/emmm.202114088
  • Gupta-Wright A, den Boon S, MacLean E, et al. Target product profiles: tests for tuberculosis treatment monitoring and optimization. Bull World Health Organ. 2023 Nov 1;101(11):730–737. doi: 10.2471/BLT.23.290901
  • Gunasekera KS, Vonasek B, Oliwa J, et al. Diagnostic challenges in childhood pulmonary tuberculosis—optimizing the clinical approach. Pathogens. MDPI; 2022;11(4):382. doi: 10.3390/pathogens11040382
  • García-Basteiro AL, DiNardo A, Saavedra B, et al. Point of care diagnostics for tuberculosis. Revista Portuguesa de Pneumologia (English Edition). Elsevier Doyma; 2018;24(2):73–85. doi: 10.1016/j.rppnen.2017.12.002
  • Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, et al. Diagnosis for latent tuberculosis infection: new alternatives. Front Immunol. Frontiers Media S.A.; 2020;11. doi: 10.3389/fimmu.2020.02006
  • Schwartzman K, Menzies D. Letters Correspondance Getting in line [Internet]. 2000 [cited 2024 Mar 21]. Available from: www.cma.ca/cmaj
  • NICE. Tuberculosis NICE guideline Your responsibility [Internet]. 2016 [cited 2024 Mar 21]. Available from: www.nice.org.uk/guidance/ng33
  • Nikolayevskyy V, Niemann S, Anthony R, et al. Role and value of whole genome sequencing in studying tuberculosis transmission. Clin Microbiol Infect. Elsevier B.V.; 2019;25:1377–1382. doi: 10.1016/j.cmi.2019.03.022
  • Roetzer A, Diel R, Kohl TA, et al. Whole genome sequencing versus traditional genotyping for investigation of a mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLOS Med. 2013;10(2):e1001387. doi: 10.1371/journal.pmed.1001387
  • Estée Török M, Reuter S, Bryant J, et al. Rapid whole-genome sequencing for investigation of a suspected tuberculosis outbreak. J Clin Microbiol. 2013 Feb;51(2):611–614. doi: 10.1128/JCM.02279-12
  • Stucki D, Ballif M, Bodmer T, et al. Tracking a tuberculosis outbreak over 21 years: Strain-specific single-nucleotide polymorphism typing combined with targeted whole-genome sequencing. J Infect Dis. Oxford University Press; 2015;211(8):1306–1316. doi: 10.1093/infdis/jiu601
  • Liu Y, Qu HQ, Mentch FD, et al. Application of deep learning algorithm on whole genome sequencing data uncovers structural variants associated with multiple mental disorders in African American patients. Mol Psychiatry. 2022 Mar 1;27(3):1469–1478. doi: 10.1038/s41380-021-01418-1
  • Ren Y, Chakraborty T, Doijad S, et al. Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning. Bioinformatics. 2022 Jan 15;38(2):325–334. doi: 10.1093/bioinformatics/btab681
  • Sharma A, Machado E, Lima KVB, et al. Tuberculosis drug resistance profiling based on machine learning: a literature review. Brazil J Infect Dis. 2022;26(1):102332. doi: 10.1016/j.bjid.2022.102332