921
Views
20
CrossRef citations to date
0
Altmetric
Review

An update on thymectomy in myasthenia gravis

&
Pages 823-833 | Received 15 Jan 2019, Accepted 25 Mar 2019, Published online: 05 Apr 2019

References

  • Tintignac LA, Brenner HR, Rüegg MA. Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol Rev. 2015;95:809–852.
  • Meriggioli MN, Sanders DB. Muscle autoantibodies in myasthenia gravis: beyond diagnosis? Expert Rev Clin Immunol. 2012;8:427–438.
  • Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14:1023–1036.
  • Wendell LC, Levine JM. Myasthenic crisis. Neurohospitalist. 2011;1:16–22.
  • Sine SM. End-plate acetylcholine receptor: structure, mechanism, pharmacology and disease. Physiol Rev. 2012;92:1189–1234.
  • Huijbers MG, Lipka AF, Plomp JJ, et al. Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis. J Intern Med. 2014;275:12–26.
  • Luo J, Lindstrom J. Acetylcholine receptor-specific immunosuppressive therapy of experimental autoimmune myasthenia gravis and myasthenia gravis. Ann N Y Acad Sci. 2018;1413:76–81.
  • Masuda T, Motomura M, Utsugisawa K, et al. Antibodies against the main immunogenic region of the acetylcholine receptor correlate with disease severity in myasthenia gravis. J Neurol Neurosurg Psychiatry. 2012;83:935–940.
  • Yi JS, Guptill JT, Stathopoulos P, et al. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57:172–184.
  • Peterson P, Tõnis O, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol. 2008;8:948–957.
  • Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev. 2014;259:88–102.
  • Flores KG, Li J, Sempowski GD, et al. Analysis of the human thymic perivascular space during aging. J Clin Invest. 1999;104:1031–1039.
  • Berrih-Aknin S. Role of the thymus in autoimmune myasthenia gravis. Clin Exp Neuroimmunol. 2016;7:226–237.
  • Weiss JM, Cufi P, Le Panse R, et al. The thymus in autoimmune myasthenia gravis: paradigm for a tertiary lymphoid organ. Rev Neurol. 2013;169:640–649.
  • Zheng Y, Wheatley LM, Liu T, et al. Acetylcholine receptor alpha subunit mRNA expression in human thymus: augmented expression in myasthenia gravis and upregulation by interferon-gamma. Clin Immunol. 1999;91:170–177.
  • Gradolatto A, Nazzal D, Truffault F, et al. Both Treg cells and Tconv cells are defective in the myasthenia gravis thymus: roles of IL-17 and TNF-alpha. J Autoimmun. 2014;52:53–63.
  • Lisak RP, Ragheb S. The role of B cell-activating factor in autoimmune myasthenia gravis. Ann N Y Acad Sci. 2012;1274:60–67.
  • Cavalcante P, Galbardi B, Franzi S, et al. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein–barr virus infection. Immunobiology. 2016;221:516–527.
  • Meyer M, Höls AK, Liersch B, et al. Lack of evidence for Epstein-Barr virus infection in myasthenia gravis thymus. Ann Neurol. 2011;70:515–518.
  • Truffault F, de Montpreville V, Eymard B, et al. Thymic germinal centers and corticosteroids in myasthenia gravis: an immunopathological study in 1035 cases and a critical review. Clin Rev Allergy Immunol. 2017;52:108–124.
  • Lavrnic D, Losen M, Vujic A, et al. The features of myasthenia gravis with antibodies to MuSK. J Neurol Neurosurg Psychiatry. 2005;76:1099–1102.
  • Zisimopoulou P, Evangelakou P, Tzartos J, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–145.
  • Lauriola L, Ranelletti F, Maggiano N, et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology. 2005;64:536–538.
  • Leite MI, Ströbel P, Jones M, et al. Fewer thymic changes in MuSK antibody positive than in MuSK antibody-negative MG. Ann Neurol. 2005;57:444–448.
  • Koneczny I, Rennspiess D, Marcuse F, et al. Characterization of the thymus in Lrp4 myasthenia gravis: four cases. Autoimmun Rev. 2019;18:50–55.
  • Weis CA, Yao X, Deng Y, et al. The impact of thymoma histotype on prognosis in a worldwide database. J Thorac Oncol. 2015;10:367–372.
  • Nakajima J, Okumura M, Yano M, et al. Myasthenia gravis with thymic epithelial tumour: a retrospective analysis of a Japanese database. Eur J Cardiothorac Surg. 2016;49:1510–1515.
  • Okumura M, Miyoshi S, Fujii Y, et al. Clinical and functional significance of WHO classification on human thymic epithelial neoplasms: a study of 146 consecutive tumors. Am J Surg Pathol. 2001;25:103–110.
  • Marx A, Pfister F, Schalke B, et al. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12:875–884.
  • Kirchner T, Hoppe F, Müller-Hermelink HK, et al. Acetylcholine receptor epitopes on epithelial cells of thymoma in myasthenia gravis. Lancet. 1987;1:218.
  • Romi F, Bø L, Skeie GO, et al. Titin and ryanodine receptor epitopes are expressed in cortical thymoma along with costimulatory molecules. J Neuroimmunol. 2002;128:82–89.
  • Weksler B, Lu B. Alterations of the immune system in thymic malignancies. J Thorac Oncol. 2014;9:S137–S142.
  • Meager A, Wadhwa M, Dilger P, et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003;132:128–136.
  • Evoli A, Alboini PE, Bisonni A, et al. Management challenges in muscle-specific tyrosine kinase myasthenia gravis. Ann N Y Acad Sci. 2012;1274:86–91.
  • Maggi L, Andreetta F, Antozzi C, et al. Two cases of thymoma-associated myasthenia gravis without antibodies to the acetylcholine receptor. Neuromuscul Disord. 2008;18:678–680.
  • Richards J, Howard JF Jr. Seronegative myasthenia gravis associated with malignant thymoma. Neuromuscul Disord. 2017;27:417–418.
  • Rigamonti A, Lauria G, Piamarta F, et al. Thymoma-associated myasthenia gravis without acetylcholine receptor antibodies. J Neurol Sci. 2011;302:112–113.
  • Marino M, Scuderi F, Samengo D, et al. Flow cytofluorimetric analysis of anti-LRP4 (LDL Receptor-Related Protein 4) autoantibodies in Italian patients with myasthenia gravis. PLoS One. 2015;10:e0135378.
  • Fonseca V, Havard CW. The natural course of myasthenia gravis. BMJ. 1990;300:1409–1410.
  • Oosterhuis HJGH. The natural course of myasthenia gravis: a long-term follow-up study. J Neurol Neurosurg Psychiatry. 1985;52:1121–1127.
  • Grob D, Brunner M, Namba T, et al. Lifetime course of myasthenia gravis. Muscle Nerve. 2008;37:141–149.
  • Tandan R, Hehir MK 2nd, Waheed W, et al. Rituximab treatment of myasthenia gravis: A systematic review. Muscle Nerve. 2017;56:185–196.
  • Howard JF Jr, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017;16:976–986.
  • Murai H. Japanese clinical guidelines for myasthenia gravis: putting into practice. Clin Exp Neuroimmunol. 2015;6:21–31.
  • Sussman J, Farrugia ME, Maddison P, et al. Myasthenia gravis: association of British Neurologists‘ management guidelines. Pract Neurol. 2015;15:199–206.
  • Sanders DB, Wolfe GI, Benatar M, et al. International consensus guidance on myasthenia gravis: executive summary. Neurology. 2016;87:419–425.
  • Priola AM, Priola SM. Imaging of thymus in myasthenia gravis: from thymic hyperplasia to thymic tumor. Clin Radiol. 2014;69:e230–245.
  • Perlo VP, Poskanzer DC, Schwab RS, et al. Myasthenia gravis: evaluation of treatment in 1,355 patients. Neurology. 1966;16:431–439.
  • Gronseth GS, Barohn RJ. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the quality standards subcommittee of the american academy of neurology. Neurology. 2000;55:7–15.
  • Cea G, Benatar M, Verdugo RJ, et al. Thymectomy for non-thymomatous myasthenia gravis. Cochrane Database Syst Rev. 2013;10:CD008111.
  • Diaz A, Black E, Dunning J. Is thymectomy in non-thymomatous myasthenia gravis of any benefit? Interact Cardiovasc Thorac Surg. 2014;18:381–389.
  • Kattach H, Anastasiadis K, Cleuziou C, et al. Transsternal thymectomy for myasthenia gravis: surgical outcome. Ann Thorac Surg. 2006;81:305–308.
  • Granone P, Margaritora S, Cesario A, et al. Thymectomy in myasthenia gravis via video-assisted infra-mammary cosmetic incision. Eur J Cardiothorac Surg. 1999;15:861–863.
  • Wright GM, Barnett S, Clarke CP. Video-assisted thoracoscopic thymectomy for myasthenia gravis. Intern Med J. 2002;32:367–371.
  • Mantegazza R, Baggi F, Bernasconi P, et al. Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow up. J Neurol Sci. 2003;212:31–36.
  • Bachmann K, Burkhardt D, Schreiter I, et al. Thymectomy is more effective than conservative treatment for myasthenia gravis regarding outcome and clinical improvement. Surgery. 2009;145:392–398.
  • Sonett JR, Jaretzki A 3rd. Thymectomy for nonthymomatous myasthenia gravis: a critical analysis. Ann N Y Acad Sci. 2008;1132:315–328.
  • Wolfe GI, Kaminski HJ, Aban IB, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375:511–522.
  • Jaretzki A 3rd, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task force of the medical scientific advisory board of the myasthenia gravis foundation of america. Neurology. 2000;55:16–23.
  • Utsugisawa K, Suzuki S, Nagane Y, et al. Health-related quality of life and treatment targets in myasthenia gravis. Muscle Nerve. 2014;50:493–500.
  • Benatar M, Howard JF Jr, Barohn R, et al. Learning from the past: reflections on recently completed myasthenia gravis trials. Ann N Y Acad Sci. 2018;1412:5–13.
  • Marx A, Pfister F, Schalke B, et al. Thymus pathology observed in the MGTX trial. Ann N Y Acad Sci. 2012;1275:92–100.
  • Weis CA, Scharff C, Strobel P, et al. Identification of potential biomarkers in thymectomy specimen from myasthenia gravis patients in the MGTX-trial. Mediastinum. 2017;1:AB020.
  • Weis CA, Aban IB, Cutter G, et al. Histopathology of thymectomy specimens from the MGTX-trial: entropy analysis as strategy to quantify spatial heterogeneity of lymphoid follicle and fat distribution. PLoS One. 2018;13(6):e0197435.
  • Molin CJ, Sabre L, Weis CA, et al. Thymectomy lowers the myasthenia gravis biomarker miR-150-5p. Neurol Neuroimmunol Neuroinflamm. 2018;5(3):e450.
  • Punga AR, Andersson M, Alimohammadi M, et al. Disease specific signature of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients. J Neurol Sci. 2015;356:90–96.
  • Torri A, Carpi D, Bulgheroni E, et al. Extracellular microRNA signature of human helper T cell subsets in health and autoimmunity. J Biol Chem. 2017;292:2903–2915.
  • Olanow CW, Lane RJ, Roses AD. Thymectomy in late-onset myasthenia gravis. Arch Neurol. 1982;39:82–83.
  • Romi F, Gilhus NE, Varhaug JE, et al. Thymectomy and antimuscle antibodies in nonthymomatous myasthenia gravis. Ann N Y Acad Sci. 2003;998:481–490.
  • Kawaguchi N, Kuwabara S, Nemoto Y, et al. Effects of thymectomy on late-onset myasthenia gravis without thymoma. Clin Neurol Neurosurg. 2007;109:858–861.
  • Uzawa A, Kawaguchi N, Kanai T, et al. Two-year outcome of thymectomy in non-thymomatous late-onset myasthenia gravis. J Neurol. 2015;262:1019–1102.
  • Madenci AL, Li GZ, Weil BR, et al. The role of thymectomy in the treatment of juvenile myasthenia gravis: a systematic review. Pediatr Surg Int. 2017;33:683–694.
  • Castro D, Derisavifard S, Anderson M, et al. Juvenile myasthenia gravis: a twenty-year experience. J Clin Neuromuscul Dis. 2013;14:95–102.
  • Heng HS, Lim M, Absoud M, et al. Outcome of children with acetylcholine receptor (AChR) antibody positive juvenile myasthenia gravis following thymectomy. Neuromuscul Disord. 2014;24:25–30.
  • Evoli A. Acquired myasthenia gravis in childhood. Curr Opin Neurol. 2010;23:536–540.
  • Zlamy M, Almanzar G, Parson W, et al. Efforts of the human immune system to maintain the peripheral CD8+ T cell compartment after childhood thymectomy. Immun Ageing. 2016;13:3.
  • van Den Broek T, Delemarre EM, Janssen WJM, et al. Neonatal thymectomy reveals differentiation and plasticity within human naive T cells. J Clin Invest. 2016;126:1126–1136.
  • Kerty E, Elsais A, Argov Z, et al. EFNS/ENS Guidelines for the treatment of ocular myasthenia. Eur J Neurol. 2014;21:687–693.
  • Suzuki S, Murai H, Imai T, et al. Quality of life in purely ocular myasthenia in Japan. BMC Neurol. 2014;14:142.
  • Evoli A, Batocchi AP, Provenzano C, et al. Thymectomy in the treatment of myasthenia gravis: report of 247 patients. J Neurol. 1988;235:272–276.
  • Hatton PD, Diehl JT, Daly BD, et al. Transsternal radical thymectomy for myasthenia gravis: a 15-year review. Ann Thorac Surg. 1989;47:838–840.
  • Liu Z, Feng H, Yeung S-C J, et al. Extended transsternal thymectomy for the treatment of ocular myasthenia gravis. Ann Thorac Surg. 2011;92:1993–1999.
  • Mineo TC, Ambrogi V. Outcomes after thymectomy in class I myasthenia gravis. J Thorac Cardiovasc Surg. 2013;145:1319–1324.
  • Zhu K, Li J, Huan X, et al. Thymectomy is a beneficial therapy for patients with non-thymomatous ocular myasthenia gravis: a systematic review and meta-analysis. Neurol Sci. 2017;38:1753–1760.
  • Melzer N, Ruck T, Fuhr P, et al. Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the guidelines of the German neurological society. J Neurol. 2016;263:1473–1494.
  • Leite MI, Jacob S, Viegas S, et al. IgG1antibodies to acetylcholine receptors in“seronegative” myasthenia gravis. Brain. 2008;131:1940–1952.
  • Devic P, Petiot P, Simonet T, et al. Antibodies to clustered acetylcholine receptor: expanding the phenotype. Eur J Neurol. 2014;21:130–134.
  • Clifford KM, Hobson-Webb LD, Benatar M, et al. Thymectomy may not be associated with clinical improvement in MuSK myasthenia gravis. Muscle Nerve. 2018. Epub ahead of print.
  • Evoli A, Minisci C, Di Schino C, et al. Thymoma in patients with MG: characteristics and long-term outcome. Neurology. 2002;59:1844–1850.
  • Hayes SA, Huang J, Plodkowski AJ, et al. Preoperative computed tomography findings predict surgical resectability of thymoma. J Thoracic Oncol. 2014;9:1023–1030.
  • Masaoka A, Monden Y, Nakahara K, et al. Follow-up study of thymomas with special reference to their clinical stages. Cancer. 1981;48:2485–2492.
  • Moon JM, Lee KS, Shin M-H, et al. Thymic epithelial tumors: prognostic determinants among clinical, histopathologic, and computed tomography findings. Ann Thorac Surg. 2015;99:462–471.
  • Girard N, Ruffini E, Marx A, Faivre-Finn C, Peters S, ESMO Guidelines Committee. Thymic epithelial tumours: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(S5):40–55.
  • Toker A, Sonett J, Zielinski M, et al. Standard terms, definitions, and policies for minimally invasive resection of thymoma. J Thorac Oncol. 2011;6:1739:1742.
  • Zielinski M. Definitions and standard indications of minimally-invasive techniques in thymic surgery. J Vis Surg. 2017;3:99.
  • Suda T. Subxiphoid VATS thymectomy for myasthenia gravis. Video-Assist Thorac Surg. 2017;2:15.
  • Yim AP, Kay RL, Ho JK. Video-assisted thoracoscopic thymectomy for myasthenia gravis. Chest. 1995;108:1440–1443.
  • Jaretzki A 3rd, Barohn RJ, Rm E, et al. Myasthenia gravis: recommendations for clinical research standards. Task force of the medical scientific advisory board of the myasthenia gravis foundation of America. Ann Thorac Surg. 2000;70:327–334.
  • Bromberger B, Sonett J. Bilateral VATS thymectomy in the treatment of myasthenia gravis. Video-Assist Thorac Surg. 2017;2:12.
  • Elsayed HH, Gamal M, Raslan S, et al. Video-assisted thoracoscopic thymectomy for non-thymomatous myasthenia gravis: a right-sided or left-sided approach? Interact Cardiovasc Thorac Surg. 2017;25:651–653.
  • Rückert JC, Walter M, Müller JM. Pulmonary function after thoracoscopic thymectomy versus median sternotomy for myasthenia gravis. Ann Thorac Surg. 2000;70:1656–1661.
  • Qi K, Wang B, Wang B, et al. Video-assisted thoracoscopic surgery thymectomy versus open thymectomy in patients with myasthenia gravis: a meta-analysis. Acta Chir Belg. 2016;116:282–288.
  • Cheng YJ, Hsu JS, Kao EL. Characteristics of thymoma successfully resected by videothoracoscopic surgery. Surg Today. 2007;37:192–196.
  • Toker A. Standardized definitions and policies of minimally invasive thymoma resection. Ann Cardiothorac Surg. 2015;4:535–539.
  • Zhiyi L, Jiansheng Y, Liangan L, et al. Unilateral video-assisted thoracoscopic extended thymectomy offers long-term outcomes equivalent to that of the bilateral approach in the treatment of non-thymomatous myasthenia gravis. Interact Cardiovasc Thorac Surg. 2015;21(610–615).
  • Chang PC, Chou SH, Kao EL, et al. Bilateral video-assisted thoracoscopic thymectomy vs extended transsternal thymectomy in myasthenia gravis: a prospective study. Eur Surg Res. 2005;37:199–203.
  • Shiono H, Kadota Y, Hayashi A, et al. Comparison of outcomes after extended thymectomy for myasthenia gravis: bilateral thoracoscopic approach versus sternotomy. Surg Laparosc Endosc Percutan Tech. 2009;19:424–427.
  • Brenna G, Antozzi C, Montomoli C, et al. A propensity score analysis for comparison of T-3b and VATET in myasthenia gravis. Neurology. 2017;89:189–195.
  • Lee CY, Kim DJ, Lee JG, et al. Bilateral video-assisted thoracoscopic thymectomy has a surgical extent similar to that of transsternal extended thymectomy with more favorable early surgical outcomes for myasthenia gravis patients. Surg Endosc. 2011;25:849–854.
  • Tomulescu V, Popescu I. Unilateral extended thoracoscopic thymectomy for nontumoral myasthenia gravis-a new standard. Semin Thorac Cardiovasc Surg. 2012;24:115–122.
  • Pennathur A, Qureshi I, Schuchert MJ, et al. Comparison of surgical techniques for early-stage thymoma: feasibility of minimally invasive thymectomy and comparison with open resection. J Thorac Cardiovasc Surg. 2011;141:694–701.
  • Rückert JC, Ismail M, Swierzy M, et al. Thoracoscopic thymectomy with the da Vinci robotic system for myasthenia gravis. Ann N Y Acad Sci. 2008;1132:329–335.
  • Schneiter D, Tomaszek S, Kestenholz P, et al. Minimally invasive resection of thymomas with the da Vinci(R) surgical system. Eur J Cardiothorac Surg. 2013;43:288–292.
  • Cerfolio RJ, Bryant AS, Minnich DJ. Starting a robotic program in general thoracic surgery: why, how, and lessons learned. Ann Thorac Surg. 2011;91:1729–1736.
  • Marulli G, Schiavon M, Perissinotto E, et al. Surgical and neurologic outcomes after robotic thymectomy in 100 consecutive patients with myasthenia gravis. J Thorac Cardiovasc Surg. 2013;145:730–735.
  • Keijzers M, de Baets M, Hochstenbag M, et al. Robotic thymectomy in patients with myasthenia gravis: neurological and surgical outcomes. Eur J Cardiothorac Surg. 2015;48:40–45.
  • Buentzel J, Straube C, Heinz J, et al. Thymectomy via open surgery or robotic video assisted thoracic surgery: can a recommendation already be made? Medicine (Baltimore). 2017;96:e7161.
  • Ye B, Li W, Ge X, et al. Surgical treatment of early-stage thymomas: robot-assisted thoracoscopic surgery versus transsternal thymectomy. Surg Endosc. 2013;28:122–126.
  • Friedant AJ, Handorf EA, Su S, et al. Minimally invasive versus open thymectomy for thymic malignancies: systematic review and meta-analysis. J Thorac Oncol. 2016;11:30–38.
  • Marulli G, Maessen J, Melfi F, et al. Multi-institutional European experience of robotic thymectomy for thymoma. Ann Cardiothorac Surg. 2016;5:18–25.
  • Kohler S, Keil TOP, Hoffmann S, et al. CD4+ FoxP3+ T regulatory cell subsets in myasthenia gravis patients. Clin Immunol. 2017;179:40–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.