35
Views
0
CrossRef citations to date
0
Altmetric
Review

An overview of circulating and urinary biomarkers capable of predicting the transition of acute kidney injury to chronic kidney disease

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Apr 2024, Accepted 09 Jul 2024, Published online: 15 Jul 2024

References

  • Almazmomi MA, Esmat A, Naeem A. Acute kidney injury: definition, management, and promising therapeutic target. Cureus. 2023;15:e51228. doi: 10.7759/cureus.51228
  • Chawla LS, Bellomo R, Bihorac A, et al. Acute disease quality initiative workgroup 16. Acute kidney disease and renal recovery: consensus report of the acute disease quality initiative (ADQI) 16 workgroup. Nat Rev Nephrol. 2017;13:241–257. doi: 10.1038/nrneph.2017.2
  • Levey AS. Defining AKD: the spectrum of AKI, AKD, and CKD. Nephron. 2022;146:302–305. doi: 10.1159/000516647
  • Levey AS, Eckardt KU, Dorman NM, et al. Nomenclature for kidney function and disease: report of a kidney disease: improving global outcomes (KDIGO) consensus conference. Kidney Int. 2020;97:1117–1129. doi: 10.1016/j.kint.2020.02.010
  • Lameire NH, Levin A, Kellum JA, et al. Conference participants. harmonizing acute and chronic kidney disease definition and classification: report of a kidney disease: improving global outcomes (KDIGO) consensus conference. Kidney Int. 2021;100(3):516–526. doi: 10.1016/j.kint.2021.06.028
  • Birkelo BC, Pannu N, Siew ED. Overview of diagnostic criteria and epidemiology of acute kidney injury and acute kidney disease in the critically ill patient. Clin J Am Soc Nephrol. 2022;17:717–735. doi: 10.2215/CJN.14181021
  • Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14:607–625. doi: 10.1038/s41581-018-0052-0
  • Jankowski J, Floege J, Fliser D, et al. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143:1157–1172. doi: 10.1161/CIRCULATIONAHA.120.050686
  • Lachance P, Villeneuve PM, Rewa OG, et al. Association between e-alert implementation for detection of acute kidney injury and outcomes: a systematic review. Nephrol Dial Transplant. 2017;32(2):265–272. doi: 10.1093/ndt/gfw424
  • Susantitaphong P, Cruz DN, Cerda J, et al. Acute Kidney Injury Advisory Group of the American Society of Nephrology. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–1493. doi: 10.2215/CJN.00710113
  • Lv JC, Zhang LX. Prevalence and disease burden of chronic kidney disease. Adv Exp Med Biol. 2019;1165:3–15. doi: 10.1007/978-981-13-8871-2_1 PMID: 31399958.
  • James MT, Levey AS, Tonelli M, et al. Incidence and prognosis of acute kidney diseases and disorders using an integrated approach to laboratory measurements in a universal health care system. JAMA Netw Open. 2019;2:e191795. doi: 10.1001/jamanetworkopen.2019.1795
  • Vaara ST, Serpa Neto A, Bellomo R, et al. Regional practice variation and outcomes in the standard versus accelerated initiation of renal replacement therapy in acute kidney injury (STARRT-AKI) trial: a post hoc secondary analysis. Crit Care Explor. 2024;6(2):e1053. doi: 10.1097/CCE.0000000000001053
  • Bufkin KB, Karim ZA, Silva J. Review of the limitations of current biomarkers in acute kidney injury clinical practices. SAGE Open Med. 2024;12:20503121241228446. doi: 10.1177/20503121241228446
  • Kellum JA, Romagnani P, Ashuntantang G, et al. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. doi: 10.1038/s41572-021-00284-z
  • Yeh TH, Tu KC, Wang HY, et al. From acute to chronic: unraveling the pathophysiological mechanisms of the progression from acute kidney injury to acute kidney disease to chronic kidney disease. Int J Mol Sci. 2024;25(3):1755. doi: 10.3390/ijms25031755
  • Kimmel M, Shi J, Latus J, et al. Association of renal stress/damage and filtration biomarkers with subsequent AKI during hospitalization among patients presenting to the emergency department. Clin J Am Soc Nephrol. 2016;11:938–946. doi: 10.2215/CJN.10551015
  • Elrggal ME, Bajpai D, Tannor EK, et al. Access to nephrology care for pregnancy-related acute kidney injury in low- and lower-middle-income countries: a perspective. Kidney Med. 2023;5(9):100695. doi: 10.1016/j.xkme.2023.100695
  • Li PK, Burdmann EA, Mehta RL. World kidney day steering committee 2013. Acute kidney injury: global health alert. Transplantation. 2013;95(5):653–657. doi: 10.1097/TP.0b013e31828848bc PMID: 23503499.
  • Cerdá J, Bagga A, Kher V, et al. The contrasting characteristics of acute kidney injury in developed and developing countries. Nat Clin Pract Nephrol. 2008;4(3):138–153. doi: 10.1038/ncpneph0722
  • Saxena A, Meshram SV. Predictors of mortality in acute kidney injury patients admitted to medicine intensive care unit in a rural tertiary care hospital. Indian J Crit Care Med. 2018;22:231–237. doi: 10.4103/ijccm.IJCCM_462_17
  • Lydia A, Rebecca RV, Sedono R, et al. Factors associated with mortality of intensive care unit patients with acute kidney injury at cipto mangunkusumo national central general hospital. Acta Med Indones. 2019;51:324–330. PMID: 32041916.
  • Medina KRP, Jeong JC, Ryu JW, et al. Comparison of outcomes of mild and severe community- and hospital-acquired acute kidney injury. Yonsei Med J. 2022;63(10):902–907. doi: 10.3349/ymj.2021.0238
  • Bendall AC, See EJ, Toussaint ND, et al. Community-acquired versus hospital-acquired acute kidney injury at a large Australian metropolitan quaternary referral centre: incidence, associations and outcomes. Intern Med J. 2023;53(8):1366–1375. doi: 10.1111/imj.15787
  • Der Mesropian PJ, Kalamaras JS, Eisele G, et al. Long-term outcomes of community-acquired versus hospital-acquired acute kidney injury: a retrospective analysis. Clin Nephrol. 2014;81(3):174–184. doi: 10.5414/CN108153
  • Ehmann MR, Klein EY, Zhao X, et al. Epidemiology and clinical outcomes of community-acquired acute kidney injury in the emergency department: a multisite retrospective cohort study. Am J Kidney Dis. 2023;83(6):S0272–6386(23)00945–9. doi: 10.1053/j.ajkd.2023.10.009
  • Koyner JL, Mackey RH, Rosenthal NA, et al. Clinical outcomes of persistent severe acute kidney injury among patients with kidney disease improving global outcomes stage 2 or 3 acute kidney injury. Am J Nephrol. 2022;53:816–825. doi: 10.1159/000528158
  • Inokuchi R, Hara Y, Yasuda H, et al. Differences in characteristics and outcomes between community- and hospital-acquired acute kidney injury: a systematic review and meta-analysis. Clin Nephrol. 2017;88:167–182. doi: 10.5414/CN109011
  • Gross C, Miao Jonasson J, Buchebner D, et al. Prognosis and mortality within 90 days in community-acquired acute kidney injury in the Southwest of Sweden. BMC Nephrol. 2023;24:171. doi: 10.1186/s12882-023-03221-2
  • Neyra JA, Ortiz-Soriano V, Liu LJ, et al. Prediction of mortality and major adverse kidney events in critically ill patients with acute kidney injury. Am J Kidney Dis. 2023;81:36–47. doi: 10.1053/j.ajkd.2022.06.004
  • Luo X, Yan P, Zhang N, et al. Early recovery status and outcomes after sepsis-associated acute kidney injury in critically ill patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022;47:535–545. doi: 10.11817/j.issn.1672-7347.2022.210368
  • Bai Y, Li Y, Jin J, et al. Effects of early recovery of renal function on adverse renal outcomes and mortality in patients with acute kidney injury: a systematic review and meta-analysis. Int Urol Nephrol. 2024;56(7):2421–2430. doi: 10.1007/s11255-024-03974-1
  • Livingston MJ, Shu S, Fan Y, et al. Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy. 2023;19(1):256–277. doi: 10.1080/15548627.2022.2072054
  • Gurevich VV, Gurevich EV. GPCR signaling regulation: the role of GRKs and arrestins. Front Pharmacol. 2019;10:125. doi: 10.3389/fphar.2019.00125
  • Valiño-Rivas L, Cuarental L, Ceballos MI, et al. Growth differentiation factor-15 preserves klotho expression in acute kidney injury and kidney fibrosis. Kidney Int. 2022;101:1200–1215. doi: 10.1016/j.kint.2022.02.028
  • Zhan X, Kaoud TS, Kook S, et al. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases. J Biol Chem. 2013;288(40):28535–28547. doi: 10.1074/jbc.M113.508085
  • Haeusgen W, Herdegen T, Waetzig V. The bottleneck of JNK signaling: molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol. 2011;90(6–7):536–544. doi: 10.1016/j.ejcb.2010.11.008
  • Zhao B, Sun L, Haas M, et al. PP2A regulates upstream members of the c-jun N-terminal kinase mitogen-activated protein kinase signaling pathway. Shock. 2008;29:181–188. doi: 10.1097/SHK.0b013e318070c840
  • Chen L, Liu L, Yin J, et al. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol. 2009;41:1284–1295. doi: 10.1016/j.biocel.2008.10.029
  • Mennuni S, Rubattu S, Pierelli G, et al. Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens. 2014;28:74–79. doi: 10.1038/jhh.2013.55
  • Berezin A. Endogenous vascular repair system in cardiovascular disease: the role of endothelial progenitor cells. AMJ. 2019;12:42–48. doi: 10.21767/AMJ.2018.3464
  • Jover B, Mimran A. Nitric oxide inhibition and renal alterations. J Cardiovasc Pharmacol. 2001;38:S65–70. doi: 10.1097/00005344-200111002-00016
  • Doleželová Š, Jíchová Š, Husková Z, et al. Progression of hypertension and kidney disease in aging fawn-hooded rats is mediated by enhanced influence of renin–angiotensin system and suppression of nitric oxide system and epoxyeicosanoids. Clin Exp Hypertens. 2016;38(7):644–651. doi: 10.1080/10641963.2016.1182182
  • Eshima K, Hirooka Y, Shigematsu H, et al. Angiotensin in the nucleus tractus solitarii contributes to neurogenic hypertension caused by chronic nitric oxide synthase inhibition. Hypertension. 2000;36:259–263. doi: 10.1161/01.hyp.36.2.259
  • Patschan D, Patschan S, Müller GA. Inflammation and microvasculopathy in renal ischemia reperfusion injury. J Transplant. 2012;2012:764154. doi: 10.1155/2012/764154
  • Zhang JQ, Li YY, Zhang XY, et al. Cellular senescence of renal tubular epithelial cells in renal fibrosis. Front Endocrinol (Lausanne). 2023;14:1085605. doi: 10.3389/fendo.2023.1085605
  • Berezin AE, Berezin AA. Extracellular endothelial cell-derived vesicles: emerging role in cardiac and vascular remodeling in heart failure. Front Cardiovasc Med. 2020;7:47. doi: 10.3389/fcvm.2020.00047
  • Luo C, Zhou S, Zhou Z, et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J Am Soc Nephrol. 2018;29:1238–1256. doi: 10.1681/ASN.2017050574
  • Zhang X, Li L, Tan H, et al. Klotho-derived peptide 1 inhibits cellular senescence in the fibrotic kidney by restoring klotho expression via posttranscriptional regulation. Theranostics. 2024;14(1):420–435. doi: 10.7150/thno.89105
  • Berezin AE, Berezin AA. Impaired function of fibroblast growth factor 23/Klotho protein axis in prediabetes and diabetes mellitus: promising predictor of cardiovascular risk. Diabetes Metab Syndr. 2019;13(4):2549–2556. doi: 10.1016/j.dsx.2019.07.018
  • Miao J, Huang J, Luo C, et al. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiol Rep. 2021;9(2):e14696. doi: 10.14814/phy2.14696
  • Schelling JR. Tubular atrophy in the pathogenesis of chronic kidney disease progression. Pediatr Nephrol. 2016;31:693–706. doi: 10.1007/s00467-015-3169-4
  • Lee K, He JC. AKI-to-CKD transition is a potential mechanism for non-albuminuric diabetic kidney disease. Fac Rev. 2022;11:21. doi: 10.12703/r/11-21
  • Lertussavavivat T, Kulvichit W, Peerapornratana S, et al. The epidemiology and long-term outcomes of acute kidney disease in a resource-limited setting. J Nephrol. 2022;35:2283–2292. doi: 10.1007/s40620-022-01328-7
  • Maekawa H, Inagi R. Pathophysiological role of organelle stress/crosstalk in AKI-to-CKD transition. Semin Nephrol. 2019;39:581–588. doi: 10.1016/j.semnephrol.2019.10.007
  • Kwiatkowska E, Kwiatkowski S, Dziedziejko V, et al. Renal microcirculation injury as the main cause of ischemic acute kidney injury development. Biology (Basel). 2023;12:327. doi: 10.3390/biology12020327
  • Zhao ZB, Marschner JA, Iwakura T, et al. Tubular epithelial cell HMGB1 promotes AKI-CKD transition by sensitizing cycling tubular cells to oxidative stress: a rationale for targeting HMGB1 during AKI recovery. J Am Soc Nephrol. 2023;34:394–411. doi: 10.1681/ASN.0000000000000024
  • Pasternak M, Liu P, Quinn R, et al. Association of albuminuria and regression of chronic kidney disease in adults with newly diagnosed moderate to severe chronic kidney disease. JAMA Netw Open. 2022;5:e2225821. doi: 10.1001/jamanetworkopen.2022.25821
  • Lekawanvijit S, Krum H. Cardiorenal syndrome: role of protein-bound uremic toxins. J Ren Nutr. 2015;25:149–154. doi: 10.1053/j.jrn.2014.10.009
  • Barreto FC, Stinghen AE, de Oliveira RB, et al. The quest for a better understanding of chronic kidney disease complications: an update on uremic toxins. J Bras Nefrol. 2014;36(2):221–235. doi: 10.5935/0101-2800.20140033
  • Okada K, Matsumoto K, Takahashi S. Uremic toxins adsorbed by AST-120 promote tubular hypertrophy and interstitial fibrosis in nephrectomized rats. Kidney Blood Press Res. 2005;28:8–13. doi: 10.1159/000080935
  • Risso MA, Sallustio S, Sueiro V, et al. The importance of tubular function in chronic kidney disease. Int J Nephrol Renovasc Dis. 2019;12:257–262. doi: 10.2147/IJNRD.S216673
  • André C, Bodeau S, Kamel S, et al. The AKI-to-CKD transition: the role of uremic toxins. Int J Mol Sci. 2023;24(22):16152. doi: 10.3390/ijms242216152
  • Chen JH, Chao CT, Huang JW, et al. Early elimination of uremic toxin ameliorates AKI-to-CKD transition. Clin Sci (Lond). 2021;135:2643–2658. doi: 10.1042/CS20210858
  • Hanna RM, Streja E, Kalantar-Zadeh K. Burden of anemia in chronic kidney disease: beyond erythropoietin. Adv Ther. 2021;3(1):52–75. doi: 10.1007/s12325-020-01524-6
  • Liu H, Li Y, Xiong J. The role of hypoxia-inducible factor-1 alpha in renal disease. Molecules. 2022;27:7318. doi: 10.3390/molecules27217318
  • Góes MA, Iizuka IJ, Quinto BM, et al. Serum soluble-fas, inflammation, and anemia in acute kidney injury. Artif Organs. 2018;42:E283–E289. doi: 10.1111/aor.12019
  • Zhang P, Tong Y, Yuan D, et al. Association of high-sensitivity C-reactive protein and anemia with acute kidney injury in neonates. Front Pediatr. 2022;10:882739. doi: 10.3389/fped.2022.882739
  • Zarbock A, Koyner JL, Hoste EAJ, et al. Update on perioperative acute kidney injury. Anesth Analg. 2018;127:1236–1245. doi: 10.1213/ANE.0000000000003741
  • Chin K, Joo H, Jiang H, et al. Importance of assessing biomarkers and physiological parameters of anemia-induced tissue hypoxia in the perioperative period. Braz J Anesthesiol. 2023;73(2):186–197. doi: 10.1016/j.bjane.2022.10.004
  • Li Q, Pan S. Contrast-associated acute kidney injury: advances and challenges. Int J Gen Med. 2022;15:1537–1546. doi: 10.2147/IJGM.S341072
  • Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw Open. 2020;3(10):e2019209. doi: 10.1001/jamanetworkopen.2020.19209
  • Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr. 2010;20:S2–6. doi: 10.1053/j.jrn.2010.05.002
  • Cheng TH, Ma MC, Liao MT, et al. Indoxyl sulfate, a tubular toxin, contributes to the development of chronic kidney disease. Toxins (Basel). 2020;12:684. doi: 10.3390/toxins12110684
  • Shen WC, Liang CJ, Huang TM, et al. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS/MAPKs/NFκB/AP-1 pathway. Arch Toxicol. 2016;90:2779–2792. doi: 10.1007/s00204-015-1652-0
  • Nakagawa K, Tanaka R, Donouchi M, et al. Vascular endothelial dysfunction in the thoracic aorta of rats with ischemic acute kidney injury: contribution of indoxyl sulfate. Oxid Med Cell Longev. 2022;2022:1–9. doi: 10.1155/2022/7547269
  • Niwa T, Shimizu H. Indoxyl sulfate induces nephrovascular senescence. J Ren Nutr. 2012;22:102–106. doi: 10.1053/j.jrn.2011.10.032
  • Shimizu H, Yisireyili M, Nishijima F, et al. Stat3 contributes to indoxyl sulfate-induced inflammatory and fibrotic gene expression and cellular senescence. Am J Nephrol. 2012;36:184–189. doi: 10.1159/000341515
  • Saito S, Shimizu H, Yisireyili M, et al. Indoxyl sulfate-induced activation of (pro)renin receptor is involved in expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells. Endocrinology. 2014;155:1899–1907. doi: 10.1210/en.2013-1937
  • Albert C, Haase M, Albert A, et al. Biomarker-guided risk assessment for acute kidney injury: time for clinical implementation? Ann Lab Med. 2021;41(1):1–15. doi: 10.3343/alm.2021.41.1.1
  • Gross P, Massy ZA, Henaut L, et al. Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling. J Cell Physiol. 2015;230:2927–2935. doi: 10.1002/jcp.25018
  • Gouroju S, Pvlns R, Bitla AR, et al. Role of gut-derived uremic toxins on oxidative stress and inflammation in patients with chronic kidney disease. Indian J Nephrol. 2017;27(5):359–364. doi: 10.4103/ijn.IJN_71_17
  • Six I, Flissi N, Lenglet G, et al. Uremic toxins and vascular dysfunction. Toxins (Basel). 2020;12:404. doi: 10.3390/toxins12060404
  • Caillard P, Bennis Y, Six I, et al. The role of gut-derived, protein-bound uremic toxins in the cardiovascular complications of acute kidney injury. Toxins (Basel). 2022;14:336. doi: 10.3390/toxins14050336
  • Ahmed S, de Vries JC, Lu J, et al. Animal models for studying protein-bound uremic toxin removal – a systematic review. Int J Mol Sci. 2023;24(17):13197. doi: 10.3390/ijms241713197
  • Krieter DH, Kerwagen S, Rüth M, et al. Differences in dialysis efficacy have limited effects on protein-bound uremic toxins plasma levels over time. Toxins (Basel). 2019;11:47. doi: 10.3390/toxins11010047
  • Krieter DH, Devine E, Körner T, et al. Haemodiafiltration at increased plasma ionic strength for improved protein-bound toxin removal. Acta Physiol (Oxf). 2017;219:510–520. doi: 10.1111/apha.12730
  • Liu T, Li Q, Jin Q, et al. Targeting HMGB1: a potential therapeutic strategy for chronic kidney disease. Int J Biol Sci. 2023;19(15):5020–5035. doi: 10.7150/ijbs.87964
  • Liu T, Zhao H, Wang Y, et al. Serum high mobility group box 1 as a potential biomarker for the progression of kidney disease in patients with type 2 diabetes. Front Immunol. 2024;15:1334109. doi: 10.3389/fimmu.2024.1334109
  • Mo C, Huang Q, Li L, et al. High-mobility group box 1 and its related receptors: potential therapeutic targets for contrast-induced acute kidney injury. Int Urol Nephrol. 2024;56(7):2291–2299. doi: 10.1007/s11255-024-03981-2
  • Trivedi A, Bose D, Saha P, et al. Prolonged antibiotic use in a preclinical model of gulf war chronic multisymptom-illness causes renal fibrosis-like pathology via increased micro-RNA 21-induced PTEN inhibition that is correlated with low host lachnospiraceae abundance. Cells. 2023;13:56. doi: 10.3390/cells13010056
  • Zhang Y, Wang Q, Liu A, et al. Erythropoietin derived peptide improved endoplasmic reticulum stress and ischemia-reperfusion related cellular and renal injury. Front Med (Lausanne). 2020;7:5. doi: 10.3389/fmed.2020.00005
  • Ishida M, Ueki M, Morishita J, et al. T-5224, a selective inhibitor of c-Fos/activator protein-1, improves survival by inhibiting serum high mobility group box-1 in lethal lipopolysaccharide-induced acute kidney injury model. J Intensive Care. 2015;3:49. doi: 10.1186/s40560-015-0115-2
  • Bruchfeld A, Qureshi AR, Lindholm B, et al. High mobility group box protein-1 correlates with renal function in chronic kidney disease (CKD). Mol Med. 2008;14:109–115. doi: 10.2119/2007-00107.Bruchfeld
  • Zakiyanov O, Kriha V, Vachek J, et al. Placental growth factor, pregnancy-associated plasma protein-A, soluble receptor for advanced glycation end products, extracellular newly identified receptor for receptor for advanced glycation end products binding protein and high mobility group box 1 levels in patients with acute kidney injury: a cross sectional study. BMC Nephrol. 2013;14:245. doi: 10.1186/1471-2369-14-245
  • Zhu N, Yuan W, Zhou Y, et al. High mobility group box protein-1 correlates with microinflammatory state and nutritional status in continuous ambulatory peritoneal dialysis patients. J Artif Organs. 2011;14:125–132. doi: 10.1007/s10047-011-0561-0
  • Marakala V. Neutrophil gelatinase-associated lipocalin (NGAL) in kidney injury – a systematic review. Clin Chim Acta. 2022;536:135–141. doi: 10.1016/j.cca.2022.08.029
  • Alvarez S, Suazo C, Boltansky A, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation. Transplant Proc. 2013;45:3719–3723. doi: 10.1016/j.transproceed.2013.08.079
  • Haase M, Bellomo R, Devarajan P, et al. NGAL Meta-analysis Investigator Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54(6):1012–1024. doi: 10.1053/j.ajkd.2009.07.020
  • Zhang A, Cai Y, Wang PF, et al. Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis. Crit Care. 2016;20:41. doi: 10.1186/s13054-016-1212-x
  • Zhou F, Luo Q, Wang L, et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg. 2016;49:746–755. doi: 10.1093/ejcts/ezv199
  • Mahapatro A, Nobakht S, Mukesh S, et al. Evaluating biomarkers for contrast-induced nephropathy following coronary interventions: an umbrella review on meta-analyses. Eur J Med Res. 2024;29:210. doi: 10.1186/s40001-024-01782-y
  • Cappuccilli M, Capelli I, Comai G, et al. Neutrophil gelatinase-associated lipocalin as a biomarker of allograft function after renal transplantation: evaluation of the current status and future insights. Artif Organs. 2018;42:8–14. doi: 10.1111/aor.13039
  • Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem. 2014;51:335–351. doi: 10.1177/0004563214521795
  • Romejko K, Markowska M, Niemczyk S. The review of current knowledge on neutrophil gelatinase-associated lipocalin (NGAL). Int J Mol Sci. 2023;24:10470. doi: 10.3390/ijms241310470
  • Katagiri M, Takahashi M, Doi K, et al. Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease. Heart Vessels. 2016;31:1595–1602. doi: 10.1007/s00380-015-0776-8
  • Song J, Yu J, Prayogo GW, et al. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology. Am J Transl Res. 2019;11(3):1219–1229. PMID: 30972157; PMCID: PMC6456506.
  • Yang L, Brooks CR, Xiao S, et al. KIM-1–mediated phagocytosis reduces acute injury to the kidney. J Clin Invest. 2015;125(4):1620–1636. doi: 10.1172/JCI75417
  • Lim AI, Tang SC, Lai KN, et al. Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells? J Cell Physiol. 2013;228(5):917–924. doi: 10.1002/jcp.24267
  • Tanase DM, Gosav EM, Radu S, et al. The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int J Mol Sci. 2019;20:5238. doi: 10.3390/ijms20205238
  • Fazel M, Sarveazad A, Mohamed Ali K, et al. Accuracy of urine kidney injury molecule-1 in predicting acute kidney injury in children; a systematic review and meta-analysis. Arch Acad Emerg Med. 2020;8:e44. PMID: 32309808; PMCID: PMC7159147.
  • Geng J, Qiu Y, Qin Z, et al. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis. J Transl Med. 2021;19:105. doi: 10.1186/s12967-021-02776-8
  • Medić B, Rovčanin B, Basta Jovanović G, et al. Kidney injury molecule-1 and cardiovascular diseases: from basic science to clinical practice. Biomed Res Int. 2015;2015:854070. doi: 10.1155/2015/854070
  • Montgomery TA, Xu L, Mason S, et al. Breast regression protein–39/chitinase 3–like 1 promotes renal fibrosis after kidney injury via activation of myofibroblasts. J Am Soc Nephrol. 2017;28(11):3218–3226. doi: 10.1681/ASN.2017010110
  • Huen SC, Parikh CR. Molecular phenotyping of clinical AKI with novel urinary biomarkers. Am J Physiol Renal Physiol. 2015;309(5):F406–13. doi: 10.1152/ajprenal.00682.2014
  • Conroy AL, Hawkes MT, Elphinstone R, et al. Chitinase-3-like 1 is a biomarker of acute kidney injury and mortality in paediatric severe malaria. Malar J. 2018;17(1):82. doi: 10.1186/s12936-018-2225-5
  • Maddens B, Ghesquière B, Vanholder R, et al. Chitinase-like proteins are candidate biomarkers for sepsis-induced acute kidney injury. Mol Cell Proteomics. 2012;11:M111.013094. doi: 10.1074/mcp.M111.013094
  • De Loor J, Decruyenaere J, Demeyere K, et al. Urinary chitinase 3-like protein 1 for early diagnosis of acute kidney injury: a prospective cohort study in adult critically ill patients. Crit Care. 2016;20:38. doi: 10.1186/s13054-016-1192-x
  • Hoste EA, Vaara ST, De Loor J, et al. FINNAKI Study Group. Urinary cell cycle arrest biomarkers and chitinase 3-like protein 1 (CHI3L1) to detect acute kidney injury in the critically ill: a post hoc laboratory analysis on the FINNAKI cohort. Crit Care. 2020;24(1):144. doi: 10.1186/s13054-020-02867-w
  • Amaral Pedroso L, Nobre V, Dias Carneiro de Almeida C, et al. Acute kidney injury biomarkers in the critically ill. Clin Chim Acta. 2020;508:170–178. doi: 10.1016/j.cca.2020.05.024
  • Wang Z, Xu J, Zhang Y, et al. Prediction of acute kidney injury incidence following acute type a aortic dissection surgery with novel biomarkers: a prospective observational study. BMC Med. 2023;21:503. doi: 10.1186/s12916-023-03215-9
  • Puthumana J, Hall IE, Reese PP, et al. YKL-40 associates with renal recovery in deceased donor kidney transplantation. J Am Soc Nephrol. 2017;28:661–670. doi: 10.1681/ASN.2016010091
  • Albeltagy ES, Abdul-Mohymen AM, Taha DRA. Early diagnosis of acute kidney injury by urinary YKL-40 in critically ill patients in ICU: a pilot study. Int Urol Nephrol. 2020;52:351–361. doi: 10.1007/s11255-019-02364-2
  • Wang L, Ma P, Chen H, et al. Rapid and ultrasensitive detection of acute kidney injury biomarkers CH3L1 and L-FABP using surface-enhanced Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2023;295:122604. doi: 10.1016/j.saa.2023.122604
  • Olsson SL, Ek B, Björk I. The affinity and kinetics of inhibition of cysteine proteinases by intact recombinant bovine cystatin C. Biochim Biophys Acta. 1999;1432:73–81. doi: 10.1016/s0167-4838(99)00090-4
  • Zhang Y, Sun L. Cystatin C in Cerebrovascular Disorders. Curr Neurovasc Res. 2017;14(4):406–414. doi: 10.2174/1567202614666171116102504
  • Adingwupu OM, Barbosa ER, Palevsky PM, et al. Cystatin C as a GFR estimation marker in acute and chronic illness: a systematic review. Kidney Med. 2023;5(12):100727. doi: 10.1016/j.xkme.2023.100727
  • Lees JS, Fabian J, Shlipak MG. Cystatin C should be routinely available for estimating kidney function. Curr Opin Nephrol Hypertens. 2024;33:337–343. doi: 10.1097/MNH.0000000000000980
  • Yang H, Lin C, Zhuang C, et al. Serum cystatin C as a predictor of acute kidney injury in neonates: a meta-analysis. J Pediatr (Rio J). 2022;98:230–240. doi: 10.1016/j.jped.2021.08.005
  • Nakhjavan-Shahraki B, Yousefifard M, Ataei N, et al. Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and meta-analysis. BMC Nephrol. 2017;18:120. doi: 10.1186/s12882-017-0539-0
  • Nateghi Haredasht F, Viaene L, Vens C, et al. Comparison between cystatin c- and creatinine-based estimated glomerular filtration rate in the follow-up of patients recovering from a stage-3 AKI in ICU. J Clin Med. 2022;11:7264. doi: 10.3390/jcm11247264
  • Hu Y, Liu H, Du L, et al. Serum cystatin C predicts AKI and the prognosis of patients in coronary care unit: a prospective, observational study. Kidney Blood Press Res. 2017;42:961–973. doi: 10.1159/000485341
  • Muiru AN, Hsu JY, Zhang X, et al. CRIC study investigators. Risk for chronic kidney disease progression after acute kidney injury: findings from the chronic renal insufficiency cohort study. Ann Intern Med. 2023;176(7):961–968. doi: 10.7326/M22-3617
  • Feng B, Lu Y, Ye L, et al. Mendelian randomization study supports the causal association between serum cystatin C and risk of diabetic nephropathy. Front Endocrinol (Lausanne). 2022;13:1043174. doi: 10.3389/fendo.2022.1043174
  • Liu C, Liu X, He Z, et al. Proenkephalin-A secreted by renal proximal tubules functions as a brake in kidney regeneration. Nat Commun. 2023;14:7167. doi: 10.1038/s41467-023-42929-5
  • Beunders R, Struck J, Wu AHB, et al. Proenkephalin (PENK) as a novel biomarker for kidney function. J Appl Lab Med. 2017;2(3):400–412. doi: 10.1373/jalm.2017.023598
  • Lin LC, Chuan MH, Liu JH, et al. Proenkephalin as a biomarker correlates with acute kidney injury: a systematic review with meta-analysis and trial sequential analysis. Crit Care. 2023;27:481. doi: 10.1186/s13054-023-04747-5
  • Breidthardt T, Jaeger C, Christ A, et al. Proenkephalin for the early detection of acute kidney injury in hospitalized patients with chronic kidney disease. Eur J Clin Invest. 2018;48:e12999. doi: 10.1111/eci.12999
  • Emmens JE, Ter Maaten JM, Damman K, et al. Proenkephalin, an opioid system surrogate, as a novel comprehensive renal marker in heart failure. Circ Heart Fail. 2019;12:e005544. doi: 10.1161/CIRCHEARTFAILURE.118.005544
  • Siranart N, Laohasurayotin K, Phanthong T, et al. Proenkephalin as a novel prognostic marker in heart failure patients: a systematic review and meta-analysis. Int J Mol Sci. 2023;24(5):4887. doi: 10.3390/ijms24054887
  • Khorashadi M, Beunders R, Pickkers P, et al. Proenkephalin: a new biomarker for glomerular filtration rate and acute kidney injury. Nephron. 2020;144:655–661. doi: 10.1159/000509352
  • Lima C, Gorab DL, Fernandes CR, et al. Role of proenkephalin in the diagnosis of severe and subclinical acute kidney injury during the perioperative period of liver transplantation. Pract Lab Med. 2022;31:e00278. doi: 10.1016/j.plabm.2022.e00278
  • LaFavers K, Garimella PS. Uromodulin: more than a marker for chronic kidney disease progression. Curr Opin Nephrol Hypertens. 2023;32:271–277. doi: 10.1097/MNH.0000000000000885
  • Tokonami N, Takata T, Beyeler J, et al. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney Int. 2018;94:701–715. doi: 10.1016/j.kint.2018.04.021
  • Bächle H, Sekula P, Schlosser P, et al. GCKD investigators. Uromodulin and its association with urinary metabolites: the German chronic kidney disease study. Nephrol Dial Transplant. 2023;38:70–79. doi: 10.1093/ndt/gfac187
  • Mary S, Boder P, Padmanabhan S, et al. Role of uromodulin in salt-sensitive hypertension. Hypertension. 2022;79(11):2419–2429. doi: 10.1161/HYPERTENSIONAHA.122.19888
  • Schaeffer C, Devuyst O, Rampoldi L. Uromodulin: roles in health and disease. Annu Rev Physiol. 2021;83(1):477–501. doi: 10.1146/annurev-physiol-031620-092817
  • Steubl D, Buzkova P, Ix JH, et al. Association of serum and urinary uromodulin and their correlates in older adults – the cardiovascular health study. Nephrology (Carlton). 2020;25(7):522–526. doi: 10.1111/nep.13688
  • Wolf MTF, Zhang J, Nie M. Uromodulin in mineral metabolism. Curr Opin Nephrol Hypertens. 2019;28:481–489. doi: 10.1097/MNH.0000000000000522
  • Garimella PS, Bartz TM, Ix JH, et al. Urinary uromodulin and risk of urinary tract infections: the cardiovascular health study. Am J Kidney Dis. 2017;69:744–751. doi: 10.1053/j.ajkd.2016.08.022
  • Steubl D, Buzkova P, Garimella PS, et al. Association of serum uromodulin with ESKD and kidney function decline in the elderly: the cardiovascular health study. Am J Kidney Dis. 2019;74:501–509. doi: 10.1053/j.ajkd.2019.02.024
  • Garimella PS, Jaber BL, Tighiouart H, et al. Association of preoperative urinary uromodulin with AKI after cardiac surgery. Clin J Am Soc Nephrol. 2017;12:10–18. doi: 10.2215/CJN.02520316
  • Thielemans R, Speeckaert R, Delrue C, et al. Unveiling the hidden power of uromodulin: a promising potential biomarker for kidney diseases. Diagnostics (Basel). 2023;13:3077. doi: 10.3390/diagnostics13193077
  • Xing Z, Gong K, Hu N, et al. The Reduction of uromodulin, complement factor H, and their interaction is associated with acute kidney injury to chronic kidney disease transition in a four-time cisplatin-injected rat model. Int J Mol Sci. 2023;24:6636. doi: 10.3390/ijms24076636
  • You R, Zheng H, Xu L, et al. Decreased urinary uromodulin is potentially associated with acute kidney injury: a systematic review and meta-analysis. J Intensive Care. 2021;9:70. doi: 10.1186/s40560-021-00584-2
  • Wen Y, Xu L, Melchinger I, et al.; ASSESS-AKI Consortium. Longitudinal biomarkers and kidney disease progression after acute kidney injury. JCI Insight. 2023;8(9):e167731. doi: 10.1172/jci.insight.167731
  • Patidar KR, Garimella PS, Macedo E, et al. Admission plasma uromodulin and the risk of acute kidney injury in hospitalized patients with cirrhosis: a pilot study. Am J Physiol Gastrointest Liver Physiol. 2019;317:G447–52. doi: 10.1152/ajpgi.00158.2019
  • de Fontnouvelle C, Zappitelli M, Thiessen-Philbrook HR, et al. Biomarkers of eGFR decline after cardiac surgery in children: findings from the ASSESS-AKI study. Pediatr Nephrol. 2023;38:2851–2860. doi: 10.1007/s00467-023-05886-1
  • Thomas SM, Li Q, Faul C. Fibroblast growth factor 23, klotho and heparin. Curr Opin Nephrol Hypertens. 2023;32:313–323. doi: 10.1097/MNH.0000000000000895
  • Sirikul W, Siri-Angkul N, Chattipakorn N, et al. Fibroblast growth factor 23 and osteoporosis: evidence from bench to bedside. Int J Mol Sci. 2022;23:2500. doi: 10.3390/ijms23052500
  • Christov M, Neyra JA, Gupta S, et al. Fibroblast growth factor 23 and klotho in AKI. Semin Nephrol. 2019;39:57–75. doi: 10.1016/j.semnephrol.2018.10.005
  • Lu Y, Xu S, Tang R, et al. A potential link between fibroblast growth factor-23 and the progression of AKI to CKD. BMC Nephrol. 2023;24:87. doi: 10.1186/s12882-023-03125-1
  • Sun S, Liu Z, Chen C, et al. Serum fibroblast growth factor 23 for early detection of acute kidney injury in critical illness. Am J Transl Res. 2021;13(11):12141–12151. PMID: 34956442 PMCID: PMC8661170.
  • Zhang L, Qin W. Research progress of fibroblast growth factor 23 in acute kidney injury. Pediatr Nephrol. 2023;38:2013–2022. doi: 10.1007/s00467-022-05791-z
  • Neyra JA, Hu MC, Moe OW. Fibroblast growth factor 23 and αKlotho in acute kidney injury: current status in diagnostic and therapeutic applications. Nephron. 2020;144:665–672. doi: 10.1159/000509856
  • Kamijo-Ikemori A, Sugaya T, Ichikawa D, et al. Urinary liver type fatty acid binding protein in diabetic nephropathy. Clin Chim Acta. 2013;424:104–108. doi: 10.1016/j.cca.2013.05.020
  • Eguchi A, Iwasa M. The role of elevated liver-type fatty acid-binding proteins in liver diseases. Pharm Res. 2021;38(1):89–95. doi: 10.1007/s11095-021-02998-x
  • Karvellas CJ, Speiser JL, Tremblay M, et al. US Acute Liver Failure Study Group. Elevated serum liver-type fatty acid binding protein levels in non-acetaminophen acute liver failure patients with organ dysfunction. Dig Dis Sci. 2021;66:273–283. doi: 10.1007/s10620-020-06166-w
  • Katoh H, Nozue T, Kimura Y, et al. Elevation of urinary liver-type fatty acid-binding protein as predicting factor for occurrence of contrast-induced acute kidney injury and its reduction by hemodiafiltration with blood suction from right atrium. Heart Vessels. 2014;29(2):191–197. doi: 10.1007/s00380-013-0347-9
  • Ohata K, Sugaya T, Nguyen HN, et al. Urinary liver-type fatty acid binding protein is increased in the early stages of the disease with a risk of acute kidney injury induced by histone. Nephrology (Carlton). 2023;28(6):345–355. doi: 10.1111/nep.14162
  • Cheng Y, Jian JM, He CY, et al. The correlations of plasma liver-type fatty acid-binding protein with amyloid-β and tau levels in patients with alzheimer’s disease. J Alzheimers Dis. 2022;88(1):375–383. doi: 10.3233/JAD-220126
  • Sunayama T, Yatsu S, Matsue Y, et al. Urinary liver-type fatty acid-binding protein as a prognostic marker in patients with acute heart failure. ESC Heart Fail. 2022;9(1):442–449. doi: 10.1002/ehf2.13730
  • Zhang L, Xue S, Wu M, et al. Performance of urinary liver-type fatty acid-binding protein in diabetic nephropathy: a meta-analysis. Front Med (Lausanne). 2022;9:914587. doi: 10.3389/fmed.2022.914587
  • Chiang TH, Yo CH, Lee GH, et al. Accuracy of liver-type fatty acid-binding protein in predicting acute kidney injury: a meta-analysis. J Appl Lab Med. 2022;7(2):421–436. doi: 10.1093/jalm/jfab092.
  • Mitsides N, Mitra V, Saha A, et al. Urinary liver-type fatty acid binding protein, a biomarker for disease progression, dialysis and overall mortality in chronic kidney disease. J Pers Med. 2023;13(10):1481. doi: 10.3390/jpm13101481
  • Moriyama T, Hagihara S, Shiramomo T, et al. The protective effect of human atrial natriuretic peptide on renal damage during cardiac surgery. J Anesth. 2017;31:163–169. doi: 10.1007/s00540-016-2284-0
  • Koo TY, Jeong JC, Lee Y, et al. Pre-transplant evaluation of donor urinary biomarkers can predict reduced graft function after deceased donor kidney transplantation. Medicine (Baltimore). 2016;95(11):e3076. doi: 10.1097/MD.0000000000003076
  • Weiss R, Meersch M, Wempe C, et al. Recombinant alpha-1-microglobulin (RMC-035) to prevent acute kidney injury in cardiac surgery patients: phase 1b evaluation of safety and pharmacokinetics. Kidney Int Rep. 2023;8(5):980–988. doi: 10.1016/j.ekir.2023.02.1071
  • Hansson M, Gustafsson R, Jacquet C, et al. Cystatin C and α-1-microglobulin predict severe acute kidney injury in patients with hemorrhagic fever with renal syndrome. Pathogens. 2020;9(8):666. doi: 10.3390/pathogens9080666
  • Amatruda JG, Estrella MM, Garg AX, et al. TRIBE-AKI Consortium. Urine alpha-1-microglobulin levels and acute kidney injury, mortality, and cardiovascular events following cardiac surgery. Am J Nephrol. 2021;52:673–683. doi: 10.1159/000518240
  • Van den Eynde J, Salaets T, Louw JJ, et al. Persistent markers of kidney injury in children who developed acute kidney injury after pediatric cardiac surgery: a prospective cohort study. J Am Heart Assoc. 2022;11:e024266. doi: 10.1161/JAHA.121.024266
  • Ho J, Tangri N, Komenda P, et al. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66(6):993–1005. doi: 10.1053/j.ajkd.2015.06.018
  • Devarajan P, Krawczeski CD, Nguyen MT, et al. Proteomic identification of early biomarkers of acute kidney injury after cardiac surgery in children. Am J Kidney Dis. 2010;56(4):632–642. doi: 10.1053/j.ajkd.2010.04.014
  • Marzuillo P, Di Sessa A, Palma PL, et al. Renal involvement in children with type 2 diabetes mellitus onset: a pilot study. Children (Basel). 2021;8(8):627. doi: 10.3390/children8080627
  • Susianti H, Asmoro AA, Sujarwoto, et al. Acute kidney injury prediction model using cystatin-c, beta-2 microglobulin, and neutrophil gelatinase-associated lipocalin biomarker in sepsis patients. Int J Nephrol Renovasc Dis. 2024;17:105–112. doi: 10.2147/IJNRD.S450901
  • Song SM, Jeon J, Jang HR, et al. Acute kidney injury in bortezomib-treated patients with multiple myeloma. Nephrol Dial Transplant. 2023;38(9):2077–2085. doi: 10.1093/ndt/gfad016
  • Puthiyottil D, Priyamvada PS, Kumar MN, et al. Role of urinary beta 2 microglobulin and kidney injury molecule-1 in predicting kidney function at one year following acute kidney injury. Int J Nephrol Renovasc Dis. 2021;14:225–234. doi: 10.2147/IJNRD.S319933
  • Jalali SZ, Enteshari M, Saadat F. Reciprocal assessment of urinary beta-2-microglobulin and BUN levels in renal dysfunction of neonates with birth asphyxia. J Matern Fetal Neonatal Med. 2022;35(25):6624–6630. doi: 10.1080/14767058.2021.1918667
  • Lu HY, Ning XY, Chen YQ, et al. Predictive value of serum creatinine, blood urea nitrogen, uric acid, and β2-microglobulin in the evaluation of acute kidney injury after orthotopic liver transplantation. Chin Med J (Engl). 2018;131(9):1059–1066. doi: 10.4103/0366-6999.230726
  • Beitland S, Nakstad ER, Berg JP, et al. Urine β-2-microglobulin, osteopontin, and trefoil factor 3 may early predict acute kidney injury and outcome after cardiac arrest. Crit Care Res Pract. 2019;2019:4384796. doi: 10.1155/2019/4384796
  • Jaswanth C, Priyamvada PS, Zachariah B, et al. Short-term changes in urine beta 2 microglobulin following recovery of acute kidney injury resulting from snake envenomation. Kidney Int Rep. 2019;4(5):667–673. doi: 10.1016/j.ekir.2019.01.016
  • Barton KT, Kakajiwala A, Dietzen DJ, et al. Using the newer kidney disease: improving global outcomes criteria, beta-2-microglobulin levels associate with severity of acute kidney injury. Clin Kidney J. 2018;11(6):797–802. doi: 10.1093/ckj/sfy056
  • Arend WP, Palmer G, IL-1 GC. IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223(1):20–38. doi: 10.1111/j.1600-065X.2008.00624.x
  • Luan J, Fu J, Jiao C, et al. IL-18 deficiency ameliorates the progression from AKI to CKD. Cell Death Dis. 2022;13(11):957. doi: 10.1038/s41419-022-05394-4
  • Al-Saegh Rm A, Mohanad MA, Khudhair NJ, et al. Using urinary interleukin-18 as a potential marker for early detection of acute kidney injury in intensive care unit. Saudi J Kidney Dis Transpl. 2021;32(2):341–347. doi: 10.4103/1319-2442.335445
  • Qin Z, Li H, Jiao P, et al. The value of urinary interleukin-18 in predicting acute kidney injury: a systematic review and meta-analysis. Ren Fail. 2022;44(1):1717–1731. doi: 10.1080/0886022X.2022.2133728
  • Gan J, Zhou X. Comparison of urine neutrophil gelatinase-associated lipocalin and interleukin-18 in prediction of acute kidney injury in adults. Medicine (Baltimore). 2018;97:e12570. doi: 10.1097/MD.0000000000012570
  • Puthumana J, Ariza X, Belcher JM, et al. Urine interleukin 18 and lipocalin 2 are biomarkers of acute tubular necrosis in patients with cirrhosis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(7):1003–13.e3. doi: 10.1016/j.cgh.2016.11.035
  • Li Y, Fu C, Zhou X, et al. Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol. 2012;27:851–860. doi: 10.1007/s00467-011-2072-x
  • Jukic A, Bakiri L, Wagner EF, et al. Calprotectin: from biomarker to biological function. Gut. 2021;70:1978–1988. doi: 10.1136/gutjnl-2021-324855
  • Shi W, Wan TT, Li HH, et al. Blockage of S100A8/A9 ameliorates septic nephropathy in mice. Front Pharmacol. 2023;14:1172356. doi: 10.3389/fphar.2023.1172356
  • Tan X, Zheng X, Huang Z, et al. Involvement of S100A8/A9-TLR4-NLRP3 inflammasome pathway in contrast-induced acute kidney injury. Cell Physiol Biochem. 2017;43:209–222. doi: 10.1159/000480340
  • John JS, Deepthi RV, Rebekah G, et al. Usefulness of urinary calprotectin as a novel marker differentiating functional from structural acute kidney injury in the critical care setting. J Nephrol. 2023;36:695–704. doi: 10.1007/s40620-022-01534-3
  • Heller F, Frischmann S, Grünbaum M, et al. Urinary calprotectin and the distinction between prerenal and intrinsic acute kidney injury. Clin J Am Soc Nephrol. 2011;6(10):2347–2355. doi: 10.2215/CJN.02490311
  • Seibert FS, Rosenberger C, Mathia S, et al. Urinary calprotectin differentiates between prerenal and intrinsic acute renal allograft failure. Transplantation. 2017;101:387–394. doi: 10.1097/TP.0000000000001124
  • Chen JJ, Fan PC, Kou G, et al. Meta-analysis: urinary calprotectin for discrimination of intrinsic and prerenal acute kidney injury. J Clin Med. 2019;8(1):74. doi: 10.3390/jcm8010074
  • Vakili M, Fahimi D, Esfahani ST, et al. Comparative analysis between urinary calprotectin and serum creatinine for early detection of intrinsic acute kidney injury. Indian J Nephrol. 2021;31:353–357. doi: 10.4103/ijn.IJN_83_20
  • Kim AJ, Ro H, Kim H, et al. Klotho and S100A8/A9 as discriminative markers between pre-renal and intrinsic acute kidney injury. PLoS One. 2016;11(1):e0147255. doi: 10.1371/journal.pone.0147255
  • Seibert FS, Heringhaus A, Pagonas N, et al. Biomarkers in the prediction of contrast media induced nephropathy – the BITCOIN study. PLoS One. 2020;15(7):e0234921. doi: 10.1371/journal.pone.0234921
  • Mourtada J, Thibaudeau C, Wasylyk B, et al. The multifaceted role of human dickkopf-3 (DKK-3) in development, immune modulation and cancer. Cells. 2023;13:75. doi: 10.3390/cells13010075
  • Busceti CL, Carrizzo A, Bianchi F, et al. Role of dickkopf-3 in blood pressure regulation in mice and hypertensive rats. Circ Res. 2023;132:1489–1504. doi: 10.1161/CIRCRESAHA.122.321744
  • Fang X, Hu J, Chen Y, et al. Dickkopf-3: current knowledge in kidney diseases. Front Physiol. 2020;11:533344. doi: 10.3389/fphys.2020.533344
  • Hu J, Zhou Y, Huang H, et al. Prediction of urinary dickkopf-3 for AKI, sepsis-associated AKI, and PICU mortality in children. Pediatr Res. 2023;93:1651–1658. doi: 10.1038/s41390-022-02269-4
  • Roscigno G, Quintavalle C, Biondi-Zoccai G, et al. Urinary dickkopf-3 and contrast-associated kidney damage. J Am Coll Cardiol. 2021;77:2667–2676. doi: 10.1016/j.jacc.2021.03.330
  • Xing H, Jiang Z, Wu Y, et al. The role of urinary dickkopf-3 in the prediction of acute kidney injury: a systematic review meta-analysis. Int Urol Nephrol. 2023;55:3175–3188. doi: 10.1007/s11255-023-03593-2
  • Peschard VG, Scherzer R, Katz R, et al. Association of urinary dickkopf-3 levels with cardiovascular events and kidney disease progression in systolic blood pressure intervention trial. Kidney360. 2024;5(5):690–697. doi: 10.34067/KID.0000000000000413
  • Schunk SJ, Zarbock A, Meersch M, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet. 2019;394:488–496. doi: 10.1016/S0140-6736(19)30769-X
  • Singh R, Watchorn JC, Zarbock A, et al. Prognostic biomarkers and AKI: potential to enhance the identification of post-operative patients at risk of loss of renal function. Res Rep Urol. 2024;16:65–78. doi: 10.2147/RRU.S385856
  • Stetler-Stevenson WG, Seo DW. TIMP-2: an endogenous inhibitor of angiogenesis. Trends Mol Med. 2005;11:97–103. doi: 10.1016/j.molmed.2005.01.007
  • Akalya K, Murali TM, Vathsala A, et al. Elevated urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein-7 predict drug-induced acute kidney injury. Curr Drug Metab. 2022;23:223–232. doi: 10.2174/1389200223666220425111931
  • Sakyi SA, Ephraim RKD, Adoba P, et al. Tissue inhibitor metalloproteinase 2 (TIMP-2) and insulin-like growth factor binding protein 7 (IGFBP7) best predicts the development of acute kidney injury. Heliyon. 2021;7:e07960. doi: 10.1016/j.heliyon.2021.e07960
  • Maizel J, Daubin D, Vong LV, et al. Urinary TIMP2 and IGFBP7 identifies high risk patients of short-term progression from mild and moderate to severe acute kidney injury during septic shock: a prospective cohort study. Dis Markers. 2019;2019:3471215. doi: 10.1155/2019/3471215
  • Abouhadid MA, Gawad TAA, Gebaly HHE, et al. Urinary tissue inhibitor of metalloproteinase-2 as an early predictor for acute kidney injury in critically ill children. Int J Health Sci (Qassim). 2023;17(4):22–28. PMID: 37416842 PMCID: PMC10321466.
  • Xie Y, Ankawi G, Yang B, et al. Tissue inhibitor metalloproteinase-2 (TIMP-2) • IGF-binding protein-7 (IGFBP7) levels are associated with adverse outcomes in patients in the intensive care unit with acute kidney injury. Kidney International. 2019;95(6):1486–1493. doi: 10.1016/j.kint.2019.01.020
  • Cho WY, Lim SY, Yang JH, et al. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 as biomarkers of patients with established acute kidney injury. Korean J Intern Med. 2020;35:662–671. doi: 10.3904/kjim.2018.266
  • Bayless RL, Moore AR, Hassel DM, et al. Equine urinary N-acetyl-β-D-glucosaminidase assay validation and correlation with other markers of kidney injury. J Vet Diagn Invest. 2019;31:688–695. doi: 10.1177/1040638719867124
  • Cheng P, Miao Q, Huang J, et al. Multiplex optical urinalysis for early detection of drug-induced kidney injury. Anal Chem. 2020;92(8):6166–6172. doi: 10.1021/acs.analchem.0c00989
  • Chaudhary K, Vaid A, Duffy Á, et al. Utilization of deep learning for subphenotype identification in sepsis-associated acute kidney injury. Clin J Am Soc Nephrol. 2020;15:1557–1565. doi: 10.2215/CJN.09330819
  • Emlet DR, Pastor-Soler N, Marciszyn A, et al. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: differential expression and secretion in human kidney tubule cells. Am J Physiol Renal Physiol. 2017;312:F284–96. doi: 10.1152/ajprenal.00271.2016
  • Hu BC, Zhu JW, Wu GH, et al. Auto- and paracrine rewiring of NIX-mediated mitophagy by insulin-like growth factor-binding protein 7 in septic AKI escalates inflammation-coupling tubular damage. Life Sci. 2023;322:121653. doi: 10.1016/j.lfs.2023.121653
  • Yu JT, Hu XW, Yang Q, et al. Insulin-like growth factor binding protein 7 promotes acute kidney injury by alleviating poly ADP ribose polymerase 1 degradation. Kidney Int. 2022;102:828–844. doi: 10.1016/j.kint.2022.05.026
  • Meersch M, Schmidt C, Van Aken H, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLOS ONE. 2014;9(3):e93460. doi: 10.1371/journal.pone.0093460
  • Ganda IJ, Kasri Y, Susanti M, et al. Kidney injury molecule type-1, interleukin-18, and insulin-like growth factor binding protein 7 levels in urine to predict acute kidney injury in pediatric sepsis. Front Pediatr. 2022;10:1024713. doi: 10.3389/fped.2022.1024713
  • Hatton GE, Wang YW, Isbell KD, et al. Urinary cell cycle arrest proteins urinary tissue inhibitor of metalloprotease 2 and insulin-like growth factor binding protein 7 predict acute kidney injury after severe trauma: a prospective observational study. J Trauma Acute Care Surg. 2020;89:761–767. doi: 10.1097/TA.0000000000002864
  • La AM, Gunning S, Trevino SA, et al. Real-world use of AKI biomarkers: a quality improvement project using urinary tissue inhibitor metalloprotease-2 and insulin-like growth factor binding protein 7 ([TIMP-2]*[IGFBP7]). Am J Nephrol. 2023;54:281–290. doi: 10.1159/000531641
  • Liu C, Lu X, Mao Z, et al. The diagnostic accuracy of urinary [TIMP-2]·[IGFBP7] for acute kidney injury in adults: a PRISMA-compliant meta-analysis. Medicine (Baltimore). 2017;96:e7484. doi: 10.1097/MD.0000000000007484
  • Jia HM, Huang LF, Zheng Y, et al. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: a meta-analysis. Crit Care. 2017;21:77. doi: 10.1186/s13054-017-1660-y
  • McCullough PA, Ostermann M, Forni LG, et al. The sapphire investigators. serial urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 and the prognosis for acute kidney injury over the course of critical illness. Cardiorenal Med. 2019;9:358–369. doi: 10.1159/000502837
  • Zafar Mohtashami A, Hadian B, Mahmoudi GA, et al. The application of urinary NGAL measurement for early detection of AKI in hospitalized patients with poisoning. Iran J Kidney Dis. 2020;14:206–211. PMID: 32361697.
  • Urbschat A, Gauer S, Paulus P, et al. Serum and urinary NGAL but not KIM-1 raises in human postrenal AKI. Eur J Clin Invest. 2014;44:652–659. doi: 10.1111/eci.12283
  • Brewin A, Sriprasad S, Somani B. The use of neutrophil gelatinase-associated lipocalin (NGAL) as a diagnostic and prognostic biomarker in urinary tract obstruction: a systematic review. Curr Urol Rep. 2022;23(8):155–163. doi: 10.1007/s11934-022-01098-6
  • Sun Q, Kang Z, Li Z, et al. Urinary NGAL, IGFBP-7, and TIMP-2: novel biomarkers to predict contrast medium-induced acute kidney injury in children. Ren Fail. 2022;44(1):1201–1206. doi: 10.1080/0886022X.2022.2075277
  • Ishak SKI, Aguizy FE, Elsebaie EH, et al. Role of urinary NGAL and microalbuminuria in the detection of subclinical acute kidney injury in pediatric intensive care unit and diabetic children. Pediatr Med Chir. 2022;44(2). doi: 10.4081/pmc.2022.285
  • Singer E, Schrezenmeier EV, Elger A, et al. Urinary NGAL-Positive acute kidney injury and poor long-term outcomes in hospitalized patients. Kidney Int Rep. 2016;1(3):114–124. doi: 10.1016/j.ekir.2016.07.003
  • Bullen AL, Katz R, Jotwani V, et al. Biomarkers of kidney tubule health, CKD progression, and acute kidney injury in SPRINT (systolic blood pressure intervention trial) participants. Am J Kidney Dis. 2021;78(3):361–68.e1. doi: 10.1053/j.ajkd.2021.01.021
  • Kiernan EA, Hu D, Philbrook HT, et al. Urinary biomarkers and kidney injury in VA NEPHRON-D: phenotyping acute kidney injury in clinical trials. Am J Kidney Dis. 2024;83(2):151–161. doi: 10.1053/j.ajkd.2023.07.012
  • Wen Y, Thiessen-Philbrook H, Moledina DG, et al. Considerations in controlling for urine concentration for biomarkers of kidney disease progression after acute kidney injury. Kidney Int Rep. 2022;7:1502–1513. doi: 10.1016/j.ekir.2022.03.026
  • Da Y, Akalya K, Murali T, et al. Serial quantification of urinary protein biomarkers to predict drug-induced acute kidney injury. Curr Drug Metab. 2019;20(8):656–664. doi: 10.2174/1389200220666190711114504
  • Pan HC, Yang SY, Chiou TT, et al. Comparative accuracy of biomarkers for the prediction of hospital-acquired acute kidney injury: a systematic review and meta-analysis. Crit Care. 2022;26(1):349. doi: 10.1186/s13054-022-04223-6
  • Liu C, Debnath N, Mosoyan G, et al. Systematic review and meta-analysis of plasma and urine biomarkers for CKD outcomes. J Am Soc Nephrol. 2022;33(9):1657–1672. doi: 10.1681/ASN.2022010098 PMID: 35858701

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.