814
Views
58
CrossRef citations to date
0
Altmetric
Review

Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research

, , , &
Pages 671-680 | Received 03 Feb 2016, Accepted 04 Apr 2016, Published online: 20 Apr 2016

References

  • Ma X, Tan C, Zhu D, et al. Huperzine A from Huperzia species–an ethnopharmacolgical review. J Ethnopharmacol. 2007;113(1):15–34.
  • Tang XC, Han YF, Chen XP, et al. [Effects of huperzine A on learning and the retrieval process of discrimination performance in rats]. Zhongguo Yao Li Xue Bao. 1986;7(6):507–511.
  • Ohba T, Yoshino Y, Ishisaka M, et al. Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice. Biosci Biotechnol Biochem. 2015;79:1–7.
  • Wang ZF, Wang J, Zhang HY, et al. Huperzine A exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia. J Neurochem. 2008;106(4):1594–1603.
  • Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs: a summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res. 2015;111:85–141.
  • Ma X, Tan C, Zhu D, et al. A survey of potential huperzine A natural resources in China: the Huperziaceae. J Ethnopharmacol. 2006;104(1–2):54–67.
  • Ma X, Tan C, Zhu D, et al. Is there a better source of huperzine A than Huperzia serrata? Huperzine A content of Huperziaceae species in China. J Agric Food Chem. 2005;53(5):1393–1398.
  • Ding R, Sun BF, Lin GQ. An efficient total synthesis of (-)-huperzine A. Org Lett. 2012;14(17):4446–4449.
  • Koshiba T, Yokoshima S, Fukuyama T. Total synthesis of (-)-huperzine A. Org Lett. 2009;11(22):5354–5356.
  • Kozikowski AP, Miller CP, Yamada F, et al. Delineating the pharmacophoric elements of huperzine A: importance of the unsaturated three-carbon bridge to its AChE inhibitory activity. J Med Chem. 1991;34(12):3399–3402.
  • Coleman BR, Ratcliffe RH, Oguntayo SA, et al. [+]-Huperzine A treatment protects against N-methyl-D-aspartate-induced seizure/status epilepticus in rats. Chem Biol Interact. 2008;175(1–3):387–395.
  • Liu J, Zhang HY, Tang XC, et al. Effects of synthetic (-)-huperzine A on cholinesterase activities and mouse water maze performance. Zhongguo Yao Li Xue Bao. 1998;19(5):413–416.
  • Wang Y, Wei Y, Oguntayo S, et al. A combination of [+] and [-]-Huperzine A improves protection against soman toxicity compared to [+]-Huperzine A in guinea pigs. Chem Biol Interact. 2013;203(1):120–124.
  • Wang Y, Wei Y, Oguntayo S, et al. [+]-Huperzine A protects against soman toxicity in guinea pigs. Neurochem Res. 2011;36(12):2381–2390.
  • Tang XC, Kindel GH, Kozikowski AP, et al. Comparison of the effects of natural and synthetic huperzine-A on rat brain cholinergic function in vitro and in vivo. J Ethnopharmacol. 1994;44(3):147–155.
  • McKinney M, Miller JH, Yamada F, et al. Potencies and stereoselectivities of enantiomers of huperzine A for inhibition of rat cortical acetylcholinesterase. Eur J Pharmacol. 1991;203(2):303–305.
  • Zhang YH, Chen XQ, Yang HH, et al. Similar potency of the enantiomers of huperzine A in inhibition of [(3)H]dizocilpine (MK-801) binding in rat cerebral cortex. Neurosci Lett. 2000;295(3):116–118.
  • Wang XD, Chen XQ, Yang HH, et al. Comparison of the effects of cholinesterase inhibitors on [3H]MK-801 binding in rat cerebral cortex. Neurosci Lett. 1999;272(1):21–24.
  • Viviani B, Bartesaghi S, Gardoni F, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003;23(25):8692–8700.
  • Zhang HY, Liang YQ, Tang XC, et al. Stereoselectivities of enantiomers of huperzine A in protection against beta-amyloid(25-35)-induced injury in PC12 and NG108-15 cells and cholinesterase inhibition in mice. Neurosci Lett. 2002;317(3):143–146.
  • Millucci L, Ghezzi L, Bernardini G, et al. Conformations and biological activities of amyloid beta peptide 25-35. Curr Protein Pept Sci. 2010;11(1):54–67.
  • Rees T, Hammond PI, Soreq H, et al. Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging. 2003;24(6):777–787.
  • Kasa P, Rakonczay Z, Gulya K. The cholinergic system in Alzheimer’s disease. Prog Neurobiol. 1997;52(6):511–535.
  • Wang YE, Feng J, Lu WH, et al. [Pharmacokinetics of huperzine A in rats and mice]. Zhongguo Yao Li Xue Bao. 1988;9(3):193–196.
  • Qian BC, Wang M, Zhou ZF, et al. Pharmacokinetics of tablet huperzine A in six volunteers. Zhongguo Yao Li Xue Bao. 1995;16(5):396–398.
  • Li YX, Zhang RQ, Li CR, et al. Pharmacokinetics of huperzine A following oral administration to human volunteers. Eur J Drug Metab Pharmacokinet. 2007;32(4):183–187.
  • Ye JC, Zeng S, Zheng GL, et al. Pharmacokinetics of Huperzine A after transdermal and oral administration in beagle dogs. Int J Pharm. 2008;356(1–2):187–192.
  • Zhao Y, Yue P, Tao T, et al. Drug brain distribution following intranasal administration of Huperzine A in situ gel in rats. Acta Pharmacol Sin. 2007;28(2):273–278.
  • Yue P, Tao T, Zhao Y, et al. Huperzine A in rat plasma and CSF following intranasal administration. Int J Pharm. 2007;337(1–2):127–132.
  • Chu DF, Fu XQ, Liu WH, et al. Pharmacokinetics and in vitro and in vivo correlation of huperzine A loaded poly(lactic-co-glycolic acid) microspheres in dogs. Int J Pharm. 2006;325(1–2):116–123.
  • Debiopharm G. 2007. Clinical update - Debio 9902 (ZT-1) for Alzheimer’s disease. Available from: https://www.debiopharm.com/medias/press-release/item/2650-clinical-update-debio-9902-zt-1-for-alzheimer.html.
  • Li C, Du F, Yu C, et al. A sensitive method for the determination of the novel cholinesterase inhibitor ZT-1 and its active metabolite huperzine A in rat blood using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(6):651–656.
  • Jia JY, Zhao QH, Liu Y, et al. Phase I study on the pharmacokinetics and tolerance of ZT-1, a prodrug of huperzine A, for the treatment of Alzheimer’s disease. Acta Pharmacol Sin. 2013;34(7):976–982.
  • Kalaria DR, Patel P, Merino V, et al. Controlled iontophoretic transport of huperzine A across skin in vitro and in vivo: effect of delivery conditions and comparison of pharmacokinetic models. Mol Pharm. 2013;10(11):4322–4329.
  • Wang Q, Chen G. Pharmacokinetic behavior of huperzine A in plasma and cerebrospinal fluid after intranasal administration in rats. Biopharm Drug Dispos. 2009;30(9):551–555.
  • Ma X, Wang H, Xin J, et al. Identification of cytochrome P450 1A2 as enzyme involved in the microsomal metabolism of Huperzine A. Eur J Pharmacol. 2003;461(2–3):89–92.
  • Garcia GE, Hicks RP, Skanchy D, et al. Identification and characterization of the major huperzine a metabolite in rat blood. J Anal Toxicol. 2004;28(5):379–383.
  • Zhang YW, Bao MH, Wang G, et al. Induction of human CYP3A4 by huperzine A, ligustrazine and oridonin through pregnane X receptor-mediated pathways. Pharmazie. 2014;69(7):532–536.
  • Ma XC, Wang HX, Xin J, et al. Effects of huperzine A on liver cytochrome P-450 in rats. Acta Pharmacol Sin. 2003;24(8):831–835.
  • Wang R, Tang XC. Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals. 2005;14(1–2):71–82.
  • Bisso GM, Briancesco R, Michalek H. Size and charge isomers of acetylcholinesterase in the cerebral cortex of young and aged rats. Neurochem Res. 1991;16(5):571–575.
  • Wade PD, Timiras PS. A regional study of the molecular forms of acetylcholinesterase in the brain of developing and adult rats. Dev Neurosci. 1980;3(3):101–108.
  • Brimijoin S. Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics. Prog Neurobiol. 1983;21(4):291–322.
  • Sung SC, Ruff BA. Molecular forms of sucrose extractable and particulate acetylcholinesterase in the developing and adult rat brain. Neurochem Res. 1983;8(3):303–311.
  • Gorenstein C, Gallardo KA, Robertson RT. Molecular forms of acetylcholinesterase in cerebral cortex and dorsal thalamus of developing rats. Brain Res Dev Brain Res. 1991;61(2):271–276.
  • Koelle GB, Massoulie J, Eugene D, et al. Distributions of molecular forms of acetylcholinesterase and butyrylcholinesterase in nervous tissue of the cat. Proc Natl Acad Sci U S A. 1987;84(21):7749–7752.
  • Xie HQ, Leung KW, Chen VP, et al. PRiMA directs a restricted localization of tetrameric AChE at synapses. Chem Biol Interact. 2010;187(1–3):78–83.
  • Cheng DH, Tang XC. Comparative studies of huperzine A, E2020, and tacrine on behavior and cholinesterase activities. Pharmacol Biochem Behav. 1998;60(2):377–386.
  • Zhao Q, Tang XC. Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol. 2002;455(2–3):101–107.
  • Ashani Y, Peggins JO 3rd, Doctor BP. Mechanism of inhibition of cholinesterases by huperzine A. Biochem Biophys Res Commun. 1992;184(2):719–726.
  • Lallement G, Veyret J, Masqueliez C, et al. Efficacy of huperzine in preventing soman-induced seizures, neuropathological changes and lethality. Fundam Clin Pharmacol. 1997;11(5):387–394.
  • Zoli M, Pistillo F, Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology. 2015;96(Pt B):302–311.
  • Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137(1):22–54.
  • Albuquerque EX, Pereira EF, Alkondon M, et al. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89(1):73–120.
  • Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729.
  • Lukas RJ, Changeux JP, Le Novere N, et al. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev. 1999;51(2):397–401.
  • Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74(6):363–396.
  • Zoli M, Moretti M, Zanardi A, et al. Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci. 2002;22(20):8785–8789.
  • Perry DC, Xiao Y, Nguyen HN, et al. Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem. 2002;82(3):468–481.
  • Graham AJ, Ray MA, Perry EK, et al. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J Chem Neuroanat. 2003;25(2):97–113.
  • Bernik TR, Friedman SG, Ochani M, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med. 2002;195(6):781–788.
  • Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–462.
  • Garcia-Oscos F, Pena D, Housini M, et al. Activation of the anti-inflammatory reflex blocks lipopolysaccharide-induced decrease in synaptic inhibition in the temporal cortex of the rat. J Neurosci Res. 2015;93(6):859–865.
  • Lutz JA, Kulshrestha M, Rogers DT, et al. A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia. Fitoterapia. 2014;98:11–21.
  • Pavlov VA, Tracey KJ. Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochem Soc Trans. 2006;34(Pt 6):1037–1040.
  • Nikolov R. Alzheimer’s disease therapy - an update. Drug News Perspect. 1998;11(4):248–255.
  • Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–388.
  • Stuckenholz V, Bacher M, Balzer-Geldsetzer M, et al. The α7 nAChR agonist PNU-282987 reduces inflammation and MPTP-induced nigral dopaminergic cell loss in mice. J Parkinsons Dis. 2013;3(2):161–172.
  • Mencel M, Nash M, Jacobson C. Neuregulin upregulates microglial α7 nicotinic acetylcholine receptor expression in immortalized cell lines: implications for regulating neuroinflammation. PLoS One. 2013;8(7):e70338.
  • Seguela P, Wadiche J, Dineley-Miller K, et al. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci. 1993;13(2):596–604.
  • Maier DL, Hill G, Ding M, et al. Pre-clinical validation of a novel alpha-7 nicotinic receptor radiotracer, [(3)H]AZ11637326: target localization, biodistribution and ligand occupancy in the rat brain. Neuropharmacology. 2011;61(1–2):161–171.
  • Siek GC, Katz LS, Fishman EB, et al. Molecular forms of acetylcholinesterase in subcortical areas of normal and Alzheimer disease brain. Biol Psychiatry. 1990;27(6):573–580.
  • Fishman EB, Siek GC, MacCallum RD, et al. Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann Neurol. 1986;19(3):246–252.
  • Han Z, Li L, Wang L, et al. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture. J Neurochem. 2014;131(4):498–508.
  • Kelso ML, Oestreich JH. Traumatic brain injury: central and peripheral role of α7 nicotinic acetylcholine receptors. Curr Drug Targets. 2012;13(5):631–636.
  • Saeed RW, Varma S, Peng-Nemeroff T, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med. 2005;201(7):1113–1123.
  • Wang ZF, Tang XC. Huperzine A protects C6 rat glioma cells against oxygen-glucose deprivation-induced injury. FEBS Lett. 2007;581(4):596–602.
  • Ruan Q, Hu X, Ao H, et al. The neurovascular protective effects of huperzine A on D-galactose-induced inflammatory damage in the rat hippocampus. Gerontology. 2014;60(5):424–439.
  • Iwamoto K, Mata D, Linn DM, et al. Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors. Neuroscience. 2013;237:184–198.
  • Shimohama S, Greenwald DL, Shafron DH, et al. Nicotinic alpha 7 receptors protect against glutamate neurotoxicity and neuronal ischemic damage. Brain Res. 1998;779(1–2):359–363.
  • Albuquerque EX, Pereira EF, Braga MF, et al. Contribution of nicotinic receptors to the function of synapses in the central nervous system: the action of choline as a selective agonist of alpha 7 receptors. J Physiol Paris. 1998;92(3–4):309–316.
  • McMahon LL, Yoon KW, Chiappinelli VA. Nicotinic receptor activation facilitates GABAergic neurotransmission in the avian lateral spiriform nucleus. Neuroscience. 1994;59(3):689–698.
  • Arnaiz-Cot JJ, Gonzalez JC, Sobrado M, et al. Allosteric modulation of alpha 7 nicotinic receptors selectively depolarizes hippocampal interneurons, enhancing spontaneous GABAergic transmission. Eur J Neurosci. 2008;27(5):1097–1110.
  • Kawa K. Inhibitory synaptic transmission in area postrema neurons of the rat showing robust presynaptic facilitation mediated by nicotinic ACh receptors. Brain Res. 2007;1130(1):83–94.
  • Buhler AV, Dunwiddie TV. alpha7 nicotinic acetylcholine receptors on GABAergic interneurons evoke dendritic and somatic inhibition of hippocampal neurons. J Neurophysiol. 2002;87(1):548–557.
  • Levey AI, Kitt CA, Simonds WF, et al. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci. 1991;11(10):3218–3226.
  • Foster DJ, Choi DL, Conn PJ, et al. Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. Neuropsychiatr Dis Treat. 2014;10:183–191.
  • Poulin B, Butcher A, McWilliams P, et al. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci U S A. 2010;107(20):9440–9445.
  • Clader JW, Wang Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr Pharm Des. 2005;11(26):3353–3361.
  • Ragozzino ME, Artis S, Singh A, et al. The selective M1 muscarinic cholinergic agonist CDD-0102A enhances working memory and cognitive flexibility. J Pharmacol Exp Ther. 2012;340(3):588–594.
  • Berkeley JL, Gomeza J, Wess J, et al. M1 muscarinic acetylcholine receptors activate extracellular signal-regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. Mol Cell Neurosci. 2001;18(5):512–524.
  • Yi F, Ball J, Stoll KE, et al. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol. 2014;592(Pt 16):3463–3494.
  • Gonzalez JC, Albinana E, Baldelli P, et al. Presynaptic muscarinic receptor subtypes involved in the enhancement of spontaneous GABAergic postsynaptic currents in hippocampal neurons. Eur J Neurosci. 2011;33(1):69–81.
  • Peng Y, Lee DY, Jiang L, et al. Huperzine A regulates amyloid precursor protein processing via protein kinase C and mitogen-activated protein kinase pathways in neuroblastoma SK-N-SH cells over-expressing wild type human amyloid precursor protein 695. Neuroscience. 2007;150(2):386–395.
  • Peng Y, Jiang L, Lee DY, et al. Effects of huperzine A on amyloid precursor protein processing and beta-amyloid generation in human embryonic kidney 293 APP Swedish mutant cells. J Neurosci Res. 2006;84(4):903–911.
  • Zhou J, Tang XC. Huperzine A attenuates apoptosis and mitochondria-dependent caspase-3 in rat cortical neurons. FEBS Lett. 2002;526(1–3):21–25.
  • Gao X, Tang XC. Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J Neurosci Res. 2006;83(6):1048–1057.
  • Yang L, Ye CY, Huang XT, et al. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J Alzheimers Dis. 2012;31(1):131–142.
  • Gao X, Zheng CY, Yang L, et al. Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radic Biol Med. 2009;46(11):1454–1462.
  • Lu H, Jiang M, Lu L, et al. Ultrastructural mitochondria changes in perihematomal brain and neuroprotective effects of Huperzine A after acute intracerebral hemorrhage. Neuropsychiatr Dis Treat. 2015;11:2649–2657.
  • Zheng CY, Zhang HY, Tang XC. Huperzine A attenuates mitochondrial dysfunction after middle cerebral artery occlusion in rats. J Neurosci Res. 2008;86(11):2432–2440.
  • Pagano G, Rengo G, Pasqualetti G, et al. Cholinesterase inhibitors for Parkinson’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2015;86(7):767–773.
  • Zhang X, Lu L, Liu S, et al. Acetylcholinesterase deficiency decreases apoptosis in dopaminergic neurons in the neurotoxin model of Parkinson’s disease. Int J Biochem Cell Biol. 2013;45(2):265–272.
  • Liang YQ, Tang XC. Comparative studies of huperzine A, donepezil, and rivastigmine on brain acetylcholine, dopamine, norepinephrine, and 5-hydroxytryptamine levels in freely-moving rats. Acta Pharmacol Sin. 2006;27(9):1127–1136.
  • Chen LW, Wang YQ, Wei LC, et al. Chinese herbs and herbal extracts for neuroprotection of dopaminergic neurons and potential therapeutic treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets. 2007;6(4):273–281.
  • Gersner R, Ekstein D, Dhamne SC, et al. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition. Epilepsy Res. 2015;117:97–103.
  • Pitler TA, Alger BE. Cholinergic excitation of GABAergic interneurons in the rat hippocampal slice. J Physiol. 1992;450:127–142.
  • Zhong P, Gu Z, Wang X, et al. Impaired modulation of GABAergic transmission by muscarinic receptors in a mouse transgenic model of Alzheimer’s disease. J Biol Chem. 2003;278(29):26888–26896.
  • Hsieh TH, Dhamne SC, Chen JJ, et al. A new measure of cortical inhibition by mechanomyography and paired-pulse transcranial magnetic stimulation in unanesthetized rats. J Neurophysiol. 2012;107(3):966–972.
  • Briggs F, Usrey WM. Patterned activity within the local cortical architecture. Front Neurosci. 2010;4:18.
  • Jedlicka P, Backus KH. Inhibitory transmission, activity-dependent ionic changes and neuronal network oscillations. Physiol Res. 2006;55(2):139–149.
  • Ravizza T, Balosso S, Vezzani A. Inflammation and prevention of epileptogenesis. Neurosci Lett. 2011;497(3):223–230.
  • Vezzani A, French J, Bartfai T, et al. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31–40.
  • Zattoni M, Mura ML, Deprez F, et al. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci. 2011;31(11):4037–4050.
  • Dube C, Vezzani A, Behrens M, et al. Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol. 2005;57(1):152–155.
  • Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun. 2008;22(6):797–803.
  • Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5(8):629–640.
  • Falip M, Salas-Puig X, Cara C. Causes of CNS inflammation and potential targets for anticonvulsants. CNS Drugs. 2013;27(8):611–623.
  • Hu S, Sheng WS, Ehrlich LC, et al. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation. 2000;7(3):153–159.
  • Wang Y, Ruan X, Zhang S, et al. Effect of interleukin-1 beta on the elevation of cytoplasmic free calcium of the cultured hippocampal neurons induced by L-glutamate. J Tongji Med Univ. 1999;19(2):120–123.
  • Vezzani A. Epilepsy and inflammation in the brain: overview and pathophysiology. Epilepsy Curr. 2014;14(1 Suppl):3–7.
  • Vezzani A, Aronica E, Mazarati A, et al. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21.
  • Maroso M, Balosso S, Ravizza T, et al. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics. 2011;8(2):304–315.
  • Diamond ML, Ritter AC, Failla MD, et al. IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia. 2014;55(7):1109–1119.
  • Rotenberg A. Commentary on IL-1β associations with posttraumatic epilepsy development: A genetics and biomarker cohort study. Epilepsia. 2015;56(7):989–990.
  • Westerlund A, Bjorklund U, Ronnback L, et al. Long-term nicotine treatment suppresses IL-1beta release and attenuates substance P- and 5-HT-evoked Ca(2)(+) responses in astrocytes. Neurosci Lett. 2013;553:191–195.
  • Yang Y, Yang J, Jiang Q. The protective effect of huperzine A against hepatic ischemia reperfusion injury in mice. Transplant Proc. 2014;46(5):1573–1577.
  • Sui X, Gao C. Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms. Int J Mol Med. 2014;33(1):227–233.
  • Mao XY, Cao DF, Li X, et al. Huperzine A ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Int J Mol Sci. 2014;15(5):7667–7683.
  • Tian GX, Zhu XQ, Chen Y, et al. Huperzine A inhibits CCL2 production in experimental autoimmune encephalomyelitis mice and in cultured astrocyte. Int J Immunopathol Pharmacol. 2013;26(3):757–764.
  • Cogswell JP, Godlevski MM, Wisely GB, et al. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol. 1994;153(2):712–723.
  • Tang XC, Xu H, Feng J, et al. Effect of cholinesterase inhibition in vitro by huperzine analogs. Zhongguo Yao Li Xue Bao. 1994;15(2):107–110.
  • Carlier PR, Du DM, Han YF, et al. Dimerization of an inactive fragment of Huperzine A produces a drug with twice the potency of the natural product this work was supported by the Research Grants Council of Hong Kong (HKUST6156/97M), the Biotechnology Research Institute (HKUST), the Mayo Foundation, and the Istituto Pasteur Fondazione Cenci Bolognetti (E.P.). We thank Prof. X. C. Tang (Shanghai Institute of Materia Medica) for a gift of (-)-1. Angew Chem Int Ed Engl. 2000;39(10):1775–1777.
  • Hu S, Wang R, Cui W, et al. Inhibiting β-amyloid-associated Alzheimer’s pathogenesis in vitro and in vivo by a multifunctional dimeric bis(12)-hupyridone derived from its natural analogue. J Mol Neurosci. 2015;55(4):1014–1021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.