56
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabolomics for searching validated biomarkers in cancer studies: a decade in review

, &
Received 27 Dec 2023, Accepted 12 Jun 2024, Published online: 21 Jun 2024

References

  • Armitage EG, Ciborowski M. Applications of metabolomics in cancer studies. Adv Exp Med Biol. 2017;965:209–234. doi: 10.1007/978-3-319-47656-8_9 PubMed PMID: 28132182.
  • fda.gov [internet]. Biomarker qualification: evidentiary framework. [ updated 2018 Dec; cited 2024 May 20]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/biomarker-qualification-evidentiary-framework
  • López-López Á, López-Gonzálvez Á, Barker-Tejeda TC, et al. A review of validated biomarkers obtained through metabolomics. Expert Rev Mol Diagn. 2018;18(6):557–575. Epub 2018/06/06. doi: 10.1080/14737159.2018.1481391 PubMed PMID: 29808702.
  • Konety BR. Molecular markers in bladder cancer: a critical appraisal. Urol Oncol. 2006;24(4):326–337. doi: 10.1016/j.urolonc.2005.11.023 PubMed PMID: 16818187.
  • Bansal N, Gupta A, Mitash N, et al. Low- and high-grade bladder cancer determination via human serum-based metabolomics approach. J Proteome Res. 2013;12(12):5839–5850. doi: 10.1021/pr400859w PubMed PMID: WOS:000328231300043.
  • Liu X, Zhang M, Cheng X, et al. LC-MS-based plasma metabolomics and lipidomics analyses for differential diagnosis of bladder cancer and renal cell carcinoma. Front Oncol. 2020;10:717. Epub 20200515. doi: 10.3389/fonc.2020.00717 PubMed PMID: 32500026; PubMed Central PMCID: PMC7243740.
  • Tan GG, Wang HB, Yuan JL, et al. Three serum metabolite signatures for diagnosing low-grade and high-grade bladder cancer. Sci Rep. 2017;7(1):46176. doi: 10.1038/srep46176 PubMed PMID: WOS:000398592700001.
  • Pasikanti KK, Esuvaranathan K, Hong Y, et al. Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry. J Proteome Res. 2013;12(9):3865–3873. doi: 10.1021/pr4000448
  • Jin X, Yun SJ, Jeong P, et al. Diagnosis of bladder cancer and prediction of survival by urinary metabolomics. Oncotarget. 2014;5(6):1635. doi: 10.18632/oncotarget.1744
  • Wittmann BM, Stirdivant SM, Mitchell MW, et al. Bladder cancer biomarker discovery using global metabolomic profiling of urine. PLOS ONE. 2014;9(12):e115870. doi: 10.1371/journal.pone.0115870
  • Zhou Y, Song RX, Ma C, et al. Discovery and validation of potential urinary biomarkers for bladder cancer diagnosis using a pseudotargeted GC-MS metabolomics method. Oncotarget. 2017;8(13):20719–20728. doi: 10.18632/oncotarget.14988 PubMed PMID: WOS:000397642400020.
  • Liu X, Cheng X, He L, et al. Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery. Int J Cancer. 2018;143(2):408–418. Epub 20180302. doi: 10.1002/ijc.31323 PubMed PMID: 29451296.
  • Cheng X, Liu X, Guo Z, et al. Metabolomics of non-muscle invasive bladder cancer: biomarkers for early detection of bladder cancer. Front Oncol. 2018;8:494. Epub 20181102. doi: 10.3389/fonc.2018.00494 PubMed PMID: 30450336; PubMed Central PMCID: PMC6224486.
  • Lin J-Y, Juo B-R, Yeh Y-H, et al. Putative markers for the detection of early-stage bladder cancer selected by urine metabolomics. BMC Bioinformatics. 2021;22(1). doi: 10.1186/s12859-021-04235-z
  • Oto J, Fernández-Pardo Á, Roca M, et al. LC-MS metabolomics of urine reveals distinct profiles for non-muscle-invasive and muscle-invasive bladder cancer. World J Urol. 2022;40(10):2387–2398. Epub 20220904. doi: 10.1007/s00345-022-04136-7 PubMed PMID: 36057894.
  • Wang Z, Liu X, Sun H, et al. UPLC-MS based urine untargeted metabolomic analyses to differentiate bladder cancer from renal cell carcinoma. BMC Cancer. 2019;19(1):1195. Epub 20191205. doi: 10.1186/s12885-019-6354-1 PubMed PMID: 31805976; PubMed Central PMCID: PMC6896793.
  • Yatsuoka W, Ueno T, Miyano K, et al. Metabolomic profiling reveals salivary hypotaurine as a potential early detection marker for medication-related osteonecrosis of the jaw. PLOS ONE. 2019;14(8):e0220712. Epub 20190812. doi: 10.1371/journal.pone.0220712 PubMed PMID: 31404085; PubMed Central PMCID: PMC6690531.
  • Lalla RV, Bowen J, Barasch A, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120(10):1453–1461. Epub 20140225. doi: 10.1002/cncr.28592 PubMed PMID: 24615748; PubMed Central PMCID: PMC4164022.
  • Yang QJ, Zhao JR, Hao J, et al. Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J Cachexia Sarcopenia Muscle. 2018;9(1):71–85. doi: 10.1002/jcsm.12246
  • Wang X, Zhao X, Chou J, et al. Taurine, glutamic acid and ethylmalonic acid as important metabolites for detecting human breast cancer based on the targeted metabolomics. Cancer Biomark. 2018;23(2):255–268. doi: 10.3233/cbm-181500 PubMed PMID: 30103303.
  • Park J, Shin Y, Kim TH, et al. Plasma metabolites as possible biomarkers for diagnosis of breast cancer. PLOS ONE. 2019;14(12):e0225129. Epub 20191203. doi: 10.1371/journal.pone.0225129 PubMed PMID: 31794572; PubMed Central PMCID: PMC6890236.
  • Zhao H, Shen J, Moore SC, et al. Breast cancer risk in relation to plasma metabolites among Hispanic and African American women. Breast Cancer Res Treat. 2019;176(3):687–696. Epub 20190215. doi: 10.1007/s10549-019-05165-4 PubMed PMID: 30771047; PubMed Central PMCID: PMC6588417.
  • Yuan B, Schafferer S, Tang Q, et al. A plasma metabolite panel as biomarkers for early primary breast cancer detection. Int J Cancer. 2019;144(11):2833–2842. Epub 20190104. doi: 10.1002/ijc.31996 PubMed PMID: 30426507.
  • Tomida S, Goodenowe DB, Koyama T, et al. Plasmalogen deficiency and overactive fatty acid elongation biomarkers in serum of breast cancer patients pre- and post-surgery—new insights on diagnosis, risk assessment, and disease mechanisms. Cancers (Basel). 2021;13(16). Epub 20210819. doi: 10.3390/cancers13164170 PubMed PMID: 34439324; PubMed Central PMCID: PMC8391794.
  • Khan I, Nam M, Kwon M, et al. LC/MS-based polar metabolite profiling identified unique biomarker signatures for cervical cancer and cervical intraepithelial neoplasia using global and targeted metabolomics. Cancers (Basel). 2019;11(4). Epub 20190410. doi: 10.3390/cancers11040511 PubMed PMID: 30974861; PubMed Central PMCID: PMC6521312.
  • Cheng F, Wen Z, Feng X, et al. A serum lipidomic strategy revealed potential lipid biomarkers for early-stage cervical cancer. Life Sci. 2020;260:118489. Epub 20200923. doi: 10.1016/j.lfs.2020.118489 PubMed PMID: 32976882.
  • Liang Q, Liu H, Zhang TY, et al. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma. Mol Biosyst. 2016;12(2):334–340. doi: 10.1039/c5mb00572h PubMed PMID: WOS:000368858900002.
  • Macias RIR, Muñoz-Bellvís L, Sánchez-Martín A, et al. A novel serum metabolomic profile for the differential diagnosis of distal cholangiocarcinoma and pancreatic ductal adenocarcinoma. Cancers (Basel). 2020;12(6):1433. Epub 20200531. doi: 10.3390/cancers12061433 PubMed PMID: 32486461; PubMed Central PMCID: PMC7352809.
  • Yang B, Wang C, Xie Y, et al. Monitoring tyrosine kinase inhibitor therapeutic responses with a panel of metabolic biomarkers in chronic myeloid leukemia patients. Cancer Sci. 2018;109(3):777–784. Epub 2018/02/14. doi: 10.1111/cas.13500 PubMed PMID: 29316075; PubMed Central PMCID: PMC5834806.
  • Brown AL, Sok P, Taylor O, et al. Cerebrospinal fluid metabolomic profiles associated with fatigue during treatment for pediatric acute lymphoblastic leukemia. J Pain Symptom Manage. 2021;61(3):464–473. Epub 20200901. doi: 10.1016/j.jpainsymman.2020.08.030 PubMed PMID: 32889041; PubMed Central PMCID: PMC7914130.
  • Udo R, Katsumata K, Kuwabara H, et al. Urinary charged metabolite profiling of colorectal cancer using capillary electrophoresis-mass spectrometry. Sci Rep. 2020;10(1):21057. Epub 20201203. doi: 10.1038/s41598-020-78038-2 PubMed PMID: 33273632; PubMed Central PMCID: PMC7713069.
  • Sakurai T, Katsumata K, Udo R, et al. Validation of urinary charged metabolite profiles in colorectal cancer using capillary electrophoresis-mass spectrometry. Metabolites. 2022;12(1):59. Epub 20220110. doi: 10.3390/metabo12010059 PubMed PMID: 35050180; PubMed Central PMCID: PMC8779129.
  • Zhang F, Li C, Deng K, et al. Metabolic phenotyping to monitor chronic enteritis canceration. Metabolomics. 2020;16(3):29. Epub 20200224. doi: 10.1007/s11306-020-1651-x PubMed PMID: 32095917.
  • Rattner JI, Kopciuk KA, Vogel HJ, et al. Early detection of treatment futility in patients with metastatic colorectal cancer. Oncotarget. 2022;13:61–72. Epub 20220107. doi: 10.18632/oncotarget.28165 PubMed PMID: 35028011; PubMed Central PMCID: PMC8746015.
  • Crotti S, Agnoletto E, Cancemi G, et al. Altered plasma levels of decanoic acid in colorectal cancer as a new diagnostic biomarker. Anal Bioanal Chem. 2016;408(23):6321–6328. doi: 10.1007/s00216-016-9743-1
  • Zha H, Cai Y, Yin Y, et al. SWATHtoMRM: development of high-coverage targeted metabolomics method using swath technology for biomarker discovery. Anal Chem. 2018;90(6):4062–4070. Epub 20180302. doi: 10.1021/acs.analchem.7b05318 PubMed PMID: 29485856.
  • Lin Y, Ma C, Bezabeh T, et al. (1) H NMR-based metabolomics reveal overlapping discriminatory metabolites and metabolic pathway disturbances between colorectal tumor tissues and fecal samples. Int J Cancer. 2019;145(6):1679–1689. Epub 20190304. doi: 10.1002/ijc.32190 PubMed PMID: 30720869.
  • Ecker J, Benedetti E, Kindt ASD, et al. The colorectal cancer lipidome: identification of a robust tumor-specific lipid species signature. Gastroenterology. 2021;161(3):910–23.e19. Epub 20210515. doi: 10.1053/j.gastro.2021.05.009 PubMed PMID: 34000281.
  • Farshidfar F, Kopciuk KA, Hilsden R, et al. A quantitative multimodal metabolomic assay for colorectal cancer. BMC Cancer. 2018;18(26). doi: 10.1186/s12885-017-3923-z PubMed PMID: WOS:000419225200008.
  • Chen F, Dai X, Zhou CC, et al. Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma. Gut. 2022;71(7):1315–1325. Epub 20210830. doi: 10.1136/gutjnl-2020-323476 PubMed PMID: 34462336; PubMed Central PMCID: PMC9185821.
  • Tevini J, Eder SK, Huber-Schönauer U, et al. Changing metabolic patterns along the colorectal adenoma–carcinoma sequence. J Clin Med. 2022;11(3):721. PubMed PMID doi:10.3390/jcm11030721
  • Bian X, Qian Y, Tan B, et al. In-depth mapping carboxylic acid metabolome reveals the potential biomarkers in colorectal cancer through characteristic fragment ions and metabolic flux. Anal Chim Acta. 2020;1128:62–71. Epub 20200711. doi: 10.1016/j.aca.2020.06.064 PubMed PMID: 32825913.
  • Del Boccio P, Perrotti F, Rossi C, et al. Serum lipidomic study reveals potential early biomarkers for predicting response to chemoradiation therapy in advanced rectal cancer: a pilot study. Adv Radiat Oncol. 2017;2(2):118–124. Epub 20170105. doi: 10.1016/j.adro.2016.12.005 PubMed PMID: 28740922; PubMed Central PMCID: PMC5514249.
  • Bahado-Singh RO, Lugade A, Field J, et al. Metabolomic prediction of endometrial cancer. Metabolomics. 2018;14(6). doi: 10.1007/s11306-017-1290-z PubMed PMID: WOS:000424713300001.
  • Troisi J, Sarno L, Landolfi A, et al. A metabolomic signature of endometrial cancer. J Proteome Res. 2018;17(2):804–812. doi: 10.1021/acs.jproteome.7b00503
  • Yan X, Zhao W, Wei J, et al. A serum lipidomics study for the identification of specific biomarkers for endometrial polyps to distinguish them from endometrial cancer or hyperplasia. Int J Cancer. 2022;150(9):1549–1559. Epub 20220210. doi: 10.1002/ijc.33943 PubMed PMID: 35076938.
  • Cheng SC, Chen K, Chiu CY, et al. Metabolomic biomarkers in cervicovaginal fluid for detecting endometrial cancer through nuclear magnetic resonance spectroscopy. Metabolomics. 2019;15(11):146. Epub 20191029. doi: 10.1007/s11306-019-1609-z PubMed PMID: 31664624.
  • Yin R, Yang T, Su H, et al. Saturated fatty acids as possible important metabolites for epithelial ovarian cancer based on the free and esterified fatty acid profiles determined by GC-MS analysis. Cancer Biomarkers. 2016;17(3):259–269. doi: 10.3233/CBM-160638
  • Wang X, Zhao X, Zhao J, et al. Serum metabolite signatures of epithelial ovarian cancer based on targeted metabolomics. Clin Chim Acta. 2021;518:59–69. Epub 20210318. doi: 10.1016/j.cca.2021.03.012 PubMed PMID: 33746017.
  • Yang W, Mu T, Jiang J, et al. Identification of potential biomarkers and metabolic profiling of serum in ovarian cancer patients using UPLC/Q-TOF MS. Cell Physiol Biochem. 2018;51(3):1134–1148. Epub 20181126. doi: 10.1159/000495492 PubMed PMID: 30476914.
  • Braicu EI, Darb-Esfahani S, Schmitt WD, et al. High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism. Oncotarget. 2017;8(61):102912–102922. Epub 20171026. doi: 10.18632/oncotarget.22076 PubMed PMID: 29262533; PubMed Central PMCID: PMC5732699.
  • Niemi RJ, Braicu EI, Kulbe H, et al. Ovarian tumours of different histologic type and clinical stage induce similar changes in lipid metabolism. Br J Cancer. 2018;119(7):847–854. Epub 20181008. doi: 10.1038/s41416-018-0270-z PubMed PMID: 30293997; PubMed Central PMCID: PMC6189177.
  • Sanchez-Espiridion B, Liang D, Ajani JA, et al. Identification of serum markers of esophageal adenocarcinoma by global and targeted metabolic profiling. Clin Gastroenterol Hepatol. 2015;13(10):1730–7. e9. doi: 10.1016/j.cgh.2015.05.023
  • Ye W, Lin Y, Bezabeh T, et al. (1) H NMR-based metabolomics of paired esophageal tumor tissues and serum samples identifies specific serum biomarkers for esophageal cancer. NMR Biomed. 2021;34(6):e4505. Epub 20210330. doi: 10.1002/nbm.4505 PubMed PMID: 33783927.
  • Li H, Zhang C, Zhang M, et al. Angustoline inhibited esophageal tumors through regulating LKB1/AMPK/ELAVL1/LPACT2 pathway and phospholipid remodeling. Front Oncol. 2020;10:1094. Epub 20200707. doi: 10.3389/fonc.2020.01094 PubMed PMID: 32733803; PubMed Central PMCID: PMC7358378.
  • Zhang S, Lu X, Hu C, et al. Serum metabolomics for biomarker screening of esophageal squamous cell carcinoma and esophageal squamous dysplasia using gas chromatography-mass spectrometry. ACS Omega. 2020;5(41):26402–26412. Epub 20201012. doi: 10.1021/acsomega.0c02600 PubMed PMID: 33110968; PubMed Central PMCID: PMC7581083.
  • Wang JL, Zhang T, Shen XT, et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics. 2016;12:116. doi: 10.1007/s11306-016-1050-5 PubMed PMID: WOS:000379508500008.
  • Zhu ZJ, Qi Z, Zhang J, et al. Untargeted metabolomics analysis of esophageal squamous cell carcinoma discovers dysregulated metabolic pathways and potential diagnostic biomarkers. J Cancer. 2020;11(13):3944–3954. Epub 20200406. doi: 10.7150/jca.41733 PubMed PMID: 32328198; PubMed Central PMCID: PMC7171502.
  • Yuan Y, Zhao Z, Xue L, et al. Identification of diagnostic markers and lipid dysregulation in oesophageal squamous cell carcinoma through lipidomic analysis and machine learning. Br J Cancer. 2021;125(3):351–357. Epub 20210505. doi: 10.1038/s41416-021-01395-w PubMed PMID: 33953345; PubMed Central PMCID: PMC8329198.
  • Xu J, Chen Y, Zhang R, et al. Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers. Mol Cell Proteomics. 2013;12(5):1306–1318. doi: 10.1074/mcp.M112.022830 PubMed PMID: WOS:000319705100022.
  • Chen Z, Gao Y, Huang X, et al. Tissue-based metabolomics reveals metabolic biomarkers and potential therapeutic targets for esophageal squamous cell carcinoma. J Pharm Biomed Anal. 2021;197:113937. Epub 20210205. doi: 10.1016/j.jpba.2021.113937 PubMed PMID: 33609949.
  • Huang R, Shen K, He Q, et al. Metabolic profiling of urinary chiral amino-containing biomarkers for gastric cancer using a sensitive chiral chlorine-labeled probe by HPLC-MS/MS. J Proteome Res. 2021;20(8):3952–3962. Epub 20210706. doi: 10.1021/acs.jproteome.1c00267 PubMed PMID: 34229439.
  • Chen YN, Zhang J, Guo L, et al. A characteristic biosignature for discrimination of gastric cancer from healthy population by high throughput GC-MS analysis. Oncotarget. 2016;7(52):87496–87510. doi: 10.18632/oncotarget.11754 PubMed PMID: WOS:000391422500146.
  • Jung J, Jung Y, Bang EJ, et al. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using nmr-based metabolomic profiling. Ann Surg Oncol. 2014;21(S4):S736–S742. doi: 10.1245/s10434-014-3886-0 PubMed PMID: WOS:000345320300043.
  • Huang S, Guo Y, Li Z-W, et al. Identification and validation of plasma metabolomic signatures in precancerous gastric lesions that progress to cancer. JAMA Netw Open. 2021;4(6):e2114186. doi: 10.1001/jamanetworkopen.2021.14186
  • Liu ZC, Wu WH, Huang S, et al. Plasma lipids signify the progression of precancerous gastric lesions to gastric cancer: a prospective targeted lipidomics study. Theranostics. 2022;12(10):4671–4683. Epub 20220606. doi: 10.7150/thno.74770 PubMed PMID: 35832080; PubMed Central PMCID: PMC9254242.
  • Corona G, Cannizzaro R, Miolo G, et al. Use of metabolomics as a complementary omic approach to implement risk criteria for first-degree relatives of gastric cancer patients. Int J Mol Sci. 2018;19(3):750. Epub 20180307. doi: 10.3390/ijms19030750 PubMed PMID: 29518896; PubMed Central PMCID: PMC5877611.
  • Wang D, Li W, Yin L, et al. Association of serum levels of deoxyribose 1-phosphate and S-lactoylglutathione with neoadjuvant chemotherapy sensitivity in patients with gastric cancer: a metabolomics study. Oncol Lett. 2020;19(3):2231–2242. Epub 20200124. doi: 10.3892/ol.2020.11350 PubMed PMID: 32194721; PubMed Central PMCID: PMC7039117.
  • Han Y, Yoo HJ, Jee SH, et al. High serum levels of L-carnitine and citric acid negatively correlated with alkaline phosphatase are detectable in Koreans before gastric cancer onset. Metabolomics. 2022;18(8):62. Epub 20220728. doi: 10.1007/s11306-022-01922-7 PubMed PMID: 35900644.
  • Zhao H, Heimberger AB, Lu ZM, et al. Metabolomics profiling in plasma samples from glioma patients correlates with tumor phenotypes. Oncotarget. 2016;7(15):20486–20495. doi: 10.18632/oncotarget.7974 PubMed PMID: WOS:000375804000105.
  • Jonsson P, Antti H, Späth F, et al. Identification of pre-diagnostic metabolic patterns for glioma using subset analysis of matched repeated time points. Cancers (Basel). 2020;12(11):3349. Epub 20201112. doi: 10.3390/cancers12113349 PubMed PMID: 33198241; PubMed Central PMCID: PMC7696703.
  • Zhou J, Ji N, Wang G, et al. Metabolic detection of malignant brain gliomas through plasma lipidomic analysis and support vector machine-based machine learning. EBioMedicine. 2022;81:104097. Epub 20220607. doi: 10.1016/j.ebiom.2022.104097 PubMed PMID: 35687958; PubMed Central PMCID: PMC9189781.
  • Gao R, Cheng J, Fan C, et al. Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma. Sci Rep. 2015;5(1):18175. doi: 10.1038/srep18175
  • Kim DJ, Cho EJ, Yu KS, et al. Comprehensive metabolomic search for biomarkers to differentiate early stage hepatocellular carcinoma from cirrhosis. Cancers (Basel). 2019;11(10):1497. Epub 20191006. doi: 10.3390/cancers11101497 PubMed PMID: 31590436; PubMed Central PMCID: PMC6826937.
  • Zeng J, Yin PY, Tan YX, et al. Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis–mass spectrometry. J Proteome Res. 2014;13(7):3420–3431. doi: 10.1021/pr500390y PubMed PMID: WOS:000338693400026.
  • Lu YH, Li N, Gao L, et al. Acetylcarnitine Is a Candidate Diagnostic and Prognostic Biomarker of Hepatocellular Carcinoma. Cancer Res. 2016;76(10):2912–2920. doi: 10.1158/0008-5472.can-15-3199 PubMed PMID: WOS:000375841000010.
  • Zeng J, Huang X, Zhou LN, et al. Metabolomics identifies biomarker pattern for early diagnosis of hepatocellular carcinoma: from diethylnitrosamine treated rats to patients. Sci Rep. 2015;5(1):16101. doi: 10.1038/srep16101 PubMed PMID: WOS:000363950300001.
  • Chen T, Zhou K, Sun T, et al. Altered bile acid glycine: taurine ratio in the progression of chronic liver disease. J Gastroenterol Hepatol. 2022;37(1):208–215. doi: 10.1111/jgh.15709
  • Cao LL, Han Y, Wang Y, et al. Metabolic profiling identified a novel biomarker panel for metabolic syndrome-positive hepatocellular cancer. Front Endocrinol. 2021;12:816748. Epub 20220126. doi: 10.3389/fendo.2021.816748 PubMed PMID: 35154012; PubMed Central PMCID: PMC8826723.
  • Luo P, Yin P, Hua R, et al. A large-scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology. 2018;67(2):662–675. doi: 10.1002/hep.29561 PubMed PMID: MEDLINE:28960374.
  • Huang Q, Tan YX, Yin PY, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 2013;73(16):4992–5002. doi: 10.1158/0008-5472.can-13-0308 PubMed PMID: WOS:000323161800005.
  • Han J, Han ML, Xing H, et al. Tissue and serum metabolomic phenotyping for diagnosis and prognosis of hepatocellular carcinoma. Int J Cancer. 2020;146(6):1741–1753. Epub 20190813. doi: 10.1002/ijc.32599 PubMed PMID: 31361910.
  • Shao Y, Zhu B, Zheng R, et al. Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in hepatocellular carcinoma biomarker discovery. J Proteome Res. 2014;14(2):906–916. doi: 10.1021/pr500973d
  • Sun J, Zhao Y, Qin L, et al. Metabolomic profiles for HBV related hepatocellular carcinoma including alpha-fetoproteins positive and negative subtypes. Front Oncol. 2019;9:1069. Epub 20191015. doi: 10.3389/fonc.2019.01069 PubMed PMID: 31681602; PubMed Central PMCID: PMC6803550.
  • Zhao C, Kong X, Han S, et al. Analysis of differential metabolites in lung cancer patients based on metabolomics and bioinformatics. Future Oncol. 2020;16(18):1269–1287. Epub 20200501. doi: 10.2217/fon-2019-0818 PubMed PMID: 32356461.
  • Li YJ, Song X, Zhao XJ, et al. Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr B-Analytical Technol Biomed Life Sci. 2014;966:147–153. doi: 10.1016/j.jchromb.2014.04.047 PubMed PMID: WOS:000340323200018.
  • Wen C-P, Zhang F, Liang D, et al. The ability of bilirubin in identifying smokers with higher risk of lung cancer: a large cohort study in conjunction with global metabolomic profiling. Clin Cancer Res. 2015;21(1):193–200. doi: 10.1158/1078-0432.ccr-14-0748 PubMed PMID: WOS:000347462600024.
  • Tian Y, Wang Z, Liu X, et al. Prediction of chemotherapeutic efficacy in non-small cell lung cancer by serum metabolomic profiling. Clin Cancer Res. 2018;24(9):2100–2109. Epub 20180206. doi: 10.1158/1078-0432.ccr-17-2855 PubMed PMID: 29437793.
  • Peng F, Liu Y, He C, et al. Prediction of platinum-based chemotherapy efficacy in lung cancer based on LC–MS metabolomics approach. J Pharm Biomed Anal. 2018;154:95–101. doi: 10.1016/j.jpba.2018.02.051
  • Nie X, Xia L, Gao F, et al. Serum metabolite biomarkers predictive of response to PD-1 blockade therapy in non-small cell lung cancer. Front Mol Biosci. 2021;8:678753. Epub 20210521. doi: 10.3389/fmolb.2021.678753 PubMed PMID: 34095230; PubMed Central PMCID: PMC8176105.
  • Wikoff WR, Hanash S, DeFelice B, et al. Diacetylspermine is a novel prediagnostic serum biomarker for non–small-cell lung cancer and has additive performance with pro-surfactant protein B. J Clin Oncol. 2015;33(33):3880–3886. doi: 10.1200/JCO.2015.61.7779
  • Chen Y, Ma Z, Zhong J, et al. Simultaneous quantification of serum monounsaturated and polyunsaturated phosphatidylcholines as potential biomarkers for diagnosing non-small cell lung cancer. Sci Rep. 2018;8(1):7137. Epub 20180508. doi: 10.1038/s41598-018-25552-z PubMed PMID: 29740076; PubMed Central PMCID: PMC5940703.
  • Mu Y, Zhou Y, Wang Y, et al. Serum metabolomics study of nonsmoking female patients with non-small cell lung cancer using gas chromatography-mass spectrometry. J Proteome Res. 2019;18(5):2175–2184. Epub 20190329. doi: 10.1021/acs.jproteome.9b00069 PubMed PMID: 30892048.
  • Chen Y, Ma Z, Shen X, et al. Serum lipidomics profiling to identify biomarkers for non-small cell lung cancer. Biomed Res Int. 2018;2018:5276240. Epub 20180807. doi: 10.1155/2018/5276240 PubMed PMID: 30175133; PubMed Central PMCID: PMC6106807.
  • Ruiying C, Zeyun L, Yongliang Y, et al. A comprehensive analysis of metabolomics and transcriptomics in non-small cell lung cancer. PLoS One. 2020;15(5):e0232272. Epub 20200506. doi: 10.1371/journal.pone.0232272 PubMed PMID: 32374740; PubMed Central PMCID: PMC7202610.
  • Shen J, Ye YQ, Chang DW, et al. Circulating metabolite profiles to predict overall survival in advanced non-small cell lung cancer patients receiving first-line chemotherapy. Lung Cancer. 2017;114:70–78. doi: 10.1016/j.lungcan.2017.10.018 PubMed PMID: WOS:000418782300012.
  • Zhang L, Zheng J, Ahmed R, et al. A high-performing plasma metabolite panel for early-stage lung cancer detection. Cancers (Basel). 2020;12(3):622. Epub 20200307. doi: 10.3390/cancers12030622 PubMed PMID: 32156060; PubMed Central PMCID: PMC7139410.
  • Yu Z, Chen H, Ai J, et al. Global lipidomics identified plasma lipids as novel biomarkers for early detection of lung cancer. Oncotarget. 2017;8(64):107899–107906. Epub 20171111. doi: 10.18632/oncotarget.22391 PubMed PMID: 29296211; PubMed Central PMCID: PMC5746113.
  • Xiang C, Jin S, Zhang J, et al. Cortisol, cortisone, and 4-methoxyphenylacetic acid as potential plasma biomarkers for early detection of non-small cell lung cancer. Int J Biol Markers. 2018;33(3):314–320. Epub 20180613. doi: 10.1177/1724600818778754 PubMed PMID: 29896992.
  • Yu L, Li K, Li X, et al. Metabolomic profiling of dried blood spots reveals gender-specific discriminant models for the diagnosis of small cell lung cancer. Aging (Albany NY). 2020;12(1):978–995. Epub 20200112. doi: 10.18632/aging.102670 PubMed PMID: 31929115; PubMed Central PMCID: PMC6977651.
  • Miller HA, Yin X, Smith SA, et al. Evaluation of disease staging and chemotherapeutic response in non-small cell lung cancer from patient tumor-derived metabolomic data. Lung Cancer. 2021;156:20–30. Epub 20210415. doi: 10.1016/j.lungcan.2021.04.012 PubMed PMID: 33882406; PubMed Central PMCID: PMC8138715.
  • Soldevilla B, López-López A, Lens-Pardo A, et al. Comprehensive plasma metabolomic profile of patients with advanced neuroendocrine tumors (NETs). Diagnostic Biol Relevance Cancers. 2021;13(11):2634. PubMed PMID doi:10.3390/cancers13112634
  • Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res. 2008;87(1):14–32. doi: 10.1177/154405910808700104 PubMed PMID: 18096889.
  • Ye GZ, Liu Y, Yin PY, et al. Study of induction chemotherapy efficacy in oral squamous cell carcinoma using pseudotargeted metabolomics. J Proteome Res. 2014;13(4):1994–2004. doi: 10.1021/pr4011298 PubMed PMID: WOS:000334016400020.
  • Lohavanichbutr P, Zhang Y, Wang P, et al. Salivary metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLOS ONE. 2018;13(9):e0204249. Epub 20180920. doi: 10.1371/journal.pone.0204249 PubMed PMID: 30235319; PubMed Central PMCID: PMC6147497.
  • Bednarczyk K, Gawin M, Chekan M, et al. Discrimination of normal oral mucosa from oral cancer by mass spectrometry imaging of proteins and lipids. J Mol Histol. 2019;50(1):1–10. Epub 20181103. doi: 10.1007/s10735-018-9802-3 PubMed PMID: 30390197; PubMed Central PMCID: PMC6323087.
  • Kobayashi T, Nishiumi S, Ikeda A, et al. A novel serum metabolomics-based diagnostic approach to pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2013;22(4):571–579. doi: 10.1158/1055-9965.epi-12-1033 PubMed PMID: WOS:000317960900013.
  • Jiao L, Maity S, Coarfa C, et al. A prospective targeted serum metabolomics study of pancreatic cancer in postmenopausal women. Cancer Prev Res (Phila). 2019;12(4):237–246. Epub 20190205. doi: 10.1158/1940-6207.capr-18-0201 PubMed PMID: 30723176; PubMed Central PMCID: PMC6445762.
  • Wang S, Li M, Yan L, et al. Metabolomics study reveals systematic metabolic dysregulation and early detection markers associated with incident pancreatic cancer. Int J Cancer. 2022;150(7):1091–1100. doi: 10.1002/ijc.33877
  • Fukutake N, Ueno M, Hiraoka N, et al. A novel multivariate index for pancreatic cancer detection based on the plasma free amino acid profile. PLOS ONE. 2015;10(7):e0132223. doi: 10.1371/journal.pone.0132223 PubMed PMID: WOS:000358154400107.
  • Hirata Y, Kobayashi T, Nishiumi S, et al. Identification of highly sensitive biomarkers that can aid the early detection of pancreatic cancer using GC/MS/MS-based targeted metabolomics. Clinica Chimica Acta. 2017;468:98–104. doi: 10.1016/j.cca.2017.02.011 PubMed PMID: WOS:000403121800017.
  • Tao L, Zhou J, Yuan C, et al. Metabolomics identifies serum and exosomes metabolite markers of pancreatic cancer. Metabolomics. 2019;15(6):86. Epub 20190530. doi: 10.1007/s11306-019-1550-1 PubMed PMID: 31147790.
  • Luo X, Liu J, Wang H, et al. Metabolomics identified new biomarkers for the precise diagnosis of pancreatic cancer and associated tissue metastasis. Pharmacol Res. 2020;156:104805. Epub 20200408. doi: 10.1016/j.phrs.2020.104805 PubMed PMID: 32278036.
  • Sahni S, Pandya AR, Hadden WJ, et al. A unique urinary metabolomic signature for the detection of pancreatic ductal adenocarcinoma. Int J Cancer. 2021;148(6):1508–1518. Epub 20201112. doi: 10.1002/ijc.33368 PubMed PMID: 33128797.
  • Hipperson L, Hadden WJ, Nahm CB, et al. Urinary metabolite prognostic biomarker panel for pancreatic ductal adenocarcinomas. Biochim Biophys Acta Gen Subj. 2021;1865(11):129966. Epub 20210727. doi: 10.1016/j.bbagen.2021.129966 PubMed PMID: 34329704.
  • Fahrmann JF, Bantis LE, Capello M, et al. A plasma-derived protein-metabolite multiplexed panel for early-stage pancreatic cancer. J Natl Cancer Inst. 2019;111(4):372–379. doi: 10.1093/jnci/djy126 PubMed PMID: 30137376; PubMed Central PMCID: PMC6449169.
  • Zhang X, Shi X, Lu X, et al. Novel metabolomics serum biomarkers for pancreatic ductal adenocarcinoma by the comparison of pre-, postoperative and normal samples. J Cancer. 2020;11(16):4641–4651. doi: 10.7150/jca.41250
  • Lindahl A, Heuchel R, Forshed J, et al. Discrimination of pancreatic cancer and pancreatitis by LC-MS metabolomics. Metabolomics. 2017;13:61. doi: 10.1007/s11306-017-1199-6 PubMed PMID: WOS:000399681400016.
  • Mayerle J, Kalthoff H, Reszka R, et al. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut. 2018;67(1):128–137. doi: 10.1136/gutjnl-2016-312432
  • Cao Y, Zhao R, Guo K, et al. Potential metabolite biomarkers for early detection of stage-i pancreatic ductal adenocarcinoma. Front Oncol. 2021;11:744667. Epub 20220119. doi: 10.3389/fonc.2021.744667 PubMed PMID: 35127469; PubMed Central PMCID: PMC8807510.
  • Zhao R, Ren S, Li C, et al. Biomarkers for pancreatic cancer based on tissue and serum metabolomics analysis in a multicenter study. Cancer Med. 2023;12(4):5158–5171. Epub 20220926. doi: 10.1002/cam4.5296 PubMed PMID: 36161527; PubMed Central PMCID: PMC9972159.
  • Guo S, Qiu L, Wang YM, et al. Tissue imaging and serum lipidomic profiling for screening potential biomarkers of thyroid tumors by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Anal Bioanal Chem. 2014;406(18):4357–4370. doi: 10.1007/s00216-014-7846-0 PubMed PMID: WOS:000338722400005.
  • Huang FQ, Li J, Jiang L, et al. Serum-plasma matched metabolomics for comprehensive characterization of benign thyroid nodule and papillary thyroid carcinoma. Int J Cancer. 2019;144(4):868–876. Epub 20181203. doi: 10.1002/ijc.31925 PubMed PMID: 30318614.
  • Chen J, Hu Q, Hou H, et al. Metabolite analysis-aided diagnosis of papillary thyroid cancer. Endocr Relat Cancer. 2019;26(12):829–841. doi: 10.1530/erc-19-0344 PubMed PMID: 31671400.
  • Lima AR, Bastos MD, Carvalho M, et al. Biomarker discovery in human prostate cancer: an update in metabolomics studies. Transl Oncol. 2016;9(4):357–370. doi: 10.1016/j.tranon.2016.05.004 PubMed PMID: WOS:000386772100013.
  • Kiebish MA, Cullen J, Mishra P, et al. Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer. J Transl Med. 2020;18(1):10. Epub 20200107. doi: 10.1186/s12967-019-02185-y. PubMed PMID: 31910880; PubMed Central PMCID: PMC6945688. doi: 10.1186/s12967-019-02185-y
  • Xu H, Chen J, He J, et al. Serum metabolic profiling identifies a biomarker panel for improvement of prostate cancer diagnosis. Front Oncol. 2021;11:666320. Epub 20210507. doi: 10.3389/fonc.2021.666320 PubMed PMID: 34026644; PubMed Central PMCID: PMC8138432.
  • Lin X, Lécuyer L, Liu X, et al. Plasma metabolomics for discovery of early metabolic markers of prostate cancer based on ultra-high-performance liquid chromatography-high resolution mass spectrometry. Cancers (Basel). 2021;13(13):3140. Epub 20210623. doi: 10.3390/cancers13133140 PubMed PMID: 34201735; PubMed Central PMCID: PMC8268247.
  • Li YF, Qiu S, Zhang AH. High-throughput metabolomics to identify metabolites to serve as diagnostic biomarkers of prostate cancer. Anal Methods. 2016;8(16):3284–3290. doi: 10.1039/c6ay00127k PubMed PMID: WOS:000374788500002.
  • Lin HM, Mahon KL, Weir JM, et al. A distinct plasma lipid signature associated with poor prognosis in castration-resistant prostate cancer. Int J Cancer. 2017;141(10):2112–2120. Epub 20170808. doi: 10.1002/ijc.30903 PubMed PMID: 28741687.
  • Lin HM, Huynh K, Kohli M, et al. Aberrations in circulating ceramide levels are associated with poor clinical outcomes across localised and metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(3):860–870. Epub 20210321. doi: 10.1038/s41391-021-00338-z PubMed PMID: 33746214; PubMed Central PMCID: PMC8387438.
  • Lima AR, Pinto J, Azevedo AI, et al. Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine. Br J Cancer. 2019;121(10):857–868. Epub 20191007. doi: 10.1038/s41416-019-0585-4 PubMed PMID: 31588123; PubMed Central PMCID: PMC6889512.
  • Gao Q, Su X, Annabi MH, et al. Application of urinary volatile organic compounds (VOCs) for the diagnosis of prostate cancer. Clin Genitourin Cancer. 2019;17(3):183–190. Epub 20190216. doi: 10.1016/j.clgc.2019.02.003 PubMed PMID: 30853355.
  • Lima AR, Pinto J, Barros-Silva D, et al. New findings on urinary prostate cancer metabolome through combined GC-MS and (1)H NMR analytical platforms. Metabolomics. 2020;16(6):70. Epub 20200603. doi: 10.1007/s11306-020-01691-1 PubMed PMID: 32495062.
  • Butler LM, Mah CY, Machiels J, et al. Lipidomic profiling of clinical prostate cancer reveals targetable alterations in membrane lipid composition. Cancer Res. 2021;81(19):4981–4993. Epub 20210806. doi: 10.1158/0008-5472.can-20-3863 PubMed PMID: 34362796.
  • Li J, Ren S, Piao HL, et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci Rep. 2016;6:20984. Epub 20160211. doi: 10.1038/srep20984 PubMed PMID: 26865432; PubMed Central PMCID: PMC4750101.
  • Li X, Nakayama K, Goto T, et al. High level of phosphatidylcholines/lysophosphatidylcholine ratio in urine is associated with prostate cancer. Cancer Sci. 2021;112(10):4292–4302. Epub 20210819. doi: 10.1111/cas.15093 PubMed PMID: 34328656; PubMed Central PMCID: PMC8486217.
  • Goto T, Terada N, Inoue T, et al. Decreased expression of lysophosphatidylcholine (16: 0/OH) in high resolution imaging mass spectrometry independently predicts biochemical recurrence after surgical treatment for prostate cancer. Prostate. 2015;75(16):1821–1830. Epub 20150901. doi: 10.1002/pros.23088 PubMed PMID: 26332786.
  • Knott ME, Manzi M, Zabalegui N, et al. Metabolic footprinting of a clear cell renal cell carcinoma in vitro model for human kidney cancer detection. J Proteome Res. 2018;17(11):3877–3888. Epub 20181012. doi: 10.1021/acs.jproteome.8b00538 PubMed PMID: 30260228.
  • Liu X, Zhang M, Sun H, et al. Urine metabolomics for renal cell carcinoma (RCC) prediction: tryptophan metabolism as an important pathway in RCC. Front Oncol. 2019;9:663. Epub 20190717. doi: 10.3389/fonc.2019.00663 PubMed PMID: 31380290; PubMed Central PMCID: PMC6653643.
  • Wu M, Li B, Zhang X, et al. Serum metabolomics reveals an innovative diagnostic model for salivary gland tumors. Anal Biochem. 2022;655:114853. doi: 10.1016/j.ab.2022.114853
  • Wood PL. Endogenous anti-inflammatory very-long-chain dicarboxylic acids: potential chemopreventive lipids. Metabolites. 2018;8(4):76. Epub 20181103. doi: 10.3390/metabo8040076 PubMed PMID: 30400281; PubMed Central PMCID: PMC6315409.
  • Zhang Q, Xu H, Liu R, et al. Highly sensitive quantification method for amine submetabolome based on AQC-Labeled-LC-Tandem-MS and multiple statistical data mining: a potential cancer screening approach. Anal Chem. 2018;90(20):11941–11948. Epub 20180928. doi: 10.1021/acs.analchem.8b02372 PubMed PMID: 30208276.
  • Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 2017;27(11):863–875. Epub 20170719. doi: 10.1016/j.tcb.2017.06.003 PubMed PMID: 28734735; PubMed Central PMCID: PMC5814137.
  • Wei D, Xu M, Wang Z, et al. The development of single-cell metabolism and its role in studying cancer emergent properties. Front Oncol. 2022;11:814085. doi: 10.3389/fonc.2021.814085
  • Zhang Q, Yang X, Liu H. Extracellular vesicles in cancer metabolism: implications for cancer diagnosis and treatment. Technol Cancer Res Treat. 2021;20:15330338211037821. doi: 10.1177/15330338211037821 PubMed PMID: 34427131; PubMed Central PMCID: PMC8388228.
  • Percival BC, Grootveld M, Gibson M, et al. Low-field, benchtop nmr spectroscopy as a potential tool for point-of-care diagnostics of metabolic conditions: validation, protocols and computational models. High Throughput. 2019;8(1):2. PubMed PMID: doi: 10.3390/ht8010002. doi: 10.3390/ht8010002
  • Schmidt K, Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J Biomark. 2015;2015:1–16. Epub 20150330. doi: 10.1155/2015/981458 PubMed PMID: 26317039; PubMed Central PMCID: PMC4437398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.