467
Views
9
CrossRef citations to date
0
Altmetric
Review

An update on potential therapeutic strategies for Parkinson’s disease based on pathogenic mechanisms

, , , &
Pages 711-722 | Received 01 Feb 2016, Accepted 08 Apr 2016, Published online: 06 May 2016

References

  • Hirsch EC, Jenner P, Przedborski S. Pathogenesis of Parkinson’s disease. Move Disord Off J Move Disord Soc. 2013;28(1):24–30.
  • Bras J, Guerreiro R, Hardy J. SnapShot: genetics of Parkinson’s disease. Cell. 2015;160(3):570–570, e571.
  • Chai C, Lim KL. Genetic insights into sporadic Parkinson’s disease pathogenesis. Curr Genomics. 2013;14(8):486–501.
  • Mullin S, Schapira A. The genetics of Parkinson’s disease. Br Med Bull. 2015;114(1):39–52.
  • Moree B, Yin G, Lazaro DF, et al. Small molecules detected by second-harmonic generation modulate the conformation of monomeric alpha-synuclein and reduce its aggregation in cells. J Biol Chem. 2015;290(46):27582–27593.
  • Toth G, Gardai SJ, Zago W, et al. Targeting the intrinsically disordered structural ensemble of alpha-synuclein by small molecules as a potential therapeutic strategy for Parkinson’s disease. PLoS One. 2014;9(2):e87133.
  • Lorenzen N, Nielsen SB, Yoshimura Y, et al. How epigallocatechin gallate can inhibit alpha-synuclein oligomer toxicity in vitro. J Biol Chem. 2014;289(31):21299–21310.
  • Levin J, Schmidt F, Boehm C, et al. The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol. 2014;127(5):779–780.
  • Wagner J, Ryazanov S, Leonov A, et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol. 2013;125(6):795–813.
  • Savolainen MH, Richie CT, Harvey BK, et al. The beneficial effect of a prolyl oligopeptidase inhibitor, KYP-2047, on alpha-synuclein clearance and autophagy in A30P transgenic mouse. Neurobiol Dis. 2014;68:1–15.
  • Myohanen TT, Hannula MJ, Van Elzen R, et al. A prolyl oligopeptidase inhibitor, KYP-2047, reduces alpha-synuclein protein levels and aggregates in cellular and animal models of Parkinson’s disease. Br J Pharmacol. 2012;166(3):1097–1113.
  • Biswas A, Gupta A, Naiya T, et al. Molecular pathogenesis of Parkinson’s disease: identification of mutations in the Parkin gene in Indian patients. Parkinsonism Relat Disord. 2006;12(7):420–426.
  • Sriram SR, Li X, Ko HS, et al. Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum Mol Genet. 2005;14(17):2571–2586.
  • Jiang H, Jiang Q, Liu W, et al. Parkin suppresses the expression of monoamine oxidases. J Biol Chem. 2006;281(13):8591–8599.
  • Siddiqui A, Hanson I, Andersen JK. Mao-B elevation decreases parkin’s ability to efficiently clear damaged mitochondria: protective effects of rapamycin. Free Radic Res. 2012;46(8):1011–1018.
  • Kandadai RM, Jabeen SA, Kanikannan MA, et al. Safinamide for the treatment of Parkinson’s disease. Expert Rev Clin Pharmacol. 2014;7(6):747–759.
  • Fabbri M, Rosa MM, Abreu D, et al. Clinical pharmacology review of safinamide for the treatment of Parkinson’s disease. Neurodegener Dis Manag. 2015;5(6):481–496.
  • Kouti L, Noroozian M, Akhondzadeh S, et al. Nitric oxide and peroxynitrite serum levels in Parkinson’s disease: correlation of oxidative stress and the severity of the disease. Eur Rev Med Pharmacol Sci. 2013;17(7):964–970.
  • Ozawa K, Komatsubara AT, Nishimura Y, et al. S-nitrosylation regulates mitochondrial quality control via activation of parkin. Sci Rep. 2013;3:2202.
  • Singh S, Das T, Ravindran A, et al. Involvement of nitric oxide in neurodegeneration: a study on the experimental models of Parkinson’s disease. Redox Rep Commun Free Radical Res. 2005;10(2):103–109.
  • Ko HS, Lee Y, Shin JH, et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci USA. 2010;107(38):16691–16696.
  • Godena VK, Brookes-Hocking N, Moller A, et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun. 2014;5:5245.
  • Rane P, Shields J, Heffernan M, et al. The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motor stage PD. Neuropharmacology. 2012;62(7):2409–2412.
  • Choong CJ, Sasaki T, Hayakawa H, et al. A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson’s disease. Neurobiol Aging. 2016;37:103–116.
  • Kramer T, Lo Monte F, Goring S, et al. Small molecule kinase inhibitors for LRRK2 and their application to Parkinson’s disease models. Acs Chem Neurosci. 2012;3(3):151–160.
  • Decressac M, Volakakis N, Bjorklund A, et al. NURR1 in Parkinson disease-from pathogenesis to therapeutic potential. Nat Rev Neurol. 2013;9(11):629–636.
  • Saijo K, Winner B, Carson CT, et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137(1):47–59.
  • Kim CH, Han BS, Moon J, et al. Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proc Natl Acad Sci. 2015;112(28):8756–8761.
  • Bogoyevitch MA, Ngoei KRW, Zhao TT, et al. c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Bba-Proteins Proteom. 2010;1804(3):463–475.
  • Chambers JW, Pachori A, Howard S, et al. Small molecule c-Jun-N-terminal Kinase (JNK) inhibitors protect dopaminergic neurons in a model of Parkinson’s disease. Acs Chem Neurosci. 2011;2(4):198–206.
  • Dyson SC, Barker RA. Cell-based therapies for Parkinson’s disease. Expert Rev Neurother. 2011;11(6):831–844.
  • Kefalopoulou Z, Politis M, Piccini P, et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 2014;71(1):83–87.
  • Mendez I, Vinuela A, Astradsson A, et al. Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med. 2008;14(5):507–509.
  • Marei HE, Lashen S, Farag A, et al. Human olfactory bulb neural stem cells mitigate movement disorders in a rat model of Parkinson’s disease. J Cell Physiol. 2015;230(7):1614–1629.
  • Yang D, Zhang ZJ, Oldenburg M, et al. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells. 2008;26(1):55–63.
  • Daadi MM, Grueter BA, Malenka RC, et al. Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson’s disease. PLoS One. 2012;7(7):e41120.
  • Hallett PJ, Deleidi M, Astradsson A, et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell. 2015;16(3):269–274.
  • Emborg ME, Liu Y, Xi J, et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep. 2013;3(3):646–650.
  • Venkataramana NK, Kumar SK, Balaraju S, et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res J Lab Clin Med. 2010;155(2):62–70.
  • Yan M, Sun M, Zhou Y, et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson’s disease in a rhesus monkey model. PLoS One. 2013;8(5):e64000.
  • Kim J, Su SC, Wang H, et al. Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell. 2011;9(5):413–419.
  • Zou Q, Yan Q, Zhong J, et al. Direct conversion of human fibroblasts into neuronal restricted progenitors. J Biol Chem. 2014;289(8):5250–5260.
  • Kim SM, Flasskamp H, Hermann A, et al. Direct conversion of mouse fibroblasts into induced neural stem cells. Nat Protoc. 2014;9(4):871–881.
  • Allen PJ, Feigin A. Gene-based therapies in Parkinson’s disease. Neurother J Am Soc Exp NeuroTher. 2014;11(1):60–67.
  • Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet. 2007;369(9579):2097–2105.
  • LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–319.
  • Eberling JL, Jagust WJ, Christine CW, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology. 2008;70(21):1980–1983.
  • Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology. 2009;73(20):1662–1669.
  • Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014;383(9923):1138–1146.
  • Rodrigues TM, Jeronimo-Santos A, Outeiro TF, et al. Challenges and promises in the development of neurotrophic factor-based therapies for Parkinson’s disease. Drugs Aging. 2014;31(4):239–261.
  • Su X, Kells AP, Huang EJ, et al. Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum Gene Ther. 2009;20(12):1627–1640.
  • Kells AP, Eberling J, Su X, et al. Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci Off J Soc Neurosci. 2010;30(28):9567–9577.
  • Marks WJ Jr, Ostrem JL, Verhagen L, et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 2008;7(5):400–408.
  • Marks WJ Jr, Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010;9(12):1164–1172.
  • Marks WJ Jr, Baumann TL, Bartus RT. Long-term safety of Parkinson’s disease patients receiving AAV2-neurturin (CERE-120) gene transfer. Hum Gene Ther. 2016. doi:10.1089/hum.2015.134. [Epub ahead of print]
  • Vercammen L, Van der Perren A, Vaudano E, et al. Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson’s disease. Mol Ther. 2006;14(5):716–723.
  • Paterna JC, Leng A, Weber E, et al. and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice FREE (vol 15, pg 698, 2007). Mol Ther. 2007;15(6):1221–1221.
  • McCormack AL, Mak SK, Henderson JM, et al. α-Synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PLoS One. 2010;5(8):e12122.
  • Khodr CE, Sapru MK, Pedapati J, et al. An alpha-synuclein AAV gene silencing vector ameliorates a behavioral deficit in a rat model of Parkinson’s disease, but displays toxicity in dopamine neurons. Brain Res. 2011;1395:94–107.
  • Khodr CE, Becerra A, Han Y, et al. Targeting alpha-synuclein with a microRNA-embedded silencing vector in the rat substantia nigra: positive and negative effects. Brain Res. 2014;1550:47–60.
  • Han Y, Khodr CE, Sapru MK, et al. A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons. Brain Res. 2011;1386:15–24.
  • Visanji NP, Brooks PL, Hazrati LN, et al. The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun. 2013;1:2.
  • Recasens A, Dehay B, Bove J, et al. Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75(3):351–362.
  • Kovacs GG, Breydo L, Green R, et al. Intracellular processing of disease-associated alpha-synuclein in the human brain suggests prion-like cell-to-cell spread. Neurobiol Dis. 2014;69:76–92.
  • Guo JL, Lee VM. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med. 2014;20(2):130–138.
  • Unterberger U, Lachmann I, Voigtländer T, et al. Detection of disease-associated in α-synuclein in the cerebrospinal fluid: a feasibility study. Clin Neuropathol. 2014;33(09):329–334.
  • Phillips RJ, Walter GC, Wilder SL, et al. Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: autonomic pathway implicated in Parkinson’s disease? Neuroscience. 2008;153(3):733–750.
  • Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.
  • George S, Rey NL, Reichenbach N, et al. Alpha-synuclein: the long distance runner. Brain Pathol. 2013;23(3):350–357.
  • Lamberts JT, Hildebrandt EN, Brundin P. Spreading of alpha-synuclein in the face of axonal transport deficits in Parkinson’s disease: a speculative synthesis. Neurobiol Dis. 2015;77:276–283.
  • Esteves AR, Gozes I, Cardoso SM. The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson’s disease. Biochim Biophys Acta. 2014;1842(1):7–21.
  • Bu XL, Wang X, Xiang Y, et al. The association between infectious burden and Parkinson’s disease: a case-control study. Parkinsonism Relat Disord. 2015;21(8):877–881.
  • De Chiara G, Marcocci ME, Sgarbanti R, et al. Infectious agents and neurodegeneration. Mol Neurobiol. 2012;46(3):614–638.
  • Wu WY, Kang KH, Chen SL, et al. Hepatitis C virus infection: a risk factor for Parkinson’s disease. J Viral Hepat. 2015;22(10):784–791.
  • Ha D, Stone DK, Mosley RL, et al. Immunization strategies for Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(Suppl 1):S218–221.
  • Hutter-Saunders JA, Mosley RL, Gendelman HE. Pathways towards an effective immunotherapy for Parkinson’s disease. Expert Rev Neurother. 2011;11(12):1703–1715.
  • Lacan G, Dang H, Middleton B, et al. Bacillus Calmette-Guerin vaccine-mediated neuroprotection is associated with regulatory T-cell induction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Neurosci Res. 2013;91(10):1292–1302.
  • Chen Z, Yang Y, Yang X, et al. Immune effects of optimized DNA vaccine and protective effects in a MPTP model of Parkinson’s disease. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2013;34(9):1559–1570.
  • Masliah E, Rockenstein E, Adame A, et al. Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron. 2005;46(6):857–868.
  • Schneeberger A, Mandler M, Mattner F, et al. Affitope (R) - based vaccines: results from phase I support the further clinical development of affitope (R) Ad02. Neurobiol Aging. 2012;33:S30–S31.
  • Schneeberger A, Mandler M, Otava O, et al. Development of affitope vaccines for Alzheimer’s disease (Ad) – from concept to clinical testing. J Nutr Health Aging. 2009;13(3):264–267.
  • Schneeberger A, Mandler M, Mattner F, et al. AFFITOME(R) technology in neurodegenerative diseases: the doubling advantage. Hum Vaccin. 2010;6(11):948–952.
  • Schneeberger A, Mandler M, Mattner F, et al. Vaccination for Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(Suppl 1):S11–S13.
  • Kalia LV, Kalia SK, Lang AE. Disease-modifying strategies for Parkinson’s disease. Movement Disord. 2015;30(11):1442–1450.
  • Marciani DJ. A retrospective analysis of the Alzheimer’s disease vaccine progress-the critical need for new development strategies. J Neurochem. 2016. doi:10.1111/jnc.13608. [Epub ahead of print]
  • Cereda E, Barichella M, Pedrolli C, et al. Diabetes and risk of Parkinson’s disease a systematic review and meta-analysis. Diabetes Care. 2011;34(12):2614–2623.
  • Lu L, Fu DL, Li HQ, et al. Diabetes and risk of Parkinson’s disease: an updated meta-analysis of case-control studies. PLoS One. 2014;9(1):e85781.
  • Brauer R, Bhaskaran K, Chaturvedi N, et al. Incidence of Parkinson’s disease among people with diabetes: a retrospective cohort study. PLoS Med. 2015;12(7):e1001854.
  • Wahlqvist ML, Lee MS, Hsu CC, et al. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord. 2012;18(6):753–758.
  • Ramalingam M, Kim SJ. The neuroprotective role of insulin against MPP-induced Parkinson’s disease in differentiated SH-SY5Y cells. J Cell Biochem. 2015;117(4):917–926.
  • Carta AR, Frau L, Pisanu A, et al. Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience. 2011;194:250–261.
  • Shen T, Pu J, Zheng T, et al. Induced neural stem/precursor cells for fundamental studies and potential application in neurodegenerative diseases. Neurosci Bull. 2015;31(5):589–600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.