5
Views
0
CrossRef citations to date
0
Altmetric
Review

The role of fecal biomarkers in individuals with inflammatory bowel disease

&
Pages 497-508 | Received 02 Feb 2024, Accepted 28 Jun 2024, Published online: 12 Jul 2024

References

  • Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–317. doi: 10.1038/nature10209
  • Thurgate LE, Lemberg DA, Day AS, et al. An overview of inflammatory bowel disease unclassified in children. Inflamm Intest Dis. 2019;4(3):97–103. doi: 10.1159/000501519
  • Cao L, Dayimu A, Guan X, et al. Global evolving patterns and cross-country inequalities of inflammatory bowel disease burden from 1990 to 2019: a worldwide report. Inflamm Res. 2024;73(2):277–287. doi: 10.1007/s00011-023-01836-7
  • Mak JWY, Sun Y, Limsrivilai J, et al. Development of the global inflammatory bowel disease visualization of epidemiology studies in the 21st century (GIVES-21). BMC Med Res Methodol. 2023;23(1):129. doi: 10.1186/s12874-023-01944-2
  • Vernon-Roberts A, Aluzaite K, Khalilipour B, et al. Systematic review of diagnostic delay for children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2023;76(3):304–312. doi: 10.1097/MPG.0000000000003670
  • Levine A, Koletzko S, Turner D, et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr. 2014;58(6):795–806. doi: 10.1097/MPG.0000000000000239
  • Roseth AG, Fagerhol MK, Aadland E, et al. Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study. Scan J Gastroenterol. 1992;27(9):793–798. doi: 10.3109/00365529209011186
  • Colombel JF, Narula N, Peyrin-Biroulet L. Management strategies to improve outcomes of patients with inflammatory bowel diseases. Gastroenterology. 2017;152(2):351–61.e5. doi: 10.1053/j.gastro.2016.09.046
  • Vermeire S, Van Assche G, Rutgeerts P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut. 2006;55(3):426–431. doi: 10.1136/gut.2005.069476
  • Teigelkamp S, Bhardwaj RS, Roth J, et al. Calcium-dependent complex assembly of the myeloic differentiation proteins mrp-8 and mrp-14. J Biol Chem. 1991;266(20):13462–13467. doi: 10.1016/S0021-9258(18)98862-9
  • Striz I, Trebichavsky I. Calprotectin – a pleiotropic molecule in acute and chronic inflammation. Physiol Res. 2004;53:245–253. doi: 10.33549/physiolres.930448
  • Rammes A, Roth J, Goebeler M, et al. Myeloid-related protein (mrp) 8 and mrp14, calcium-binding proteins of the s100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem. 1997;272(14):9496–9502. doi: 10.1074/jbc.272.14.9496
  • Hetland G, Talgo GJ, Fagerhol MK. Chemotaxins c5a and fmlp induce release of calprotectin (leucocyte l1 protein) from polymorphonuclear cells in vitro. Mol Pathol. 1998;51(3):143–148. doi: 10.1136/mp.51.3.143
  • Besold AN, Gilston BA, Radin JN, et al. Role of calprotectin in withholding zinc and copper from Candida albicans. Infect Immun. 2017;86(2):1–16. doi: 10.1128/IAI.00779-17
  • Nakashige TG, Nolan EM. Human calprotectin affects the redox speciation of iron. Metallomics. 2017;9:1086–1095. doi: 10.1039/C7MT00044H
  • Nakashige TG, Zhang B, Krebs C, et al. Human calprotectin is an iron-sequestering host-defense protein. Nat Chem Biol. 2015;11:765–771. doi: 10.1038/nchembio.1891
  • Brophy MB, Hayden JA, Nolan EM. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin. J Am Chem Soc. 2012;134(43):18089–18100. doi: 10.1021/ja307974e
  • Pruenster M, Vogl T, Roth J, et al. S100a8/a9: from basic science to clinical application. Pharmacol Therapeu. 2016;167:120–131. doi: 10.1016/j.pharmthera.2016.07.015
  • Golden BE, Clohessy PA, Russell G, et al. Calprotectin as a marker of inflammation in cystic fibrosis. Arch Dis Child. 1996;74(2):136–139. doi: 10.1136/adc.74.2.136
  • Gray RD, Imrie M, Boyd AC, et al. Sputum and serum calprotectin are useful biomarkers during CF exacerbation. J Cyst Fibros. 2010;9(3):193–198. doi: 10.1016/j.jcf.2010.01.005
  • Abildtrup M, Kingsley GH, Scott DL. Calprotectin as a biomarker for rheumatoid arthritis: a systematic review. J Rheumatol. 2015;42:760–770. doi: 10.3899/jrheum.140628
  • Jensen LJ, Kistorp C, Bjerre M, et al. Plasma calprotectin levels reflect disease severity in patients with chronic heart failure. Eur J Prev Cardiol. 2012;19(5):999–1004. doi: 10.1177/1741826711421078
  • Berg-Hansen P, Vandvik B, Fagerhol M, et al. Calprotectin levels in the cerebrospinal fluid reflect disease activity in multiple sclerosis. J Neuroimmunol. 2009;216(1–2):98–102. doi: 10.1016/j.jneuroim.2009.09.006
  • Muller F, Froland SS, Aukrust P, et al. Elevated serum calprotectin levels in HIV-infected patients: the calprotectin response during zdv treatment is associated with clinical events. J Acquir Immun Defic Syndr. 1994;7:931–939.
  • Kristinsson J, Armbruster CH, Ugstad M, et al. Fecal excretion of calprotectin in colorectal cancer: relationship to tumor characteristics. Scand J Gastroenterol. 2001;36(2):202–207. doi: 10.1080/003655201750065979
  • Blanco-Prieto S, Vazquez-Iglesias L, Rodriguez-Girondo M, et al. Serum calprotectin, cd26 and egf to establish a panel for the diagnosis of lung cancer. PLOS ONE. 2015;10(5):e0127318. doi: 10.1371/journal.pone.0127318
  • Stroncek DF, Shankar RA, Skubitz KM. The subcellular distribution of myeloid-related protein 8 (mrp8) and mrp14 in human neutrophils. J Translat Med. 2005;3(1):36–. doi: 10.1186/1479-5876-3-36
  • Yui S, Nakatani Y, Mikami M. Calprotectin (s100a8/s100a9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol Pharmaceuti Bull. 2003;26(6):753–760. doi: 10.1248/bpb.26.753
  • Fagerhol MK, Dale I, Andersson T. A radioimmunoassay for a granulocyte protein as a marker in studies on the turnover of such cells. Bull Eur Physiopathol Respir. 1980;16(Suppl):273–282.
  • Dale I, Fagerhol MK, Naesgaard I. Purification and partial characterization of a highly immunogenic human leukocyte protein, the l1 antigen. Eur J Biochem. 1983;134(1):1–6. doi: 10.1111/j.1432-1033.1983.tb07522.x
  • Roseth AG, Schmidt PN, Fagerhol MK. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol. 1999;34(1):50–54. doi: 10.1080/00365529950172835
  • Hoskin TS, Crowther JM, Cheung J, et al. Oxidative cross-linking of calprotectin occurs in vivo, altering its structure and susceptibility to proteolysis. Redox Biol. 2019;24:101202. doi: 10.1016/j.redox.2019.101202
  • Edwards TS, Dickerhof N, Magon NJ, et al. Formation of calprotectin-derived peptides in the airways of children with cystic fibrosis. J Immunol. 2022;208(4):979–990. doi: 10.4049/jimmunol.2001017
  • Deputy M, Devanaboina R, Al Bakir I, et al. The role of faecal calprotectin in the diagnosis of inflammatory bowel disease. B Med J. 2023;380:e068947. doi: 10.1136/bmj-2021-068947
  • Petryszyn P, Staniak A, Wolosianska A, et al. Faecal calprotectin as a diagnostic marker of inflammatory bowel disease in patients with gastrointestinal symptoms: meta-analysis. Eur J Gastroenterol Hepatol. 2019;31(11):1306–1312. doi: 10.1097/MEG.0000000000001509
  • Joshi S, Lewis SJ, Creanor S, et al. Age-related faecal calprotectin, lactoferrin and tumour m2-pk concentrations in healthy volunteers. Ann Clin Biochem. 2010;47:259–263. doi: 10.1258/acb.2009.009061
  • Velasco Rodríguez-Belvís M, Viada Bris JF, Plata Fernández C, et al. Normal fecal calprotectin levels in healthy children are higher than in adults and decrease with age. Paediatr Child Health. 2020;25(5):286–292. doi: 10.1093/pch/pxz070
  • Hestvik E, Tumwine JK, Tylleskar T, et al. Faecal calprotectin concentrations in apparently healthy children aged 0-12 years in urban kampala, uganda: a community-based survey. BMC Pediatr. 2011;11:9. doi: 10.1186/1471-2431-11-9
  • Meling TR, Aabakken L, Røseth A, et al. Faecal calprotectin shedding after short-term treatment with non-steroidal anti-inflammatory drugs. Scan J Gastroenterol. 1996;31(4):339–344. doi: 10.3109/00365529609006407
  • Berni Canani R, Rapacciuolo L, Romano MT, et al. Diagnostic value of faecal calprotectin in paediatric gastroenterology clinical practice. Dig Liver Dis. 2004;36(7):467–470. doi: 10.1016/j.dld.2004.02.009
  • Holtman GA, Lisman-van Leeuwen Y, Kollen BJ, et al. Diagnostic accuracy of fecal calprotectin for pediatric inflammatory bowel disease in primary care: a prospective cohort study. Ann Fam Med. 2016;14(5):437–445. doi: 10.1370/afm.1949
  • Jusué V, Chaparro M, Gisbert JP. Accuracy of fecal calprotectin for the prediction of endoscopic activity in patients with inflammatory bowel disease. Dig Liver Dis. 2018;50(4):353–359. doi: 10.1016/j.dld.2017.12.022
  • Vernia F, Di Ruscio M, Stefanelli G, et al. Is fecal calprotectin an accurate marker in the management of Crohn’s disease? J Gastroenterol Hepatol. 2020;35(3):390–400. doi: 10.1111/jgh.14950
  • Pauwels RWM, de Vries AC, van der Woude CJ. Fecal calprotectin is a reliable marker of endoscopic response to vedolizumab therapy: a simple algorithm for clinical practice. J Gastroenterol Hepatol. 2020;35(11):1893–1901. doi: 10.1111/jgh.15063
  • Benitez JM, Meuwis MA, Reenaers C, et al. Role of endoscopy, cross-sectional imaging and biomarkers in Crohn’s disease monitoring. Gut. 2013;62(12):1806–1816. doi: 10.1136/gutjnl-2012-303957
  • Xiang BJ, Jiang M, Sun MJ, et al. Optimal range of fecal calprotectin for predicting mucosal healing in patients with inflammatory bowel disease: a systematic review and meta-analysis. Visc Med. 2021;37:338–348. doi: 10.1159/000514196
  • Chen F, Hu Y, Fan YH, et al. Clinical value of fecal calprotectin in predicting mucosal healing in patients with ulcerative colitis. Front Med (Lausanne). 2021;8:679264. doi: 10.3389/fmed.2021.679264
  • Bertani L, Blandizzi C, Mumolo MG, et al. Fecal calprotectin predicts mucosal healing in patients with ulcerative colitis treated with biological therapies: a prospective study. Clin Transl Gastroenterol. 2020;11:e00174. doi: 10.14309/ctg.0000000000000174
  • Kristensen V, Røseth A, Ahmad T, et al. Fecal calprotectin: a reliable predictor of mucosal healing after treatment for active ulcerative colitis. Gastroenterol Res Pract. 2017;2017:1–5. doi: 10.1155/2017/2098293
  • Zittan E, Kelly OB, Kirsch R, et al. Low fecal calprotectin correlates with histological remission and mucosal healing in ulcerative colitis and colonic crohnʼs disease. Inflamm Bowel Dis. 2016;22(3):623–630. doi: 10.1097/MIB.0000000000000652
  • Kawashima K, Oshima N, Kishimoto K, et al. Low fecal calprotectin predicts histological healing in patients with ulcerative colitis with endoscopic remission and leads to prolonged clinical remission. Inflamm Bowel Dis. 2023;29(3):359–366. doi: 10.1093/ibd/izac095
  • Chew TS, Mansfield JC. Can faecal calprotectin predict relapse in inflammatory bowel disease: a mini review. Frontline Gastroenterol. 2018;9:23–28. doi: 10.1136/flgastro-2016-100686
  • Mooiweer E, Severs M, Schipper ME, et al. Low fecal calprotectin predicts sustained clinical remission in inflammatory bowel disease patients: a plea for deep remission. J Crohn’s Colitis. 2015;9(1):50–55. doi: 10.1093/ecco-jcc/jju003
  • Scaioli E, Scagliarini M, Cardamone C, et al. Clinical application of faecal calprotectin in ulcerative colitis patients. Eur J Gastroenterol Hepatol. 2015;27(12):1418–1424. doi: 10.1097/MEG.0000000000000461
  • Ferreiro-Iglesias R, Barreiro-de Acosta M, Otero Santiago M, et al. Fecal calprotectin as predictor of relapse in patients with inflammatory bowel disease under maintenance infliximab therapy. J Clin Gastroenterol. 2016;50(2):147–151. doi: 10.1097/MCG.0000000000000312
  • Wright EK, Kamm MA, De Cruz P, et al. Measurement of fecal calprotectin improves monitoring and detection of recurrence of crohn’s disease after surgery. Gastroenterology. 2015;148(5):938–947.e1. doi: 10.1053/j.gastro.2015.01.026.
  • Tham YS, Yung DE, Fay S, et al. Fecal calprotectin for detection of postoperative endoscopic recurrence in Crohn’s disease: systematic review and meta-analysis. Therap Adv Gastroenterol. 2018;11. 11:1756284818785571. doi: 10.1177/1756284818785571
  • Fukunaga S, Kuwaki K, Mitsuyama K, et al. Detection of calprotectin in inflammatory bowel disease: fecal and serum levels and immunohistochemical localization. Int J Mol Med. 2018;41:107–118. doi: 10.3892/ijmm.2017.3244
  • Bryce C, Bucaj M. Fecal calprotectin for the evaluation of inflammatory bowel disease. Am Fam Physician. 2021;104:303–304.
  • Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu Rev Biochem. 2016;85(1):765–792. doi: 10.1146/annurev-biochem-060815-014442
  • Fenna R, Zeng J, Davey C. Structure of the green heme in myeloperoxidase. Arch Biochem Biophys. 1995;316(1):653–656. doi: 10.1006/abbi.1995.1086
  • Winterbourn CC, Hampton MB, Livesey JH, et al. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. The J Biol Chem. 2006;281(52):39860–39869. doi: 10.1074/jbc.M605898200
  • Wright HL, Moots RJ, Bucknall RC, et al. Neutrophil function in inflammation and inflammatory diseases. Rheumatology. 2010;49:1618–1631. doi: 10.1093/rheumatology/keq045
  • Amulic B, Cazalet C, Hayes GL, et al. Neutrophil function: from mechanisms to disease. Ann Rev Immunol. 2012;30(1):459–489. doi: 10.1146/annurev-immunol-020711-074942
  • Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis. 2017;18(9):495–503. doi: 10.1111/1751-2980.12540
  • Dickerhof N, Pearson JF, Hoskin TS, et al. Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency. Free RAD Biol Med. 2017;113:236–243. doi: 10.1016/j.freeradbiomed.2017.09.028.
  • Pillinger MH, Abramson SB. The neutrophil in rheumatoid arthritis. Rheum Dis Clinic North Am. 1995;21(3):691–714. doi: 10.1016/S0889-857X(21)00463-4
  • Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25(6):1102–1111. doi: 10.1161/01.ATV.0000163262.83456.6d
  • Lampinen M, Backman M, Winqvist O, et al. Different regulation of eosinophil activity in crohn’s disease compared with ulcerative colitis. J Leuk Biol. 2008;84(6):1392–1399. doi: 10.1189/jlb.0807513
  • Chami B, Martin NJJ, Dennis JM, et al. Myeloperoxidase in the inflamed colon: a novel target for treating inflammatory bowel disease. Arch Biochem Biophys. 2018;645:61–71. doi: 10.1016/j.abb.2018.03.012
  • Saiki T. Myeloperoxidase concentrations in the stool as a new parameter of inflammatory bowel disease. Kurume Med J. 1998;45(1):69–73. doi: 10.2739/kurumemedj.45.69
  • Peterson CG, Sangfelt P, Wagner M, et al. Fecal levels of leukocyte markers reflect disease activity in patients with ulcerative colitis. Scand J Clin Lab Invest. 2007;67(8):810–820. doi: 10.1080/00365510701452838
  • Masoodi I, Kochhar R, Dutta U, et al. Evaluation of fecal myeloperoxidase as a biomarker of disease activity and severity in ulcerative colitis. Dig Dis Sci. 2012;57:1336–1340. doi: 10.1007/s10620-012-2027-5
  • Peterson CG, Eklund E, Taha Y, et al. A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: establishment of normal levels and clinical application in patients with inflammatory bowel disease. Am J Gastroenterol. 2002;97(7):1755–1762. doi: 10.1111/j.1572-0241.2002.05837.x
  • Sugi K, Saitoh O, Hirata I, et al. Fecal lactoferrin as a marker for disease activity in inflammatory bowel disease: comparison with other neutrophil-derived proteins. Am J Gastroenterol. 1996;91:927–934.
  • Peterson CG, Lampinen M, Hansson T, et al. Evaluation of biomarkers for ulcerative colitis comparing two sampling methods: fecal markers reflect colorectal inflammation both macroscopically and on a cellular level. Scand J Clin Lab Invest. 2016;76(5):393–401. doi: 10.1080/00365513.2016.1185145
  • Silberer H, Küppers B, Mickisch O, et al. Fecal leukocyte proteins in inflammatory bowel disease and irritable bowel syndrome. Clin Lab. 2005;51:117–126.
  • Wagner M, Peterson CG, Ridefelt P, et al. Fecal markers of inflammation used as surrogate markers for treatment outcome in relapsing inflammatory bowel disease. World J Gastroenterol. 2008;14(36):5584–5589. doi: 10.3748/wjg.14.5584
  • Swaminathan A, Borichevsky GM, Edwards TS, et al. Faecal myeloperoxidase as a biomarker of endoscopic activity in inflammatory bowel disease. J Crohn’s Colitis. 2022;16(12):1862–1873. doi: 10.1093/ecco-jcc/jjac098
  • Miranda LP, Tao T, Jones A, et al. Total chemical synthesis and chemotactic activity of human s100a12 (en-rage). FEBS Lett. 2001;488:85–90. doi: 10.1016/S0014-5793(00)02392-9
  • Yang Z, Tao T, Raftery MJ, et al. Proinflammatory properties of the human s100 protein s100a12. J Leukoc Biol. 2001;69(6):986–994. doi: 10.1189/jlb.69.6.986
  • Vogl T, Pröpper C, Hartmann M, et al. S100a12 is expressed exclusively by granulocytes and acts independently from mrp8 and mrp14. J Biol Chem. 1999;274(36):25291–25296. doi: 10.1074/jbc.274.36.25291
  • Carvalho A, Lu J, Francis JD, et al. S100a12 in digestive diseases and health: a scoping review. Gastroenterol Res Pract. 2020;2020:1–11. doi: 10.1155/2020/2868373
  • Ciccocioppo R, Imbesi V, Betti E, et al. The circulating level of soluble receptor for advanced glycation end products displays different patterns in ulcerative colitis and crohn’s disease: a cross-sectional study. Dig Dis Sci. 2015;60:2327–2337. doi: 10.1007/s10620-015-3619-7
  • Witarto BS, Visuddho V, Witarto AP, et al. Performance of fecal s100a12 as a novel non-invasive diagnostic biomarker for pediatric inflammatory bowel disease: a systematic review and meta-analysis. J Pediatr (Rio J). 2023;99(5):432–442. doi: 10.1016/j.jped.2023.03.002
  • Ciccocioppo R, Vanoli A, Klersy C, et al. Role of the advanced glycation end products receptor in crohn’s disease inflammation. World J Gastroenterol. 2013;19(45):8269–8281. doi: 10.3748/wjg.v19.i45.8269
  • Foell D, Kucharzik T, Kraft M, et al. Neutrophil derived human s100a12 (en-rage) is strongly expressed during chronic active inflammatory bowel disease. Gut. 2003;52(6):847–853. doi: 10.1136/gut.52.6.847
  • Galgut BJ, Lemberg DA, Day AS, et al. The value of fecal markers in predicting relapse in inflammatory bowel diseases. Front Pediatr. 2017;5:292. doi: 10.3389/fped.2017.00292
  • de Vijver EV, Heida A, Ioannou S, et al. Test strategies to predict inflammatory bowel disease among children with nonbloody diarrhea. Pediatrics. 2020;146(2). doi: 10.1542/peds.2019-2235
  • Heida A, Van de Vijver E, van Ravenzwaaij D, et al. Predicting inflammatory bowel disease in children with abdominal pain and diarrhoea: calgranulin-c versus calprotectin stool tests. Arch Dis Child. 2018;103:565–571. doi: 10.1136/archdischild-2017-314081
  • Lopez RN, Leach ST, Lemberg DA, et al. Fecal biomarkers in inflammatory bowel disease. J Gastroenterol Hepatol. 2017;32:577–582. doi: 10.1111/jgh.13611
  • Day AS, Ehn M, Gearry RB, et al. Fecal s100a12 in healthy infants and children. Dis Markers. 2013;35:295–299. doi: 10.1155/2013/873582
  • Kaiser T, Langhorst J, Wittkowski H, et al. Faecal s100a12 as a non-invasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut. 2007;56:1706–1713. doi: 10.1136/gut.2006.113431
  • Manolakis AC, Kapsoritakis AN, Georgoulias P, et al. Moderate performance of serum s100a12, in distinguishing inflammatory bowel disease from irritable bowel syndrome. BMC Gastroenterol. 2010;10:118. doi: 10.1186/1471-230X-10-118
  • Whitehead SJ, Ford C, Gama RM, et al. Effect of faecal calprotectin assay variability on the management of inflammatory bowel disease and potential role of faecal s100a12. J Clin Pathol. 2017;70:1049–1056. doi: 10.1136/jclinpath-2017-204340
  • Lee SH, Hwang SW, Park SH, et al. Fecal s100a12 is associated with future hospitalization and step-up of medical treatment in patients with crohn’s disease in clinical remission: a pilot study. Intest Res. 2022;20:203–212. doi: 10.5217/ir.2021.00020
  • Foell D, Kane D, Bresnihan B, et al. Expression of the pro-inflammatory protein s100a12 (en-rage) in rheumatoid and psoriatic arthritis. Rheumatology (Oxford). 2003;42(11):1383–1389. doi: 10.1093/rheumatology/keg385
  • Gerss J, Roth J, Holzinger D, et al. Phagocyte-specific s100 proteins and high-sensitivity c reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study. Ann Rheum Dis. 2012;71:1991–1997. doi: 10.1136/annrheumdis-2012-201329
  • Foell D, Seeliger S, Vogl T, et al. Expression of s100a12 (en-rage) in cystic fibrosis. Thorax. 2003;58(7):613–617. doi: 10.1136/thorax.58.7.613
  • Li Y, He Y, Chen S, et al. S100a12 as biomarker of disease severity and prognosis in patients with idiopathic pulmonary fibrosis. Front Immunol. 2022;13:810338. doi: 10.3389/fimmu.2022.810338
  • Hunt WR, Helfman BR, Na M, et al. Advanced glycation end products are elevated in cystic fibrosis-related diabetes and correlate with worse lung function. J Cyst Fibros. 2016;15(5):681–688. doi: 10.1016/j.jcf.2015.12.011
  • Zhou Y, Zha Y, Yang Y, et al. S100 proteins in cardiovascular diseases. Mol Med. 2023;29:68. doi: 10.1186/s10020-023-00662-1
  • Dai C, Jiang M, Sun MJ, et al. Fecal lactoferrin for assessment of inflammatory bowel disease activity: a systematic review and meta-analysis. J Clin Gastroenterol. 2020;54(6):545–553. doi: 10.1097/MCG.0000000000001212
  • Abraham BP. Fecal lactoferrin testing. Gastroenterol Hepatol (NY). 2018;14:713–716.
  • Gisbert JP, McNicholl AG, Gomollon F. Questions and answers on the role of fecal lactoferrin as a biological marker in inflammatory bowel disease. Inflamm Bowel Dis. 2009;15(11):1746–1754. doi: 10.1002/ibd.20920
  • Yamamoto T, Shiraki M, Bamba T, et al. Faecal calprotectin and lactoferrin as markers for monitoring disease activity and predicting clinical recurrence in patients with crohn’s disease after ileocolonic resection: a prospective pilot study. United European Gastroenterol J. 2013;1(5):368–374. doi: 10.1177/2050640613501818
  • Yamamoto T, Shiraki M, Bamba T, et al. Fecal calprotectin and lactoferrin as predictors of relapse in patients with quiescent ulcerative colitis during maintenance therapy. Intern J Colorectal Dis. 2014;29(4):485–491. doi: 10.1007/s00384-013-1817-3
  • Vernia F, Viscido A, Di Ruscio M, et al. Fecal lactoferrin and other putative fecal biomarkers in crohn’s disease: do they still have a potential clinical role? Digestion. 2021;102:833–844. doi: 10.1159/000518419
  • Lykowska-Szuber L, Klimczak K, Eder P, et al. Diagnostic importance of faecal markers in long-term monitoring of anti-TNF-? therapy in primary responders with Crohn’s disease. Prz Gastroenterol. 2016;4:232–238. doi: 10.5114/pg.2015.55700
  • Sorrentino D, Nguyen VQ, Love K. Fecal lactoferrin predicts primary nonresponse to biologic agents in inflammatory bowel disease. Dig Dis. 2021;39:626–633. doi: 10.1159/000515432
  • Zhou XL, Xu W, Tang XX, et al. Fecal lactoferrin in discriminating inflammatory bowel disease from irritable bowel syndrome: a diagnostic meta-analysis. BMC Gastroenterol. 2014;14:121. doi: 10.1186/1471-230X-14-121
  • Cao B, Zhou X, Ma J, et al. Role of mirnas in inflammatory bowel disease. Dig Dus Sci. 2017;62(6):1426–1438. doi: 10.1007/s10620-017-4567-1
  • Weber JA, Baxter DH, Zhang S, et al. The microrna spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–1741. doi: 10.1373/clinchem.2010.147405
  • Igaz I, Igaz P. Diagnostic relevance of micrornas in other body fluids including urine, feces, and saliva. Exp Suppl. 2015;106:245–252.
  • Wohnhaas CT, Schmid R, Rolser M, et al. Fecal micrornas show promise as noninvasive crohn’s disease biomarkers. Crohns Colitis. 2020;2(1):otaa003. doi: 10.1093/crocol/otaa003
  • Wang H, Zhang S, Yu Q, et al. Circulating microrna223 is a new biomarker for inflammatory bowel disease. Medicine (Baltimore). 2016;95:e2703. doi: 10.1097/MD.0000000000002703
  • Mohammadi A, Kelly OB, Smith MI, et al. Differential mirna expression in ileal and colonic tissues reveals an altered immunoregulatory molecular profile in individuals with crohn’s disease versus healthy subjects. J Crohn’s Colitis. 2019;13(11):1459–1469. doi: 10.1093/ecco-jcc/jjz076
  • Judit Béres N, Kiss Z, Müller KE, et al. Role of microRNA-223 in the regulation of poly(adp-ribose) polymerase in pediatric patients with crohn’s disease. Scand J Gastroenterol. 2018;53(9):1066–1073. doi: 10.1080/00365521.2018.1498915
  • Zhang J, Guo Z, Wang Z, et al. Fecal mir-223 is a noninvasive biomarker for estimating crohn’s disease activity. Immun Inflam Dis. 2023;11(12):e1131. doi: 10.1002/iid3.1131
  • Sáez-González E, Moret-Tatay I, Bastida G, et al. Microrna and granulocyte-monocyte adsorption apheresis combotherapy after inadequate response to anti-tnf agents in ulcerative colitis. J Clin Apher. 2023;39(1). doi: 10.1002/jca.22101
  • Stallhofer J, Friedrich M, Konrad-Zerna A, et al. Lipocalin-2 is a disease activity marker in inflammatory bowel disease regulated by il-17a, il-22, and tnf-α and modulated by il23r genotype status. Inflamm Bowel Dis. 2015;21:1–40. doi: 10.1097/MIB.0000000000000515
  • Reghefaoui M, Peresuodei TS, Saavedra Palacios MS, et al. The role of serological markers in the prediction of disease course and response to therapy in inflammatory bowel disease. Cureus. 2023;15:e48442. doi: 10.7759/cureus.48442
  • Oikonomou KA, Kapsoritakis AN, Theodoridou C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) in inflammatory bowel disease: association with pathophysiology of inflammation, established markers, and disease activity. J Gastroenterol. 2012;47:519–530. doi: 10.1007/s00535-011-0516-5
  • Ashcroft AJ, Cruickshank SM, Croucher PI, et al. Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity. 2003;19(6):849–861. doi: 10.1016/S1074-7613(03)00326-1
  • Franchimont N, Reenaers C, Lambert C, et al. Increased expression of receptor activator of NF- κ B ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn’s disease patients. Clin Exp Immunol. 2004;138(3):491–498. doi: 10.1111/j.1365-2249.2004.02643.x
  • Moschen AR, Kaser A, Enrich B, et al. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut. 2005;54(4):479–487. doi: 10.1136/gut.2004.044370
  • Stanisławowski M, Wiśniewski P, Guzek M, et al. Influence of receptor activator of nuclear factor kappa B ligand, osteoprotegerin and interleukin-33 on bone metabolism in patients with long-standing ulcerative colitis. J Crohns Colitis. 2014;8(8):802–810. doi: 10.1016/j.crohns.2013.12.021
  • Bernstein CN, Sargent M, Leslie WD. Serum osteoprotegerin is increased in Crohn’s disease: a population-based case control study. Inflamm Bowel Dis. 2005;11(4):325–330. doi: 10.1097/01.MIB.0000164015.60795.ca
  • Nahidi L, Leach ST, Sidler MA, et al. Osteoprotegerin in pediatric Crohn’s disease and the effects of exclusive enteral nutrition. Inflamm Bowel Dis. 2011;17(2):516–523. doi: 10.1002/ibd.21361
  • von Tirpitz C, Epp S, Klaus J, et al. Effect of systemic glucocorticoid therapy on bone metabolism and the osteoprotegerin system in patients with active Crohn’s disease. Eur J Gastroenterol Hepatol. 2003;15(11):1165–1170. doi: 10.1097/00042737-200311000-00003
  • Miheller P, Muzes G, Rácz K, et al. Changes of OPG and RANKL concentrations in Crohn’s disease after infliximab therapy. Inflamm Bowel Dis. 2007;13(11):1379–1384. doi: 10.1002/ibd.20234
  • Sylvester FA, Turner D, Draghi A 2nd, et al. Fecal osteoprotegerin may guide the introduction of second-line therapy in hospitalized children with ulcerative colitis. Inflamm Bowel Dis. 2011 Aug;17(8):1726–1730. doi: 10.1002/ibd.21561
  • Leach ST, Day AS, Messenger R, et al. Fecal markers of inflammation and disease activity in pediatric crohn disease: results from the ImageKids study. J Pediatr Gastroenterol Nutr. 2020;70(5):580–585. doi: 10.1097/MPG.0000000000002615
  • Zhao T, Su Z, Li Y, et al. Chitinase-3 like-protein-1 function and its role in diseases. Sig Transduct Target Ther. 2020;5(1):201. doi: 10.1038/s41392-020-00303-7
  • Aomatsu T, Imaeda H, Matsumoto K, et al. Faecal chitinase 3-like-1: a novel biomarker of disease activity in paediatric inflammatory bowel disease. Aliment Pharmacol Ther. 2011;34(8):941–948. doi: 10.1111/j.1365-2036.2011.04805.x
  • Santos GM, Ismael S, Morais J, et al. Intestinal alkaline phosphatase: a review of this enzyme role in the intestinal barrier function. Microorganisms. 2022;10(4):746. doi: 10.3390/microorganisms10040746
  • Ateş BB, Talim B, Gülşen HH, et al. Significance of intestinal alkaline phosphatase in predicting histological activity of pediatric inflammatory bowel disease. Turk J Pediatr. 2022;64(6):1068–1076. doi: 10.24953/turkjped.2021.5413
  • Sheng X, Liu D, Gamage SK, et al. Point-of-care monitoring of colitis using intestinal alkaline phosphatase in inflammatory bowel disease. ACS Sens. 2021;6(3):698–702. doi: 10.1021/acssensors.0c02177
  • Jia Z, Zhang Y, Zhang C, et al. Biosensing intestinal alkaline phosphatase by pregnancy test strips based on target-triggered CRISPR-Cas12a activity to monitor intestinal inflammation. Anal Chem. 2023;95(37):14111–14118. doi: 10.1021/acs.analchem.3c03099
  • Hwang SW, Kim JH, Lee C, et al. Intestinal alkaline phosphatase ameliorates experimental colitis via toll-like receptor 4-dependent pathway. Eur J Pharmacol. 2018;820:156–166. doi: 10.1016/j.ejphar.2017.12.026
  • Chung-Faye G, Hayee B, Maestranzi S, et al. Fecal M2-pyruvate kinase (M2-PK): a novel marker of intestinal inflammation. Inflamm Bowel Dis. 2007;13(11):1374–1378. doi: 10.1002/ibd.20214
  • Day AS, Judd T, Lemberg DA, et al. Fecal M2-PK in children with Crohn’s disease: a preliminary report. Dig Dis Sci. 2012;57(8):2166–2170. doi: 10.1007/s10620-012-2215-3
  • Vázquez Morón JM, Pallarés Manrique H, Machancoses FH, et al. Accurate cut-offs for predicting endoscopic activity and mucosal healing in Crohn’s disease with fecal calprotectin. Rev Esp Enferm Dig. 2017;109(2):130–136. doi: 10.17235/reed.2017.4542/2016
  • Roszak D, Gałęcka M, Cichy W, et al. Determination of faecal inflammatory marker concentration as a noninvasive method of evaluation of pathological activity in children with inflammatory bowel diseases. Adv Med Sci. 2015;60(2):246–252. doi: 10.1016/j.advms.2015.04.003
  • Czub E, Nowak JK, Szaflarska-Poplawska A, et al. Comparison of fecal pyruvate kinase isoform M2 and calprotectin in assessment of pediatric inflammatory bowel disease severity and activity. Acta Biochim Pol. 2014;61(1):99–102. doi: 10.18388/abp.2014_1929
  • Czub E, Nowak JK, Moczko J, et al. Fecal pyruvate kinase is not suitable for discrimination between inflammatory bowel disease exacerbation and acute gastroenteritis. Dev Period Med. 2015;19(2):167–173.
  • Turner D, Leach ST, Mack D, et al. Faecal calprotectin, lactoferrin, M2-pyruvate kinase and S100A12 in severe ulcerative colitis: a prospective multicentre comparison of predicting outcomes and monitoring response. Gut. 2010;59(9):1207–1212. doi: 10.1136/gut.2010.211755
  • Frin AC, Filippi J, Boschetti G, et al. Accuracies of fecal calprotectin, lactoferrin, M2-pyruvate kinase, neopterin and zonulin to predict the response to infliximab in ulcerative colitis. Dig Liver Dis 2017 Jan;49(1):11–16. doi: 10.1016/j.dld.2016.09.001
  • Overstreet AC, Anderson B, Burge M, et al. HMGB1 acts as an agent of host defense at the gut mucosal barrier. bioRxiv [Preprint]. 2023 May 30:2023.05.30.542477. doi: 10.1101/2023.05.30.542477
  • Vitali R, Stronati L, Negroni A, et al. Fecal HMGB1 is a novel marker of intestinal mucosal inflammation in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011 Nov;106(11):2029–2040. doi: 10.1038/ajg.2011.231
  • Palone F, Vitali R, Cucchiara S, et al. Role of HMGB1 as a suitable biomarker of subclinical intestinal inflammation and mucosal healing in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2014 Aug;20(8):1448–1457. doi: 10.1097/MIB.0000000000000113
  • Palone F, Vitali R, Cucchiara S, et al. Fecal HMGB1 reveals microscopic inflammation in adult and pediatric patients with inflammatory bowel disease in clinical and endoscopic remission. Inflamm Bowel Dis. 2016 Dec;22(12):2886–2893. doi: 10.1097/MIB.0000000000000938
  • Palone F, Vitali R, Cucchiara S, et al. Fecal HMGB1 reveals microscopic inflammation in adult and pediatric patients with inflammatory bowel disease in clinical and endoscopic remission. Inflamm Bowel Dis. 2016 Dec;22(12):2886–2893. doi: 10.1097/MIB.0000000000000938

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.