1,025
Views
37
CrossRef citations to date
0
Altmetric
Review

An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia

&
Pages 1091-1107 | Received 12 Jul 2017, Accepted 25 Aug 2017, Published online: 08 Sep 2017

References

  • Feigin VL, Forouzanfar MH, Krishnamurthi R, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–254.
  • Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–2128.
  • Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–e603.
  • Lackland DT, Roccella EJ, Deutsch AF, et al. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke. 2014;45(1):315–353.
  • Vaartjes I, O’Flaherty M, Capewell S, et al. Remarkable decline in ischemic stroke mortality is not matched by changes in incidence. Stroke. 2013;44(3):591–597.
  • Samsa GP, Matchar DB, Goldstein L, et al. Utilities for major stroke: results from a survey of preferences among persons at increased risk for stroke. Am Heart J. 1998;136(4 Pt 1):703–713.
  • Wade DT, Hewer RL, David RM, et al. Aphasia after stroke: natural history and associated deficits. J Neurol Neurosurg Psychiatry. 1986;49(1):11–16.
  • Cruice M, Worrall L, Hickson L. Reporting on psychological well-being of older adults with chronic aphasia in the context of unaffected peers. Disabil Rehabil. 2011;33(3):219–228.
  • Gialanella B, Bertolinelli M, Lissi M, et al. Predicting outcome after stroke: the role of aphasia. Disabil Rehabil. 2011;33(2):122–129.
  • Ellis C, Simpson AN, Bonilha H, et al. The one-year attributable cost of poststroke aphasia. Stroke. 2012;43(5):1429–1431.
  • Lazar RM, Speizer AE, Festa JR, et al. Variability in language recovery after first-time stroke. J Neurol Neurosurg Psychiatry. 2008;79(5):530–534.
  • Brady MC, Kelly H, Godwin J, et al. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2016;(6):CD000425.
  • Cherney LR. Aphasia treatment: intensity, dose parameters, and script training. Int J Speech Lang Pathol. 2012;14(5):424–431.
  • Code C, Torney A, Gildea-Howardine E, et al. Outcome of a one-month therapy intensive for chronic aphasia: variable individual responses. Semin Speech Lang. 2010;31(1):21–33.
  • Bhogal SK, Teasell R, Speechley M. Intensity of aphasia therapy, impact on recovery. Stroke. 2003;34(4):987–993.
  • Code C. The quantity of life for people with chronic aphasia. Neuropsychol Rehabil. 2003;13(3):379–390.
  • Lazar RM, Minzer B, Antoniello D, et al. Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke. 2010;41(7):1485–1488.
  • Lendrem W, Lincoln NB. Spontaneous recovery of language in patients with aphasia between 4 and 34 weeks after stroke. J Neurol Neurosurg Psychiatry. 1985;48(8):743–748.
  • Dancause N, Barbay S, Frost SB, et al. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25(44):10167–10179.
  • Overman JJ, Clarkson AN, Wanner IB, et al. A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A. 2012;109(33):E2230–2239.
  • Brown CE, Murphy TH. Livin’ on the edge: imaging dendritic spine turnover in the peri-infarct zone during ischemic stroke and recovery. Neuroscientist. 2008;14(2):139–146.
  • Ueno Y, Chopp M, Zhang L, et al. Axonal outgrowth and dendritic plasticity in the cortical peri-infarct area after experimental stroke. Stroke. 2012;43(8):2221–2228.
  • Lichtenwalner RJ, Parent JM. Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab. 2006;26(1):1–20.
  • Danilov AI, Kokaia Z, Lindvall O. Ectopic ependymal cells in striatum accompany neurogenesis in a rat model of stroke. Neuroscience. 2012;214:159–170.
  • Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair. 2013;27(5):469–478.
  • Yao C, Williams AJ, Hartings JA, et al. Down-regulation of the sodium channel Na(v)1.1 alpha-subunit following focal ischemic brain injury in rats: in situ hybridization and immunohistochemical analysis. Life Sci. 2005;77(10):1116–1129.
  • Di Filippo M, Tozzi A, Costa C, et al. Plasticity and repair in the post-ischemic brain. Neuropharmacology. 2008;55(3):353–362.
  • Jaenisch N, Witte OW, Frahm C. Downregulation of potassium chloride cotransporter KCC2 after transient focal cerebral ischemia. Stroke. 2010;41(3):e151–159.
  • Emptage NJ, Carew TJ. Long-term synaptic facilitation in the absence of short-term facilitation in Aplysia neurons. Science. 1993;262(5131):253–256.
  • Otmakhova NA, Lisman JE. D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J Neurosci. 1996;16(23):7478–7486.
  • Brunelli M, Castellucci V, Kandel ER. Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science. 1976;194(4270):1178–1181.
  • Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3(9):528–536.
  • Parton A, Coulthard E, Husain M. Neuropharmacological modulation of cognitive deficits after brain damage. Curr Opin Neurol. 2005;18(6):675–680.
  • Berthier ML, Garcia-Casares N, Walsh SF, et al. Recovery from post-stroke aphasia: lessons from brain imaging and implications for rehabilitation and biological treatments. Discov Med. 2011;12(65):275–289.
  • Kessler J, Thiel A, Karbe H, et al. Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke. 2000;31(9):2112–2116.
  • Small SL, Llano DA. Biological approaches to aphasia treatment. Curr Neurol Neurosci Rep. 2009;9(6):443–450.
  • Floel A, Meinzer M, Kirstein R, et al. Short-term anomia training and electrical brain stimulation. Stroke. 2011;42(7):2065–2067.
  • Korchounov A, Ziemann U. Neuromodulatory neurotransmitters influence LTP-like plasticity in human cortex: a pharmaco-TMS study. Neuropsychopharmacology. 2011;36(9):1894–1902.
  • Leemann B, Laganaro M, Chetelat-Mabillard D, et al. Crossover trial of subacute computerized aphasia therapy for anomia with the addition of either levodopa or placebo. Neurorehabil Neural Repair. 2011;25(1):43–47.
  • Breitenstein C, Korsukewitz C, Baumgartner A, et al. L-dopa does not add to the success of high-intensity language training in aphasia. Restor Neurol Neurosci. 2015;33(2):115–120.
  • Chen Y, Li YS, Wang ZY, et al. The efficacy of donepezil for post-stroke aphasia: a pilot case control study. Zhonghua Nei Ke Za Zhi. 2010;49(2):115–118.
  • Yoon SY, Kim JK, An YS, et al. Effect of donepezil on Wernicke Aphasia after bilateral middle cerebral artery infarction: subtraction analysis of brain F-18 fluorodeoxyglucose positron emission tomographic images. Clin Neuropharmacol. 2015;38(4):147–150.
  • Hong JM, Shin DH, Lim TS, et al. Galantamine administration in chronic post-stroke aphasia. J Neurol Neurosurg Psychiatry. 2012;83(7):675–680.
  • Gungor L, Terzi M, Onar MK. Does long term use of piracetam improve speech disturbances due to ischemic cerebrovascular diseases? Brain Lang. 2011;117(1):23–27.
  • Hamzei-Moghaddam A, Shafa MA, Nazari M, et al. The effect of piracetam in aphasia due to acute brain ischemic stroke: clinical trial. J Kerman Univ Med Sci. 2014;21(3):219–229.
  • Jianu DC, Muresanu DF, Bajenaru O, et al. Cerebrolysin adjuvant treatment in Broca’s aphasics following first acute ischemic stroke of the left middle cerebral artery. J Med Life. 2010;3(3):297–307.
  • Brown RM, Carlson A, Ljunggren B, et al. Effect of ischemia on monoamine metabolism in the brain. Acta Physiol Scand. 1974;90(4):789–791.
  • Cohen HP, Waltz AG, Jacobson RL. Catecholamine content of cerebral tissue after occlusion or manipulation of middle cerebral artery in cats. J Neurosurg. 1975;43(1):32–36.
  • Robinson RG, Shoemaker WJ, Schlumpf M. Time course of changes in catecholamines following right hemispheric cerebral infarction in the rat. Brain Res. 1980;181(1):202–208.
  • Feeney DM, Westerberg VS. Norepinephrine and brain damage: alpha noradrenergic pharmacology alters functional recovery after cortical trauma. Can J Psychol. 1990;44(2):233–252.
  • Goldstein LB, Bullman S. Effects of dorsal noradrenergic bundle lesions on recovery after sensorimotor cortex injury. Pharmacol Biochem Behav. 1997;58(4):1151–1157.
  • Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–2144.
  • Hiramoto T, Ihara Y, Watanabe Y. α-1 Adrenergic receptors stimulation induces the proliferation of neural progenitor cells in vitro. Neurosci Lett. 2006;408(1):25–28.
  • Izumi Y, Zorumski CF. Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse. 1999;31(3):196–202.
  • Alexander MP. Impairments of procedures for implementing complex language are due to disruption of frontal attention processes. J Int Neuropsychol Soc. 2006;12(2):236–247.
  • Crosson B, Moore AB, Gopinath K, et al. Role of the right and left hemispheres in recovery of function during treatment of intention in aphasia. J Cogn Neurosci. 2005;17(3):392–406.
  • Sommer IE, Oranje B, Ramsey NF, et al. The influence of amphetamine on language activation: an fMRI study. Psychopharmacology (Berl). 2006;183(4):387–393.
  • Breitenstein C, Wailke S, Bushuven S, et al. D-amphetamine boosts language learning independent of its cardiovascular and motor arousing effects. Neuropsychopharmacology. 2004;29(9):1704–1714.
  • Knecht S, Breitenstein C, Bushuven S, et al. Levodopa: faster and better word learning in normal humans. Ann Neurol. 2004;56(1):20–26.
  • Quaglieri CE, Celesia GG. Effect of thalamotomy and levodopa therapy on the speech of Parkinson patients. Eur Neurol. 1977;15(1):34–39.
  • Gupta SR, Mlcoch AG. Bromocriptine treatment of nonfluent aphasia. Arch Phys Med Rehabil. 1992;73(4):373–376.
  • Sabe L, Leiguarda R, Starkstein SE. An open-label trial of bromocriptine in nonfluent aphasia. Neurology. 1992;42(8):1637–1638.
  • Sabe L, Salvarezza F, Garcia Cuerva A, et al. A randomized, double-blind, placebo-controlled study of bromocriptine in nonfluent aphasia. Neurology. 1995;45(12):2272–2274.
  • Gupta SR, Mlcoch AG, Scolaro C, et al. Bromocriptine treatment of nonfluent aphasia. Neurology. 1995;45(12):2170–2173.
  • Ozeren A, Sarica Y, Mavi H, et al. Bromocriptine is ineffective in the treatment of chronic nonfluent aphasia. Acta Neurol Belg. 1995;95(4):235–238.
  • Gold M, VanDam D, Silliman ER. An open-label trial of bromocriptine in nonfluent aphasia: a qualitative analysis of word storage and retrieval. Brain Lang. 2000;74(2):141–156.
  • Bragoni M, Altieri M, Di Piero V, et al. Bromocriptine and speech therapy in non-fluent chronic aphasia after stroke. Neurol Sci. 2000;21(1):19–22.
  • Raymer AM. Treatment of adynamia in aphasia. Front Biosci. 2003;8:s845–851.
  • Ashtary F, Janghorbani M, Chitsaz A, et al. A randomized, double-blind trial of bromocriptine efficacy in nonfluent aphasia after stroke. Neurology. 2006;66(6):914–916.
  • Albert ML. Neurobiological aspects of aphasia therapy. Aphasiology. 1988;2(3–4):215–218.
  • Bachman D, Morgan A. The role of pharmacotherapy in the treatment of aphasia: preliminary results. Aphasiology. 1988;2:225–228.
  • Dl M, Le N, Gk M, et al. The effects of bromocriptine on speech and language function in a man with transcortical aphasia. Aphasiology. 1991;21:145–155.
  • Berthier ML. Transcortical aphasias. Hove: Psychology Press; 1999.
  • Seniow J, Litwin M, Litwin T, et al. New approach to the rehabilitation of post-stroke focal cognitive syndrome: effect of levodopa combined with speech and language therapy on functional recovery from aphasia. J Neurol Sci. 2009;283(1–2):214–218.
  • Arciniegas DB, Frey KL, Anderson CA, et al. Amantadine for neurobehavioural deficits following delayed post-hypoxic encephalopathy. Brain Inj. 2004;18(12):1309–1318.
  • Barrett AM, Eslinger PJ. Amantadine for adynamic speech: possible benefit for aphasia? Am J Phys Med Rehabil. 2007;86(8):605–612.
  • Goldstein LB, Davis JN. Influence of lesion size and location on amphetamine-facilitated recovery of beam-walking in rats. Behav Neurosci. 1990;104(2):320–327.
  • Feeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science. 1982;217(4562):855–857.
  • Walker-Batson D, Unwin H, Curtis S, et al. Use of amphetamine in the treatment of aphasia. Restor Neurol Neurosci. 1992;4(1):47–50.
  • McNeil MR, Doyle PJ, Spencer KA, et al. A double-blind, placebo-controlled study of pharmacological and behavioural treatment of lexical-semantic deficits in aphasia. Aphasiology. 1997;11(4–5):385–400.
  • Walker-Batson D, Curtis S, Natarajan R, et al. A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke. 2001;32(9):2093–2098.
  • Whiting E, Chenery HJ, Chalk J, et al. Dexamphetamine boosts naming treatment effects in chronic aphasia. J Int Neuropsychol Soc. 2007;13(6):972–979.
  • Spiegel DR, Alexander G. A case of nonfluent aphasia treated successfully with speech therapy and adjunctive mixed amphetamine salts. J Neuropsychiatry Clin Neurosci. 2011;23(1):E24.
  • Moscowitch L, McNamara P, Albert ML. Neurochemical correlates of aphasia. Neurology. 1991;41:410.
  • Tanaka Y, Albert ML, Yokoyama E, et al. Cholinergic therapy for anomia in fluent aphasia. Ann Neurol. 2001;S61.
  • Kabasawa H, Matsubara M, Kamimoto K, et al. Effects of bifemelane hydrochloride on cerebral circulation and metabolism in patients with aphasia. Clin Ther. 1994;16(3):471–482.
  • Tanaka Y, Miyazaki M, Albert ML. Effects of increased cholinergic activity on naming in aphasia. Lancet. 1997;350(9071):116–117.
  • Hughes JD, Jacobs DH, Heilman KM. Neuropharmacology and linguistic neuroplasticity. Brain Lang. 2000;71(1):96–101.
  • Tsz-Ming C, Kaufer D. Effects of donepezil on aphasia, agnosia, and apraxia in patients with cerebrovascular lesions. Journal of Neuropsychiatry and Clinical Neurosciences. 2001;13:140.
  • Berthier ML, Hinojosa J, Martin Mdel C, et al. Open-label study of donepezil in chronic poststroke aphasia. Neurology. 2003;60(7):1218–1219.
  • Pashek G, Bachman D. Cognitive, linguistic, and motor speech of donepezil hydrochloride in a patient with stroke-related aphasia and apraxia of speech. Brain and Language. 2001;87(1):179–180.
  • Berthier ML, Hinojosa J, Moreno-Torre I. Beneficial effects of donepezil and modality specific language therapy on chronic conduction aphasia. Neurology. 2004;62(Suppl 5):A462.
  • Berthier ML, Green C, Higueras C, et al. A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology. 2006;67(9):1687–1689.
  • Bear MF, Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature. 1986;320(6058):172–176.
  • Kilgard MP, Merzenich MM. Cortical map reorganization enabled by nucleus basalis activity. Science. 1998;279(5357):1714–1718.
  • Froemke RC, Merzenich MM, Schreiner CE. A synaptic memory trace for cortical receptive field plasticity. Nature. 2007;450(7168):425–429.
  • Cahana-Amitay D, Albert ML, Oveis A. Psycholinguistics of aphasia pharmacotherapy: asking the right questions. Aphasiology. 2014;28(2):133–154.
  • Aarsland D, Larsen JP, Reinvang I, et al. Effects of cholinergic blockade on language in healthy young women. Implications for the cholinergic hypothesis in dementia of the Alzheimer type. Brain. 1994;117(Pt 6):1377–1384.
  • McNamara P, Albert ML. Neuropharmacology of verbal perseveration. Semin Speech Lang. 2004;25(4):309–321.
  • Gotts SJ, Della Rocchetta AI, Cipolotti L. Mechanisms underlying perseveration in aphasia: evidence from a single case study. Neuropsychologia. 2002;40(12):1930–1947.
  • Corbett F, Jefferies E, Lambon Ralph MA. The use of cueing to alleviate recurrent verbal perseverations: evidence from transcortical sensory aphasia. Aphasiology. 2008;22(4):363–382.
  • Sarter M, Hasselmo ME, Bruno JP, et al. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev. 2005;48(1):98–111.
  • Jacobs DH, Shuren J, Gold M, et al. Physostigmine pharmacotherapy for anomia. Neurocase. 1996;2(2):83–91.
  • Coelho F, Birks J. Physostigmine for Alzheimer’s disease. Cochrane Database Syst Rev. 2001;(2):CD001499.
  • Giurgea CE, Greindl MG, Preat S. Nootropic drugs and aging. Acta Psychiatr Belg. 1983;83(4):349–358.
  • Vernon MW, Sorkin EM. Piracetam. An overview of its pharmacological properties and a review of its therapeutic use in senile cognitive disorders. Drugs Aging. 1991;1(1):17–35.
  • Jordaan B, Oliver DW, Dormehl IC, et al. Cerebral blood flow effects of piracetam, pentifylline, and nicotinic acid in the baboon model compared with the known effect of acetazolamide. Arzneimittelforschung. 1996;46(9):844–847.
  • Muller WE, Eckert GP, Eckert A. Piracetam: novelty in a unique mode of action. Pharmacopsychiatry. 1999;32(Suppl 1):2–9.
  • Enderby P, Broeckx J, Hospers W, et al. Effect of piracetam on recovery and rehabilitation after stroke: a double-blind, placebo-controlled study. Clin Neuropharmacol. 1994;17(4):320–331.
  • Szelies B, Mielke R, Kessler J, et al. Restitution of alpha-topography by piracetam in post-stroke aphasia. Int J Clin Pharmacol Ther. 2001;39(4):152–157.
  • Huber W, Willmes K, Poeck K, et al. Piracetam as an adjuvant to language therapy for aphasia: a randomized double-blind placebo-controlled pilot study. Arch Phys Med Rehabil. 1997;78(3):245–250.
  • Huber W. The role of piracetam in the treatment of acute and chronic aphasia. Pharmacopsychiatry. 1999;32(Suppl 1):38–43.
  • Herrschaft H. The effectiveness of piracetam in acute cerebral ischemia in the human. A clinical controlled double-blind study of piracetam/10% dextran 40 versus 10% dextran 40/placebo. Med Klin (Munich). 1988;83(20):667–677.
  • Orgogozo JM. Piracetam in the treatment of acute stroke. Pharmacopsychiatry. 1999;32(Suppl 1):25–32.
  • Starkstein SE, Robinson RG. Affective disorders and cerebral vascular disease. Br J Psychiatry. 1989;154:170–182.
  • van de Weg FB, Kuik DJ, Lankhorst GJ. Post-stroke depression and functional outcome: a cohort study investigating the influence of depression on functional recovery from stroke. Clin Rehabil. 1999;13(3):268–272.
  • Barker-Collo SL. Depression and anxiety 3 months post stroke: prevalence and correlates. Arch Clin Neuropsychol. 2007;22(4):519–531.
  • Gabaldon L, Fuentes B, Frank-Garcia A, et al. Poststroke depression: importance of its detection and treatment. Cerebrovasc Dis. 2007;24(Suppl 1):181–188.
  • Skidmore ER, Whyte EM, Holm MB, et al. Cognitive and affective predictors of rehabilitation participation after stroke. Arch Phys Med Rehabil. 2010;91(2):203–207.
  • Gu Q, Singer W. Involvement of serotonin in developmental plasticity of kitten visual cortex. Eur J Neurosci. 1995;7(6):1146–1153.
  • Jitsuki S, Takemoto K, Kawasaki T, et al. Serotonin mediates cross-modal reorganization of cortical circuits. Neuron. 2011;69(4):780–792.
  • Maya Vetencourt JF, Tiraboschi E, Spolidoro M, et al. Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats. Eur J Neurosci. 2011;33(1):49–57.
  • Li WL, Cai HH, Wang B, et al. Chronic fluoxetine treatment improves ischemia-induced spatial cognitive deficits through increasing hippocampal neurogenesis after stroke. J Neurosci Res. 2009;87(1):112–122.
  • Martinowich K, Lu B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology. 2008;33(1):73–83.
  • Jorge RE, Acion L, Moser D, et al. Escitalopram and enhancement of cognitive recovery following stroke. Arch Gen Psychiatry. 2010;67(2):187–196.
  • Tanaka Y, Albert ML, Aketa S, et al. Serotonergic therapy for fluent aphasia. Neurology. 2004;72(7, Suppl S5):A166.
  • Kimura M, Robinson RG, Kosier JT. Treatment of cognitive impairment after poststroke depression: a double-blind treatment trial. Stroke. 2000;31(7):1482–1486.
  • Narushima K, Chan KL, Kosier JT, et al. Does cognitive recovery after treatment of poststroke depression last? A 2-year follow-up of cognitive function associated with poststroke depression. Am J Psychiatry. 2003;160(6):1157–1162.
  • Laska AC, von Arbin M, Kahan T, et al. Long-term antidepressant treatment with moclobemide for aphasia in acute stroke patients: a randomised, double-blind, placebo-controlled study. Cerebrovasc Dis. 2005;19(2):125–132.
  • Martin HG, Wang YT. Blocking the deadly effects of the NMDA receptor in stroke. Cell. 2010;140(2):174–176.
  • Berthier ML, Green C, Lara JP, et al. Memantine and constraint-induced aphasia therapy in chronic poststroke aphasia. Ann Neurol. 2009;65(5):577–585.
  • Johnson JW, Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol. 2006;6(1):61–67.
  • Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5(2):160–170.
  • Volbracht C, van Beek J, Zhu C, et al. Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Eur J Neurosci. 2006;23(10):2611–2622.
  • Cohen L, Chaaban B, Habert MO. Transient improvement of aphasia with zolpidem. N Engl J Med. 2004;350(9):949–950.
  • Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008;322(5903):900–904.
  • Tsikunov SG, Belokoskova SG. Psychophysiological analysis of the influence of vasopressin on speech in patients with post-stroke aphasias. Span J Psychol. 2007;10(1):178–188.
  • Ziganshina LE, Abakumova T, Vernay L. Cerebrolysin for acute ischaemic stroke. Cochrane Database Syst Rev. 2017;4:CD007026.
  • Cahana-Amitay D, Albert ML, Pyun SB, et al. Language as a stressor in aphasia. Aphasiology. 2011;25(5):593–614.
  • Hasselmo ME, Linster C, Patil M, et al. Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. J Neurophysiol. 1997;77(6):3326–3339.
  • Heilman KM, Nadeau SE, Beversdorf DO. Creative innovation: possible brain mechanisms. Neurocase. 2003;9(5):369–379.
  • Beversdorf DQ, Sharma UK, Phillips NN, et al. Effect of propranolol on naming in chronic Broca’s aphasia with anomia. Neurocase. 2007;13(4):256–259.
  • Wright JG, Swiontkowski MF, Heckman JD. Introducing levels of evidence to the journal. J Bone Joint Surg Am. 2003;85-A(1):1–3.
  • So EL, Annegers JF, Hauser WA, et al. Population-based study of seizure disorders after cerebral infarction. Neurology. 1996;46(2):350–355.
  • Goldstein LB. Common drugs may influence motor recovery after stroke. The Sygen In Acute Stroke Study Investigators. Neurology. 1995;45(5):865–871.
  • Gil R, Neau JP. Rapid aggravation of aphasia by vigabatrin. J Neurol. 1995;242(4):251–252.
  • Jambaque I, Chiron C, Kaminska A, et al. Transient motor aphasia and recurrent partial seizures in a child: language recovery upon seizure control. J Child Neurol. 1998;13(6):296–300.
  • Wong IC, Lhatoo SD. Adverse reactions to new anticonvulsant drugs. Drug Saf. 2000;23(1):35–56.
  • Coppola F, Rossi C, Mancini ML, et al. Language disturbances as a side effect of prophylactic treatment of migraine. Headache. 2008;48(1):86–94.
  • Cappa SF, Ortelli P, Garibotto V, et al. Reversible nonfluent aphasia and left frontal hypoperfusion during topiramate treatment. Epilepsy Behav. 2007;10(1):192–194.
  • Mula M, Trimble MR, Thompson P, et al. Topiramate and word-finding difficulties in patients with epilepsy. Neurology. 2003;60(7):1104–1107.
  • Goldstein LB. Potential effects of common drugs on stroke recovery. Arch Neurol. 1998;55(4):454–456.
  • Kerr AL, Cheng SY, Jones TA. Experience-dependent neural plasticity in the adult damaged brain. J Commun Disord. 2011;44(5):538–548.
  • Turkeltaub PE, Messing S, Norise C, et al. Are networks for residual language function and recovery consistent across aphasic patients? Neurology. 2011;76(20):1726–1734.
  • Karbe H, Kessler J, Herholz K, et al. Long-term prognosis of poststroke aphasia studied with positron emission tomography. Arch Neurol. 1995;52(2):186–190.
  • Saur D, Lange R, Baumgaertner A, et al. Dynamics of language reorganization after stroke. Brain. 2006;129(Pt 6):1371–1384.
  • Winhuisen L, Thiel A, Schumacher B, et al. The right inferior frontal gyrus and poststroke aphasia: a follow-up investigation. Stroke. 2007;38(4):1286–1292.
  • Heiss WD, Kessler J, Thiel A, et al. Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol. 1999;45(4):430–438.
  • Heiss WD, Thiel A, Kessler J, et al. Disturbance and recovery of language function: correlates in PET activation studies. Neuroimage. 2003;20(Suppl 1):S42–49.
  • Fridriksson J, Richardson JD, Baker JM, et al. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke. 2011;42(3):819–821.
  • Fridriksson J, Bonilha L, Baker JM, et al. Activity in preserved left hemisphere regions predicts anomia severity in aphasia. Cereb Cortex. 2010;20(5):1013–1019.
  • Miura K, Nakamura Y, Miura F, et al. Functional magnetic resonance imaging to word generation task in a patient with Broca’s aphasia. J Neurol. 1999;246(10):939–942.
  • Meinzer M, Flaisch T, Breitenstein C, et al. Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. Neuroimage. 2008;39(4):2038–2046.
  • Fridriksson J, Richardson JD, Fillmore P, et al. Left hemisphere plasticity and aphasia recovery. Neuroimage. 2012;60(2):854–863.
  • Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3(7):383–393.
  • Zaghi S, Acar M, Hultgren B, et al. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist. 2010;16(3):285–307.
  • Reato D, Rahman A, Bikson M, et al. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30(45):15067–15079.
  • Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–639.
  • Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–1901.
  • Datta A, Baker JM, Bikson M, et al. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul. 2011;4(3):169–174.
  • Maeda F, Pascual-Leone A. Transcranial magnetic stimulation: studying motor neurophysiology of psychiatric disorders. Psychopharmacology (Berl). 2003;168(4):359–376.
  • Priori A, Hallett M, Rothwell JC. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2009;2(4):241–245.
  • Ambrus GG, Al-Moyed H, Chaieb L, et al. The fade-in–short stimulation–fade out approach to sham tDCS–reliable at 1 mA for naive and experienced subjects, but not investigators. Brain Stimul. 2012;5(4):499–504.
  • Torres J, Drebing D, Hamilton R. TMS and tDCS in post-stroke aphasia: integrating novel treatment approaches with mechanisms of plasticity. Restor Neurol Neurosci. 2013;31(4):501–515.
  • Iyer MB, Mattu U, Grafman J, et al. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005;64(5):872–875.
  • Poreisz C, Boros K, Antal A, et al. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72(4–6):208–214.
  • Liebetanz D, Nitsche MA, Tergau F, et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(Pt 10):2238–2247.
  • Bolognini N, Pascual-Leone A, Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil. 2009;6:8.
  • Hoffman RE, Cavus I. Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am J Psychiatry. 2002;159(7):1093–1102.
  • Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–206.
  • de Vries MH, Barth AC, Maiworm S, et al. Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J Cogn Neurosci. 2010;22(11):2427–2436.
  • Floel A, Rosser N, Michka O, et al. Noninvasive brain stimulation improves language learning. J Cogn Neurosci. 2008;20(8):1415–1422.
  • Meinzer M, Jahnigen S, Copland DA, et al. Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex. 2014;50:137–147.
  • Reis J, Robertson E, Krakauer JW, et al. Consensus: “Can tDCS and TMS enhance motor learning and memory formation?”. Brain Stimul. 2008;1(4):363–369.
  • Park CH, Chang WH, Park JY, et al. Transcranial direct current stimulation increases resting state interhemispheric connectivity. Neurosci Lett. 2013;539:7–10.
  • Amadi U, Ilie A, Johansen-Berg H, et al. Polarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks. Neuroimage. 2014;88:155–161.
  • Lindenberg R, Nachtigall L, Meinzer M, et al. Differential effects of dual and unihemispheric motor cortex stimulation in older adults. J Neurosci. 2013;33(21):9176–9183.
  • Sehm B, Schafer A, Kipping J, et al. Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol. 2012;108(12):3253–3263.
  • Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–1236.
  • Fiori V, Coccia M, Marinelli CV, et al. Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neurosci. 2011;23(9):2309–2323.
  • Kang EK, Kim YK, Sohn HM, et al. Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restor Neurol Neurosci. 2011;29(3):141–152.
  • Jung IY, Lim JY, Kang EK, et al. The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients. Ann Rehabil Med. 2011;35(4):460–469.
  • Marangolo P, Marinelli CV, Bonifazi S, et al. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res. 2011;225(2):498–504.
  • You DS, Kim DY, Chun MH, et al. Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain Lang. 2011;119(1):1–5.
  • Lee SY, Cheon HJ, Yoon KJ, et al. Effects of dual transcranial direct current stimulation for aphasia in chronic stroke patients. Ann Rehabil Med. 2013;37(5):603–610.
  • Marangolo P, Fiori V, Calpagnano MA, et al. tDCS over the left inferior frontal cortex improves speech production in aphasia. Front Hum Neurosci. 2013;7:539.
  • Santos MD, Gagliardi RJ, Mac-Kay AP, et al. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study. Sao Paulo Med J. 2013;131(6):422–426.
  • Marangolo P, Fiori V, Gelfo F, et al. Bihemispheric tDCS enhances language recovery but does not alter BDNF levels in chronic aphasic patients. Restor Neurol Neurosci. 2014;32(2):367–379.
  • Rosso C, Perlbarg V, Valabregue R, et al. Broca’s area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia. Brain Stimul. 2014;7(5):627–635.
  • Vestito L, Rosellini S, Mantero M, et al. Long-term effects of transcranial direct-current stimulation in chronic post-stroke aphasia: a pilot study. Front Hum Neurosci. 2014;8:785.
  • Vines BW, Norton AC, Schlaug G. Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Front Psychol. 2011;2:230.
  • Shah-Basak PP, Norise C, Garcia G, et al. Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke. Front Hum Neurosci. 2015;9:201.
  • Wu D, Wang J, Yuan Y. Effects of transcranial direct current stimulation on naming and cortical excitability in stroke patients with aphasia. Neurosci Lett. 2015;589:115–120.
  • Galletta EE, Vogel-Eyny A. Translational treatment of aphasia combining neuromodulation and behavioral intervention for lexical retrieval: implications from a single case study. Front Hum Neurosci. 2015;9:447.
  • Monti A, Cogiamanian F, Marceglia S, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008;79(4):451–453.
  • Costa V, Giglia G, Brighina F, et al. Ipsilesional and contralesional regions participate in the improvement of poststroke aphasia: a transcranial direct current stimulation study. Neurocase. 2015;21(4):479–488.
  • Meinzer M, Lindenberg R, Sieg MM, et al. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Front Aging Neurosci. 2014;6:253.
  • Paus T, Jech R, Thompson CJ, et al. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci. 1997;17(9):3178–3184.
  • Wang JX, Rogers LM, Gross EZ, et al. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science. 2014;345(6200):1054–1057.
  • George MS, Wassermann EM, Post RM. Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. J Neuropsychiatry Clin Neurosci. 1996;8(4):373–382.
  • Martin PI, Naeser MA, Ho M, et al. Research with transcranial magnetic stimulation in the treatment of aphasia. Curr Neurol Neurosci Rep. 2009;9(6):451–458.
  • Khedr EM, Abo El-Fetoh N, Ali AM, et al. Dual-hemisphere repetitive transcranial magnetic stimulation for rehabilitation of poststroke aphasia: a randomized, double-blind clinical trial. Neurorehabil Neural Repair. 2014;28(8):740–750.
  • Barwood CH, Murdoch BE, Whelan BM, et al. The effects of low frequency repetitive transcranial magnetic stimulation (rTMS) and sham condition rTMS on behavioural language in chronic non-fluent aphasia: short term outcomes. NeuroRehabilitation. 2011;28(2):113–128.
  • Naeser MA, Martin PI, Theoret H, et al. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia. Brain Lang. 2011;119(3):206–213.
  • Barwood CH, Murdoch BE, Whelan BM, et al. Improved receptive and expressive language abilities in nonfluent aphasic stroke patients after application of rTMS: an open protocol case series. Brain Stimul. 2012;5(3):274–286.
  • Tsai PY, Wang CP, Ko JS, et al. The persistent and broadly modulating effect of inhibitory rTMS in nonfluent aphasic patients: a sham-controlled, double-blind study. Neurorehabil Neural Repair. 2014;28(8):779–787.
  • Thiel A, Hartmann A, Rubi-Fessen I, et al. Effects of noninvasive brain stimulation on language networks and recovery in early poststroke aphasia. Stroke. 2013;44(8):2240–2246.
  • Al-Janabi S, Nickels LA, Sowman PF, et al. Augmenting melodic intonation therapy with non-invasive brain stimulation to treat impaired left-hemisphere function: two case studies. Front Psychol. 2014;5:37.
  • Martin PI, Treglia E, Naeser MA, et al. Language improvements after TMS plus modified CILT: pilot, open-protocol study with two, chronic nonfluent aphasia cases. Restor Neurol Neurosci. 2014;32(4):483–505.
  • Heiss WD, Hartmann A, Rubi-Fessen I, et al. Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics. Cerebrovasc Dis. 2013;36(5–6):363–372.
  • Medina J, Norise C, Faseyitan O, et al. Finding the right words: transcranial magnetic stimulation improves discourse productivity in non-fluent aphasia after stroke. Aphasiology. 2012;26(9):1153–1168.
  • Dammekens E, Vanneste S, Ost J, et al. Neural correlates of high frequency repetitive transcranial magnetic stimulation improvement in post-stroke non-fluent aphasia: a case study. Neurocase. 2014;20(1):1–9.
  • Pashek GV, Holland AL. Evolution of aphasia in the first year post-onset. Cortex. 1988;24(3):411–423.
  • Hillis AE, Kane A, Tuffiash E, et al. Reperfusion of specific brain regions by raising blood pressure restores selective language functions in subacute stroke. Brain Lang. 2001;79(3):495–510.
  • Sebastian R, Long C, Purcell JJ, et al. Imaging network level language recovery after left PCA stroke. Restor Neurol Neurosci. 2016;34(4):473–489.
  • Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol. 2013;26(6):609–616.
  • Keser Z, Dehgan MW, Shadravan S, et al. Combined dextroamphetamine and transcranial direct current stimulation in poststroke aphasia. Am J Phys Med Rehabil. 2017.  doi: 10.1097/PHM.0000000000000780. [Epub ahead of print].
  • Naeser MA, Martin PI, Nicholas M, et al. Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang. 2005;93(1):95–105.
  • Kertesz A, McCabe P. Recovery patterns and prognosis in aphasia. Brain. 1977;100(Pt 1):1–18.
  • Pedersen PM, Vinter K, Olsen TS. Aphasia after stroke: type, severity and prognosis. The Copenhagen aphasia study. Cerebrovasc Dis. 2004;17(1):35–43.
  • Naeser MA, Martin PI, Nicholas M, et al. Improved naming after TMS treatments in a chronic, global aphasia patient–case report. Neurocase. 2005;11(3):182–193.
  • Definition of classes of evidence (CoE) and overall strength of evidence (SoE). Evid Based Spine Care J. 2014;5(1):71.
  • Turkeltaub PE, Swears MK, D’Mello AM, et al. Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restor Neurol Neurosci. 2016;34(4):491–505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.