372
Views
2
CrossRef citations to date
0
Altmetric
Review

Implications of structural and functional brain changes in amyotrophic lateral sclerosis

, , , , &
Pages 407-419 | Received 19 Jan 2018, Accepted 11 Apr 2018, Published online: 19 Apr 2018

References

  • Dharmadasa T, Henderson R, Talman P, et al. Motor neurone disease: progress and challenges. MJA. 2017;206(8):357–362.
  • Kiernan M, Vucic S, Cheah B, et al. Amyotrophic lateral sclerosis. Lancet. 2011;277:942–955.
  • Hardiman O, van den Berg L, Kiernan M. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol. 2011;7:639–649.
  • Dharmadasa T, Matamala JM, Kiernan MC. Treatment approaches in motor neurone disease. Curr Opin Neurol. 2016 Oct;29(5):581–591.
  • Al-Chalabi A, Calvo A, Chio A, et al. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol. 2014;13:1108–1113.
  • Al-Chalabi A, Hardiman O, Kiernan MC, et al. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol. 2016 Oct;15(11):1182–1194.
  • Verstraete E, Veldink J, van den Berg L, et al. Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. Hum Brain Mapp. 2014;35:1351–1361.
  • Miller R, Mitchell J, Moore D. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012;3:Cd001447.
  • Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10:661–670.
  • Traxinger K, Kelly C, Johnson B, et al. Prognosis and epidemiology of amyotrophic lateral sclerosis: analysis of a clinic population, 1997–2011. Neurol Clin Pract. 2013;3:313–320.
  • Brettschneider J, Del Tredici K, Toledo J, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol. 2013;74:20–38.
  • McCombe PA, Wray NR, Henderson RD. Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. Expert Rev Neurother. 2017 Jan;03:1–17.
  • Elamin M, Phukan J, Bede P, et al. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology. 2011;76:1263–1269.
  • Burrell JR, Halliday GM, Kril JJ, et al. The frontotemporal dementia-motor neuron disease continuum. Lancet. 2016 Aug 27;388(10047):919–931.
  • Phukan J, Elamin M, Bede P, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2012 Jan;83(1):102–108.
  • Snowden J, Harris J, Richardson A, et al. Frontotemporal dementia with amyotrophic lateral sclerosis: a clinical comparison of patients with and without repeat expansions in C9orf72. Amyotroph Lateral Scler Frontotemporal Degen. 2013;14:172–176.
  • Kahler O, Pick A. Beitrage zur Pathologie und pathologischen Anatomie des Centralnervensystems. Vierteljahresschrift fur die praktische Heilkunde. Verlag von C.L. Hirschfeld., 1879;1–102.
  • Filippi M, Agosta F, Abrahams S, et al. EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases. Eur J Neurol Off J Eur Fed Neurol Soc. 2010;17:526–533.
  • Chio A, Pagani M, Agosta F, et al. Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol. 2014;13:1228–1240.
  • Deichmann R, Good C, Josephs O, et al. Optimization of 3-D MP-RAGE sequences for structural brain imaging. Neuroimage. 2000;12:112–127.
  • Turner M, Agosta F, Bede P, et al. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med. 2012;6:319–337.
  • Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage. 2000 Jun;11(6 Pt 1):805–821.
  • Ashburner J, Friston K. Voxel-based morphometry – the methods. Neuroimage. 2000;11:805–821.
  • Das S, Avants B, Grossman M, et al. Registration based cortical thickness measurement. Neuroimage. 2009;45:867–879.
  • Schuster C, Kasper E, Machts J, et al. Focal thinning of the motor cortex mirrors clinical features of amyotrophic lateral sclerosis and their phenotypes: a neuroimaging study. J Neurol. 2013 Nov;260(11):2856–2864.
  • Dong Q, Welsh R, Chenevert T, et al. Clinical applications of diffusion tensor imaging. J Magn Reson Imaging. 2004;19:6–18.
  • Chenevert T, Brunberg J, Pipe J. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology. 1990;177:401–405.
  • Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002;15:435–455.
  • Ciccarelli O, Catani M, Johansen-Berg H, et al. Diffusion-based tractography in neurological disorders: concepts, applications and future developments. Lancet Neurol. 2008;7:715–725.
  • Logothetis N. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci. 2003;23:3963–3971.
  • Ogawa S, Menon R, Kim S, et al. On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct. 1998;27:447–474.
  • Damoiseaux J, Rombouts S, Barkhof F, et al. Consistent resting-state networks across heatlhy subjects. Pro Natl Acad Sci USA. 2006;103:13848–13853.
  • Biswal B, Van Kylen J, Hyde J. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 1997;10:165–170.
  • Castillo M, Kwock L, Mukherji S. Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol. 1996;17:1–15.
  • Kaufmann P, Pullman SL, Shungu DC, et al. Objective tests for upper motor neuron involvement in amyotrophic lateral sclerosis (ALS). Neurology. 2004 May 25;62(10):1753–1757.
  • Kaufmann P, Mitsumoto H. Amyotrophic lateral sclerosis: objective upper motor neuron markers. Curr Neurol Neurosci Rep. 2002 Jan;2(1):55–60.
  • Turner MR, Kiernan MC, Leigh PN, et al. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol. 2009 Jan;8(1):94–109.
  • Pagani M, Chio A, Valentini M, et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology. 2014;83:1067–1074.
  • Turner M, Leigh P. Positron emission tomography (PET) – its potential to provide surrogate markers in ALS. Amyotroph Lateral Scler Other Motor Neuron Diord. 2000;1:S17–S22.
  • Menke R, Agosta F, Grosskreutz J, et al. Neuroimaging endpoints of amyotrophic lateral sclerosis. Neurotherapeutics. 2016;14:11–23.
  • Br F, Rc W, El F. 25 years of neuroimaging in amyotrophic lateral sclerosis. Nat Rev Neurol 2013 9;Sep(9):513–524.
  • Chan S, Shungu DC, Douglas-Akinwande A, et al. Motor neuron diseases: comparison of single-voxel proton MR spectroscopy of the motor cortex with MR imaging of the brain. Radiology. 1999 Sep;212(3):763–769.
  • Cosottini M, Pesaresi I, Piazza S, et al. Structural and functional evaluation of cortical motor areas in amyotrophic lateral sclerosis. Exp Neurol. 2012 Mar;234(1):169–180.
  • Kuipers-Upmeijer J, de Jager AE, Hew JM, et al. Primary lateral sclerosis: clinical, neurophysiological, and magnetic resonance findings. J Neurol Neurosurg Psychiatry. 2001 Nov;71(5):615–620.
  • Goodin D, Rowley H, Olney R. Magnetic resonance imaging in amyotrophic lateral sclerosis. Ann Neurol. 1988;23:418–420.
  • Ngai S, Tang Y, Du L, et al. Hyperintensity of the precentral gyral subcortical white matter and hypointensity of the precentral gyrus on fluid-attenuated inversion recovery: variation with age and implications for the diagnosis of amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 2007;28:250–254.
  • Turner M. Reversible diffusion MRI abnormalities and transient mutism after liver transplantation. Neurology. 2005;64:177.
  • Bede P, Bokde A, Elamin M, et al. Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. J Neurol Neurosurg Psychiatry. 2013 Jul;84(7):766–773.
  • Shen D, Cui L, Fang J, et al. Voxel-wise met-analysis of gray matter changes in amyotrophic lateral sclerosis. Front Aging Neurosci. 2016;8:64.
  • Sheng L, Ma H, Zhong J, et al. Motor and extra-motor gray matter atrophy in amyotrophic lateral sclerosis: quantitative meta-analyses of voxel-based morphometry studies. Neurobiol Aging. 2015 Dec;36(12):3288–3299.
  • Mezzapesa DM, D’Errico E, Tortelli R, et al. Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis. PLoS One. 2013;8(11):e80748.
  • Menke R, Korner S, Filippini N, et al. Widespread grey matter pathology dominantes the longitudinal cerebral MRI and clinical landscarpe of amyotrophic lateral sclerosis. Brain J Neurol. 2014;137:2546–2555.
  • Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology. 2009 Sep 8;73(10):805–811.
  • Zhu W, Fu X, Cui F, et al. ALFF value in right parahippocampal gyrus acts as a potential marker monitoring amyotrophic lateral sclerosis progression: a neuropsychological, voxel-based morphometry, and resting-state functional MRI study. J Mol Neurosci. 2015 Sep;57(1):106–113.
  • Grosskreutz J, Kaufmann J, Fradrich J, et al. Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurol. 2006;6:17.
  • Kim HJ, de Leon M, Wang X, et al. Relationship between clinical parameters and brain structure in sporadic amyotrophic lateral sclerosis patients according to onset type: a voxel-based morphometric study. PLoS One. 2017;12(1):e0168424.
  • Prell T, Grosskreutz J. The involvement of the cerebllum in amyotrophic lateral sclerosis. Amyotroph Lateral SCler Frontotemporal Degen. 2013;14:507–515.
  • Tan RH, Devenney E, Dobson-Stone C, et al. Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One. 2014;9(8):e105632.
  • Geser F, Brandmeir N, Kwong L, et al. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol. 2008;65:636–641.
  • Grieve SM, Menon P, Korgaonkar MS, et al. Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotroph Lateral Scler Frontotemporal Degener. 2015 Jan-Feb;17(1–2):85–92.
  • Walhout R, Westeneng HJ, Verstraete E, et al. Cortical thickness in ALS: towards a marker for upper motor neuron involvement. J Neurol Neurosurg Psychiatry. 2015 Mar;86(3):288–294.
  • Verstraete E, Veldink JH, Hendrikse J, et al. Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2012 Apr;83(4):383–388.
  • Thorns J, Jansma H, Peschel T, et al. Extent of cortical involvement in amyotrophic lateral sclerosis – an analysis based on cortical thickness. BMC Neurol. 2013;13:148.
  • Pohl C, Block W, Karitzky J, et al. Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. Arch Neurol. 2001 May;58(5):729–735.
  • Block W, Karitzky J, Traber F, et al. Proton magnetic resonance spectroscopy of the primary motor cortex in patients with motor neuron disease: subgroup analysis and follow-up measurements. Arch Neurol. 1998 Jul;55(7):931–936.
  • Rooney WD, Miller RG, Gelinas D, et al. Decreased N-acetylaspartate in motor cortex and corticospinal tract in ALS. Neurology. 1998 Jun;50(6):1800–1805.
  • Giroud M, Walker P, Bernard D, et al. Reduced brain N-acetyl-aspartate in frontal lobes suggests neuronal loss in patients with amyotrophic lateral sclerosis. Neurol Res. 1996 Jun;18(3):241–243.
  • Pioro EP, Antel JP, Cashman NR, et al. Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology. 1994 Oct;44(10):1933–1938.
  • Rule RR, Suhy J, Schuff N, et al. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004 Sep;5(3):141–149.
  • Unrath A, Ludolph AC, Kassubek J. Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. J Neurol. 2007 Aug;254(8):1099–1106.
  • van der Graaff MM, Lavini C, Akkerman EM, et al. MR spectroscopy findings in early stages of motor neuron disease. AJNR Am J Neuroradiol. 2010 Nov;31(10):1799–1806.
  • Mitsumoto H, Ulug AM, Pullman SL, et al. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology. 2007 Apr 24;68(17):1402–1410.
  • Gredal O, Rosenbaum S, Topp S, et al. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy. Neurology. 1997 Apr;48(4):878–881.
  • Ellis CM, Simmons A, Andrews C, et al. A proton magnetic resonance spectroscopic study in ALS: correlation with clinical findings. Neurology. 1998 Oct;51(4):1104–1109.
  • Bowen B, Pattany P, Bradley W, et al. MR imaging and localised proton spectroscopy of hte precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 2000;21:647–658.
  • Han J, Ma L. Study of the features of proton MR spectroscopy (1H-MRS) on amyotrophic lateral sclerosis. J Magn Reson Imaging. 2010;31:305–308.
  • Foerster B, Callaghan B, Petrou M, et al. Decreased motor cortex y-aminobutyric acid in amyotrophic lateral sclerosis. Neurology. 2012;78:1596–1600.
  • Laere K, Vanhee A, Verschueren J, et al. Value of 18Fluorodeoxyglucose-positron-emission tomograophy in amyotrophic lateral sclerosis. JAMA Neurol. 2014;71(5):553–561.
  • Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10:253–263.
  • Zurcher N, Loggia M, Lawson R. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin. 2015;7:409–414.
  • Bede P, Bokde A, Byrune S, et al. Multiparametric MRI study of ALS stratified for hte C9orf72 genotype. Neurology. 2013;81:361–369.
  • Alshikho M, Zurcher N, Loggia M, et al. Glial activation colocalises with structural abnormalities in amyotrophic lateral sclerosis. Neurology. 2016;87:2554–2561.
  • Agosta F, Valsasina P, Absinta M, et al. Sensorimotor function connectivity changes in amyotrophic lateral sclerosis. Cereb Cortex. 2011;21:2291–2298.
  • Agosta F, Canu E, Valsasina P, et al. Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol Aging. 2013;34:419–427.
  • Trojsi F, Esposito F, De Stefano N, et al. Functional overlap and divergence between ALS and bvFTD. Neurobiol Aging. 2015;36:413–423.
  • Douaud G, Filippini N, Knight S, et al. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain. 2011;134:3470–3479.
  • Verstraete E, Polders D, Mandle R, et al. Multimodal tract-based analysis in ALS patients at 7T: a specific white matter profile? Amyotroph Lateral Scler Frontotemporal Degen. 2014;15:84–92.
  • van der Graaff M, Sage C, Caan M, et al. Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study. Brain. 2011;134:1211–1228.
  • Ellis C, Simmons A, Jones D, et al. Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology. 1999;53:1051–1058.
  • Foerster B, Dwamena B, Petrou M, et al. Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: a meta-analysis. Acad Radiol. 2012;19:1075–1086.
  • Trojsi F, Corbo D, Caiazzo G, et al. Motor and extramotor neurodegeneration in amyotrophic lateral sclerosis: a 3T high angular resolution diffusion imaging (HARDI) study. Amyotroph Lateral Scler Frontotemporal Degen. 2013;14:553–561.
  • Verstraete E, Veldink J, Mandle R, et al. Impaired structural motor connectome in amyotrophic lateral sclerosis. PloS ONE. 2011;6:e24239.
  • Sivak S, Bittsansky M, Kurca E, et al. Proton magnetic resonance spectroscopy in patients with early stages of amyotrophic lateral sclerosis. Neuroradiology. 2010;52:1079–1085.
  • Agosta F, Chio A, Cosottini M, et al. The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 2010 Nov;31(10):1769–1777. .
  • Kalra S, Hanstock C, Martin W, et al. Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol. 2006;63:1144–1148.
  • Iwata N, Kwan J, Danielian L, et al. White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis. Brain. 2011;134:2642–2655.
  • Sach M, Winkler G, Glauche V, et al. Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain. 2004;127:340–350.
  • Filippini N, Douaud G, Mackay C, et al. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology. 2010;2010:1645–1652.
  • Chang JL, Lomen-Hoerth C, Murphy J, et al. A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology. 2005 Jul 12;65(1):75–80. .
  • Turner M, Verstraete E. What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Curr Neurol Neurosci Rep. 2015;15:45.
  • Rajagopalan V, Pioro EP. Distinct patterns of cortical atrophy in ALS patients with or without dementia: an MRI VBM study. Amyotroph Lateral Scler Frontotemporal Degener. 2014 Jun;15(3–4):216–225. .
  • Verstraete E, Foerster BR. Neuroimaging as a new diagnostic modality in amyotrophic lateral sclerosis. Neurotherapeutics. 2015 Apr;12(2):403–416.
  • Lillo P, Mioshi E, Burrell J, et al. Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporla dementia continuum. PLoS One. 2012;7:e43993.
  • Abrahams S, Lh G, Suckling J, et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J Neurol. 2005 Mar;252(3):321–331.
  • Sarro L, Agosta F, Canu E, et al. Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. AJNR Am J Neuroradiol. 2011;32:1866–1872.
  • Tsujimoto M, Senda J, Ishihara T, et al. Behavioural changes in early ALS correlate with voxel-based morphometry and diffusion tensor imaging. J Neurol Sci. 2011;307:34–40.
  • Al-Sarraj S, King A, Troakes C, et al. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hipposcampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol. 2011;122:691–702.
  • Turner MR, Hammers A, Allsop J, et al. Volumetric cortical loss in sporadic and familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009 Dec;8(6):343–347.
  • Turner MR, Hammers A, Al-Chalabi A, et al. Distinct cerebral lesions in sporadic and ‘D90A’ SOD1 ALS: studies with [11C]flumazenil PET. Brain. 2005 Jun;128(Pt6)):1323–1329.
  • Vucic S, Ziemann U, Eisen A, et al. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. Jnnp. 2013;84:10.
  • Ziemann U, Winter M, Reimers C, et al. Impaired motor cortex inhibition in patients with amyotrophic lateral sclerosis. Evidence from paired transcranial magnetic stimulation. Neurology. 1997;49:1292–1298.
  • Maekawa S, Al-Sarraj S, Kibble M, et al. Cortical selective vulnerability in motor neruone disease: a morphometric study. Brain. 2004;127:1237–1251.
  • Turner M, Kiernan M. Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis? Amyotroph Lateral Scler. 2012;13:245–250.
  • Geevasinga N, Menon P, Ng K, et al. Riluzole exerts transient modulating effects onf cortical and axonal hyperexcitability in ALS. Amyotroph Lateral Scler Frontotemporal Degen. 2016;17:580–588.
  • Eisen A, Braak H, Del Tredici K, et al. Cortical influences drive amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2017;88(11):917–924.
  • Menke R, Proudfoot M, Wuu J, et al. Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. J Neurol Neurosurg Psychiatry. 2016;87:580–588.
  • Czarzasta J, Habich A, Siwek T, et al. Stem cells for ALS: an overview of possible therapeutic approaches. Int J Devl Neuroscience. 2017;57:46–55.
  • Kruminis-Kaszkiel E, Wojtkiewicz J, Maksymowicz W. Glial-restricted precursors as potential candidates for ALS cell-replacement therapy. Acta Neurobiol Exp (Wars). 2014;74:233–241.
  • Kruminis-Kaszkiel E, Juranek J, Maksymowicz W, et al. CRISPR/Cas9 technology as an emerging tool for targeting amyotrophic lateral sclerosis (ALS). Int J Mol Sci. 2018;19:3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.