642
Views
31
CrossRef citations to date
0
Altmetric
Review

Optical coherence tomography and neurodegeneration: are eyes the windows to the brain?

, , &
Pages 765-775 | Received 13 Dec 2015, Accepted 18 Apr 2016, Published online: 09 May 2016

References

  • Wilson SW, Houart C. Early steps in the development of the forebrain. Dev Cell. 2004;6(2):167–181.
  • Wassle H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 2004;5(10):747–757.
  • Athanasiou D, Aguilà M, Bevilacqua D, et al. The cell stress machinery and retinal degeneration. FEBS Lett. 2013;587(13):2008–2017.
  • Prasad S, Galetta SL. Anatomy and physiology of the afferent visual system. Handb Clin Neurol. 2011;102:3–19.
  • Reynolds A, Laurie C, Lee Mosley R, et al. Oxidative stress and the pathogenesis of neurodegenerative disorders. In: Giacinto Bagetta MTC, Stuart AL, editors. International review of neurobiology. New York (NY): Academic Press; 2007. p. 297–325.
  • You Y, Gupta VK, Graham SL, et al. Anterograde degeneration along the visual pathway after optic nerve injury. PLoS One. 2012;7(12):e52061.
  • Buhl EH, Schwerdtfeger WK, Germroth P, et al. Combining retrograde tracing, intracellular injection, anterograde degeneration and electron microscopy to reveal synaptic links. J Neurosci Methods. 1989;29(3):241–250.
  • London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9(1):44–53.
  • Hee MR, Izatt JA, Swanson EA, et al. OPtical coherence tomography of the human retina. Arch Ophthalmol. 1995;113(3):325–332.
  • Huang D, Swanson E, Lin C, et al. Optical coherence tomography. Science. 1991;254(5035):1178–1181.
  • Mathur D, Cano AH. Preclinical retinal neurodegeneration in a model of multiple sclerosis: the journal of neuroscience 2012; 32(16):5585–5597. Ann Neurosci. 2012;19(3):121–122.
  • Crish SD, Sappington RM, Inman DM, et al. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A. 2010;107(11):5196–5201.
  • Lu Y, Li Z, Zhang X, et al. Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: evidence in optical coherence tomography. Neurosci Lett. 2010;480(1):69–72.
  • Petzold A, De Boer JF, Schippling S, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010;9(9):921–932.
  • Aaker GD, Myung JS, Ehrlich JR, et al. Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clinical Ophthalmol. 2010;4:1427.
  • Schmitt JM. Optical coherence tomography (OCT): a review. IEEE J Select Top Quantum Electron. 1999;5(4):1205–1215.
  • De Boer JF, Cense B, Park BH, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28(21):2067–2069.
  • Choma M, Sarunic M, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183–2189.
  • Sarunic M, Choma MA, Yang C, et al. Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers. Optics Express. 2005;13(3):957–967.
  • Podoleanu AG. Optical coherence tomography. Br J Radiol. 2005;78(935):976–988.
  • Jafri MS, Farhang S, Tang RS, et al. Optical coherence tomography in the diagnosis and treatment of neurological disorders. J Biomed Opt. 2005;10(5):051603-051603-051611.
  • Frohman EM, Fujimoto JG, Frohman TC, et al. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol. 2008;4(12):664–675.
  • Cowan W. Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system. In: Nauta WJH, Ebbesson SOE, editors. Contemporary research methods in neuroanatomy. Berlin: Springer; 1970. p. 217–251.
  • Calabresi PA, Balcer LJ, Frohman EM, editors. Optical coherence tomography in neurological diseases. Cambridge: Cambridge University Press; 2015
  • Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis the 2013 revisions. Neurology. 2014;83(3):278–286.
  • Kale N. Management of optic neuritis as a clinically first event of multiple sclerosis. Curr Opin Ophthalmol. 2012;23(6):472–476.
  • Filippi M, Rocca MA, Barkhof F, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2012;11(4):349–360.
  • Jacobs LD, Beck RW, Simon JH, et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS study group. N Engl J Med. 2000;343(13):898–904.
  • Comi G, Martinelli V, Rodegher M, et al. Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult Scler. 2013;19(8):1074–1083.
  • Walter SD, Ishikawa H, Galetta KM, et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology. 2012;119(6):1250–1257.
  • Frisen L, Hoyt WF. Insidious atrophy of retinal nerve fibers in multiple sclerosis: funduscopic identification in patients with and without visual complaints. Arch Ophthalmol. 1974;92(2):91–97.
  • Kerrison JB, Flynn T, Green WR. Retinal pathologic changes in multiple sclerosis. Retina. 1994;14(5):445–451.
  • Sadun AA, Wang MY. Abnormalities of the optic disc. Handb Clin Neurol. 2011;102:117–157.
  • Parisi V, Manni G, Spadaro M, et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci. 1999;40:2520–2527.
  • Trip SA, Schlottmann PG, Jones SJ, et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol. 2005;58(3):383–391.
  • Al-Louzi OA, Bhargava P, Newsome SD, et al. Outer retinal changes following acute optic neuritis. Mult Scler. 2016;22(3):362–372.
  • Okuda DT, Mowry EM, Beheshtian A, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009;72(9):800–805.
  • Knier B, Berthele A, Buck D, et al. Optical coherence tomography indicates disease activity prior to clinical onset of central nervous system demyelination. Mult Scler. 2015. [Epub ahead of print]
  • Saidha S, Syc SB, Ibrahim MA, et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain. 2011;134(Pt 2):518–533.
  • Saidha S, Syc SB, Durbin MK, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler. 2011;17(12):1449–1463.
  • Grazioli E, Zivadinov R, Weinstock-Guttman B, et al. Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci. 2008;268(1–2):12–17.
  • Scheel M, Finke C, Oberwahrenbrock T, et al. Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: a combined optical coherence tomography and diffusion tensor imaging study. Mult Scler. 1904-1907;20(14):2014.
  • Oberwahrenbrock T, Schippling S, Ringelstein M, et al. Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int. 2012;2012:530305.
  • Talman LS, Bisker ER, Sackel DJ, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol. 2010;67(6):749–760.
  • Saidha S, Al-Louzi O, Ratchford JN, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study. Ann Neurol. 2015;78(5):801–813.
  • Martinez-Lapiscina EH, Arnow S, Wilson JA, et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. 2016;15(6):574–584.
  • Schippling S, Balk LJ, Costello F, et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler. 2015;21(2):163–170.
  • Saidha S, Sotirchos ES, Oh J, et al. Retinal axonal and neuronal measures in multiple sclerosis reflect global CNS pathology. JAMA Neurol. 2013;70(1):34–43.
  • Talla V, Yu H, Chou TH, et al. NADH-dehydrogenase type-2 suppresses irreversible visual loss and neurodegeneration in the EAE animal model of MS. Mol Ther. 2013;21(10):1876–1888.
  • Talla V, Koilkonda R, Porciatti V, et al. Complex I subunit gene therapy with NDUFA6 ameliorates neurodegeneration in EAE. Invest Ophthalmol Vis Sci. 2015;56(2):1129–1140.
  • Li Q, Timmers AM, Hunter K, et al. Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse. Invest Ophthalmol Vis Sci. 2001;42(12):2981–2989.
  • McLellan GJ, Rasmussen CA. Optical coherence tomography for the evaluation of retinal and optic nerve morphology in animal subjects: practical considerations. Vet Ophthalmol. 2012;15(Suppl 2):13–28.
  • Frohman E, Costello F, Zivadinov R, et al. Optical coherence tomography in multiple sclerosis. Lancet Neurol. 2006;5(10):853–863.
  • Mustafa S, Pandit L. Approach to diagnosis and management of optic neuropathy. Neurol India. 2014;62(6):599–605.
  • Galetta KM, Calabresi PA, Frohman EM, et al. Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurother: J Am Soc Exp Neurother. 2011;8(1):117–132.
  • Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol. 2014;176(2):149–164.
  • Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–189.
  • De Seze J, Blanc F, Jeanjean L, et al. OPtical coherence tomography in neuromyelitis optica. Arch Neurol. 2008;65(7):920–923.
  • Ratchford JN, Quigg ME, Conger A, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology. 2009;73(4):302–308.
  • Lange AP, Sadjadi R, Zhu F, et al. Spectral-domain optical coherence tomography of retinal nerve fiber layer thickness in NMO patients. J Neuroophthalmol. 2013;33(3):213–219.
  • Van Stavern GP. Metabolic, hereditary, traumatic, and neoplastic optic neuropathies. Continuum. 2014;20(4 Neuro–ophthalmology):877–906.
  • Danesh-Meyer HV, Yap J, Frampton C, et al. Differentiation of compressive from glaucomatous optic neuropathy with spectral-domain optical coherence tomography. Ophthalmology. 2014;121(8):1516–1523.
  • Danesh-Meyer HV, Wong A, Papchenko T, et al. Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci. 2015;22(7):1098–1104.
  • Lenka A, Hegde S, Jhunjhunwala KR, et al. Interactions of visual hallucinations, rapid eye movement sleep behavior disorder and cognitive impairment in Parkinson’s disease: A review. Parkinsonism Relat Disord. 2016;22:1–8.
  • Hajee ME, March WF, Lazzaro DR, et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol. 2009;127(6):737–741.
  • Jimenez B, Ascaso FJ, Cristobal JA. Lopez del Val J. Development of a prediction formula of Parkinson disease severity by optical coherence tomography. Move Disord: Off J Move Disord Soc. 2014;29(1):68–74.
  • Garcia-Martin E, Rodriguez-Mena D, Satue M, et al. Electrophysiology and optical coherence tomography to evaluate Parkinson disease severity. Invest Opthalmol Vis Sci. 2014;55(2):696–705.
  • Iseri PK, Altinas O, Tokay T, et al. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuro-Ophthalmol. 2006;26(1):18–24.
  • Cheung CY, Ong YT, Hilal S, et al. Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis: JAD. 2015;45(1):45–56.
  • Wang D, Li Y, Wang C, et al. Localized retinal nerve fiber layer defects and stroke. Stroke. 1651-1656;45(6):2014.
  • Park HY, Park YG, Cho AH, et al. Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. Ophthalmology. 2013;120(6):1292–1299.
  • Liu G, Chen Z. Advances in Doppler OCT. Chinese Opt Lett: COL. 2013;11(1):011702.
  • Yu L, Nguyen E, Liu G, et al. Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model. J Biomed Opt. 2010;15(6):066006.
  • Srinivasan VJ, Mandeville ET, Can A, et al. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke. PLoS One. 2013;8(8):e71478.
  • Butler PD, Javitt DC. Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiatry. 2005;18(2):151–157.
  • Lavoie J, Illiano P, Sotnikova TD, et al. The electroretinogram as a biomarker of central dopamine and serotonin: potential relevance to psychiatric disorders. Biol Psychiatry. 2014;75(6):479–486.
  • Ascaso FJ, Rodriguez-Jimenez R, Cabezón L, et al. Retinal nerve fiber layer and macular thickness in patients with schizophrenia: influence of recent illness episodes. Psychiatr Res. 2015;229(1–2):230–236.
  • Chu EM, Kolappan M, Barnes TR, et al. A window into the brain: an in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Res. 2012;203(1):89–94.
  • Lee WW, Tajunisah I, Sharmilla K, et al. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography. Invest Opthalmol Vis Sci. 2013;54(12):7785–7792.
  • Bezerra HG, Costa MA, Guagliumi G, et al. Intracoronary optical coherence tomography: a comprehensive reviewclinical and research applications. JACC: Cardiovasc Interv. 2009;2(11):1035–1046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.