964
Views
6
CrossRef citations to date
0
Altmetric
Review

BACE inhibitors in clinical development for the treatment of Alzheimer’s disease

ORCID Icon, , , , , , , , , , , , ORCID Icon & show all
Pages 847-857 | Received 28 Jul 2018, Accepted 01 Oct 2018, Published online: 24 Oct 2018

References

  • Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 2018;14:367–429.
  • Panza F, Lozupone M, Logroscino G, et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer’s disease. Nat Rev Neurol. 2018. In press.
  • Beyreuther K, Masters CL. Amyloid precursor protein (APP) and βA4 amyloid in the etiology of Alzheimer’s disease: precursor-product relationships in the derangement of neuronal function. Brain Pathol. 1991;1:241–251.
  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–388.
  • Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6:487–498.
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–185.
  • Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011;10:698–712.
  • Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science. 2010;330:1774.
  • Yang LB, Lindholm K, Yan R, et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 2003;9:3–4.
  • Genin E, Hannequin D, Wallon D, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry. 2011;16:903–907.
  • Liu CC, Kanekiyo T, Xu H, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9:106–118.
  • Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12:357–367.
  • Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313:1924–1938.
  • Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–216.
  • Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66:1837–1844.
  • Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608.
  • Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42:631–639.
  • Giannakopoulos P, Herrmann FR, Bussière T, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology. 2003;60:1495–1500.
  • Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372:216–223.
  • Funato H, Enya M, Yoshimura M, et al. Presence of sodium dodecyl sulfate-stable amyloid β-protein dimers in the hippocampus CA1 not exhibiting neurofibrillary tangle formation. Am J Pathol. 1999;155:23–28.
  • Kuo YM, Emmerling MR, Vigo-Pelfrey C, et al. Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem. 1996;271:4077–4081.
  • Lesné S, Koh MT, Kotilinek L, et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature. 2006;440:352–357.
  • Wang ZX, Tan L, Liu J, et al. The essential role of soluble Aβ oligomers in Alzheimer’s disease. Mol Neurobiol. 2016;53:1905–1924.
  • Polanco JC, Li C, Bodea LG, et al. Amyloid-β and tau complexity - towards improved biomarkers and targeted therapies. Nat Rev Neurol. 2018;14:22–39.
  • Zhao Y, Sivaji S, Chiang MC, et al. Amyloid β peptides block new synapse assembly by Nogo receptor-mediated inhibition of T-type calcium channels. Neuron. 2017;96:355–372.
  • Yang T, Li S, Xu H, et al. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci. 2017;37:152–163.
  • Lesné SE, Sherman MA, Grant M, et al. Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain. 2013;136:1383–1398.
  • Vassar R, Bennett BD, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286:735–741.
  • Yan R, Bienkowski MJ, Shuck ME, et al. Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature. 1999;402(6761):533–537.
  • Vassar R, Kuhn PH, Haass C, et al. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem. 2014;130:4–28.
  • Bennett BD, Babu-Khan S, Loeloff R, et al. Expression analysis of BACE2 in brain and peripheral tissues. J Biol Chem. 2000;275:20647–20651.
  • Farzan M, Schnitzler CE, Vasilieva N, et al. BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. Proc Natl Acad Sci USA. 2000;97:9712–9717.
  • Yan R, Vassar R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol. 2014;13:319–329.
  • Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimer’s Res Ther. 2014;6:89.
  • Willem M, Garratt AN, Novak B, et al. Control of peripheral nerve myelination by the β-secretase BACE1. Science. 2006;314:664–666.
  • Hu X, Hicks CW, He W, et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci. 2006;9:1520–1525.
  • Salzer JL. Axonal regulation of Schwann cell ensheathment and myelination. J Peripher Nerv Syst. 2012;17(suppl 3):14–19.
  • Southan C, Hancock JM. A tale of two drug targets: the evolutionary history of BACE1 and BACE2. Front Genet. 2013;4:293.
  • Esterházy D, Stützer I, Wang H, et al. Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass. Cell Metab. 2011;14:365–377.
  • Filser, Ovsepian SV, Masana M, et al. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry. 2015;77:729–739.
  • Zhu K, Xiang X, Filser S, et al. Beta-site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic plasticity via seizure protein 6. Biol Psychiatry. 2018;83:428–437.
  • Kennedy ME, Stamford AW, Chen X, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med. 2016;8:363ra150.
  • Villarreal S, Zhao F, Hyde LA, et al. Chronic verubecestat treatment suppresses amyloid accumulation in advanced aged Tg2576-AβPPswe mice without inducing microhemorrhage. J. Alzheimers Dis. 2017;59:1393–1413.
  • Egan MF, Kost J, Tariot PN, et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2018;378:1691–1703.
  • Sur C. BACE inhibition by verubecestat produces a rapid, non-progressive reduction in brain and hippocampal volume in Alzheimer’s disease. 2018 11th Clinical Trials on Alzheimer’s Disease (CTAD); 2018 Oct 24-27; Barcelona.
  • Barber J. Merck & Co. terminates Phase III study of verubecestat in prodromal Alzheimer’s disease. Kenilworth, N.J., USA: FirstWorld Pharma; 2018 February 13.
  • Ito H, Yamakawa H, Nishitomi K, et al. Preclinical multi-species pharmacokinetic/pharmacodynamic analysis of the oral BACE inhibitor JNJ-54861911. Alzheimers Dement. 2017;13(Suppl.):P266–P267.
  • Timmers M, Van Broeck B, Ramael S, et al. Profiling the dynamics of CSF and plasma Aβ reduction after treatment with JNJ-54861911, a potent oral BACE inhibitor. Alzheimers Dement. 2016;2:202–212.
  • Streffer J, Börjesson-Hanson A, Van Broeck B, et al. Pharmacodynamics of the oral BACE inhibitor JNJ-54861911 in early Alzheimer’s disease. Alzheimers Dement. 2016;12(Suppl.):P199–P200.
  • Jansenn. Update on Janssen’s BACE inhibitor program. Titusville, United States: Company press release; 2018 May 17.
  • Eketjäll S, Janson J, Kaspersson K, et al. AZD3293: A novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics. J Alzheimers Dis. 2016;50:1109–1123.
  • Cebers G, Lejeune T, Attalla B, et al. Reversible and species-specific depigmentation effects of AZD3293, a BACE inhibitor for the treatment of Alzheimer’s disease, are related to BACE2 inhibition and confined to epidermis and hair. J Prev Alzheimers Dis. 2016;3:202–218.
  • Sakamoto K, Matsuki S, Matsuguma K, et al. BACE1 inhibitor lanabecestat (AZD3293) in a Phase 1 study of healthy japanese subjects: pharmacokinetics and effects on plasma and cerebrospinal fluid Aβ peptides. J Clin Pharmacol. 2017;57:1460–1471.
  • Malone E. Lilly/AstraZeneca’s lanabecestat becomes latest BACE inhibitor casualty. Scrip. 2018 June;12.
  • Sims JR, Selzler KJ, Downing AM, et al. Development review of the BACE1 inhibitor lanabecestat (AZD3293/LY3314814). J Prev Alzheimers Dis. 2017;4:247–254.
  • Lai R, Albala B, Kaplow JM, et al. First-in-human study of E2609, a novel BACE1 inhibitor, demonstrates prolonged reductions in plasma beta-amyloid levels after single dosing. Alzheimers Dement. 2012;8(Suppl.):P96.
  • Albala B, Kaplow JM, Lai R, et al. CSF amyloid lowering in human volunteers after 14 days’ oral administration of the novel BACE1 inhibitor E2609. Alzheimers Dement. 2012;8(Suppl.):S743.
  • Wang J, Logovinsky V, Hendrix SB, et al. ADCOMS: a composite clinical outcome for prodromal Alzheimer’s disease trials. J Neurol Neurosurg Psychiatry. 2016;87:993–999.
  • Oneeb M, Gee M, Albala B, et al. Dose-related reductions of CSF amyloid β(1-x) by E2609, a novel BACE inhibitor in patients with mild cognitive impairment due to Alzheimer’s disease (AD and mild-moderate AD dementia. 2016 CTAD Meeting; 2016 Dec 8-10; San Diego. Poster P3-28.
  • Neumann U, Ufer M, Jacobson LH, et al. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol Med. 2018, pii: e9316.
  • Ufer M, Rouzade-Dominguez M-L, Huledalet G, et al. Results from a first-in-man study with the BACE inhibitor CNP520. Alzheimers Dement. 2016;12(Suppl.):P200.
  • Lopez Lopez C, Caputo A, Liu F, et al. The Alzheimer’s Prevention Initiative Generation Program: evaluating CNP520 efficacy in the prevention of Alzheimer’s disease. J Prev Alzheimers Dis. 2017;4:242–246.
  • Jackson M Eisai/Biogen remain in BACE race as Alzheimer’s contenders dwindle. Scrip. 2018 Jun 6.
  • Abbott A, Dolgin E. Failed Alzheimer’s trial does not kill leading theory of disease. Nature. 2016;540:15–16.
  • Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–56.
  • Osswald G. BioArctic announces positive topline results of BAN2401 Phase 2b at 18 months in early Alzheimer’s disease. Stockholm, Sweden: BioArctic press release; 2018 Jul 6.
  • Watts RJ, Chen M, Atwal J, et al. Selection of an anti-Aβ antibody that binds various forms of Aβ and blocks toxicity both in vitro and in vivo. Alzheimers Dement. 2009;5(Suppl.):P426.
  • Bohrmann B, Baumann K, Benz J, et al. Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis. 2012;28:49–69.
  • Honig LS, Vellas B, Woodward M, et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med. 2018;378:321–330.
  • Coric V, van Dyck CH, Salloway S, et al. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol. 2012;69:1430–1440.
  • Morley JE, Farr SA, Banks WA, et al. A physiological role for amyloid-β protein: enhancement of learning and memory. J Alzheimers Dis. 2010;19:441–449.
  • Puzzo D, Privitera L, Fa’ M, et al. Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann Neurol. 2011;69:819–830.
  • Palmeri A, Ricciarelli R, Gulisano W, et al. Amyloid-β peptide is needed for cGMP-induced long-term potentiation and memory. J Neurosci. 2017;37:6926–6937.
  • López-Toledano MA, Shelanski ML. Neurogenic effect of β-amyloid peptide in the development of neural stem cells. J Neurosci. 2004;24:5439–5444.
  • Plant LD, Boyle JP, Smith IF, et al. The production of amyloid β peptide is a critical requirement for the viability of central neurons. J Neurosci. 2003;23:5531–5535.
  • Ou-Yang MH, Kurz JE, Nomura T, et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci Transl Med. 2018;10(459). pii:eaao5620.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.