797
Views
16
CrossRef citations to date
0
Altmetric
Review

Robot Assisted Ankle Neuro-Rehabilitation: State of the art and Future Challenges

ORCID Icon, , ORCID Icon &
Pages 111-121 | Received 16 Aug 2020, Accepted 04 Nov 2020, Published online: 16 Nov 2020

References

  • De Ridder R, Willems T, Vanrenterghem J. Multi-segment foot landing kinematics in subjects with chronic ankle instability. Clin Biomech. 2015;30(6):585–592.
  • Nolan KJ, Yarossi M, McLaughlin P. Changes in center of pressure displacement with the use of a foot drop stimulator in individuals with stroke. Clin Biomech. 2015;30(7):755–761.
  • Kim H, Cho S, Lee H. Effects of passive Bi-axial ankle stretching while walking on uneven terrains in older adults with chronic stroke. J Biomech. 2019;89:57–64.
  • Soler B, Ramari C, Valet M. Clinical assessment, management, and rehabilitation of walking impairment in MS: an expert review. Expert Rev Neurother. 2020;20(8):875–886.
  • UK Royal college of physicians. Rehabilitation following acquired brain injury: national clinical guidelines. UK; 2003.
  • Bernhardt J, Hayward KS, Kwakkel G. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Int J Stroke. 2017;12(5):444–450.
  • Park D, Lee JH, Kang TW. Four-week training involving ankle mobilization with movement versus static muscle stretching in patients with chronic stroke: a randomized controlled trial. Top Stroke Rehabil. 2019;26(2):81–86.
  • Ardestani MM, Kinnaird CR, Henderson CE. Compensation or recovery? altered kinetics and neuromuscular synergies following high-intensity stepping training poststroke. Neurorehabil Neural Repair. 2019;33(1):47–58.
  • Hussain S, Jamwal PK, Ghayesh MH. State-of-the-art robotic devices for ankle rehabilitation: mechanism and control review. Proc Inst Mech Eng H. 2017;231(12):1224–1234.
  • Jamwal PK, Hussain S, Xie SQ. Review on design and control aspects of ankle rehabilitation robots. Disability Rehabi Assistive Technol. 2015;10:93–101.
  • Young AJ, Ferris DP. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans Neural Syst Rehabil Eng. 2017;. 25(2):171–182.
  • Roy A, Krebs HI, Williams DJ. Robot-aided neurorehabilitation: A novel robot for ankle rehabilitation. IEEE Trans Rob. 2009;25(3):569–582.
  • Deng W, Papavasileiou I, Qiao Z. Advances in automation technologies for lower extremity neurorehabilitation: a review and future challenges. IEEE Rev Biomed Eng. 2018;11:289–305.
  • Fazekas G, Tavaszi I. The future role of robots in neuro-rehabilitation. Expert Rev Neurother. 2019;19(6):471–473.
  • Jamwal PK, Xie SQ, Hussain S. An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE ASME Trans Mechatron. 2014;19(1):64–75.
  • Hussain S, Jamwal PK, Ghayesh MH. Single joint robotic orthoses for gait rehabilitation: an educational technical review. J Rehabil Med. 2016;48(4):333–338.
  • Jamwal PK, Hussain S, Xie SQ. Three-stage design analysis and multicriteria optimization of a parallel ankle rehabilitation robot using genetic algorithm. IEEE Trans Autom Sci Eng. 2015;12(4):1433–1446.
  • Yoo D, Kim DH, Seo KH, et al. The effects of technology-assisted ankle rehabilitation on balance control in stroke survivors. IEEE Trans Neural Syst Rehabil Eng. 2019;27(9):1817–1823.
  • Shahabi S, Shabaninejad H, Kamali M. The effects of ankle-foot orthoses on walking speed in patients with stroke: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil. 2020;34(2):145–159.
  • Yamamoto M, Shimatani K, Hasegawa M. Effects of altering plantar flexion resistance of an ankle-foot orthosis on muscle force and kinematics during gait training. J Electromyogr Kinesiol. 2019;46:63–69.
  • Colombo G, Joerg M, Schreier R. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000 Dec.;37(6):693–700.
  • Renfrew L, Paul L, McFadyen A. The clinical- and cost-effectiveness of functional electrical stimulation and ankle-foot orthoses for foot drop in multiple sclerosis: a multicentre randomized trial. Clin Rehabil. 2019;33(7):1150–1162.
  • Charalambous CC, Liang JN, Kautz SA. Bilateral assessment of the corticospinal pathways of the ankle muscles using navigated transcranial magnetic stimulation. J Vis Exp. 2019;(144). DOI: 10.3791/58944
  • Sakai K, Yasufuku Y, Kamo T. Repetitive peripheral magnetic stimulation for impairment and disability in people after stroke. Cochrane Database Syst Rev. 2019;2019(11):1-47.
  • Birkenmeier RL, Prager EM, Lang CE. Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabil Neural Repair. 2010;24(7):620–635.
  • Zhang L, Li J, Dong M. Design and workspace analysis of a Parallel Ankle Rehabilitation Robot (PARR). J Healthc Eng. 2019;2019:1–10.
  • Jamwal PK, Hussain S, Mir-Nasiri N. Tele-rehabilitation using in-house wearable ankle rehabilitation robot. Assistive Technol. 2018;30(1):24–33.
  • Zhang M, Xie SQ, Li X. Adaptive patient-cooperative control of a compliant ankle rehabilitation robot (CARR) with enhanced training safety. IEEE Trans Ind Electron. 2018;65(2):1398–1407.
  • Zhang M, McDaid A, Veale AJ. Adaptive trajectory tracking control of a parallel ankle rehabilitation robot with joint-space force distribution. IEEE Access. 2019;7:85812–85820.
  • Zhang M, Cao J, Zhu G. Reconfigurable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR). Rob Auton Syst. 2017;98:213–221.
  • Liu Q, Wang C, Long JJ. Development of a new robotic ankle rehabilitation platform for hemiplegic patients after stroke. J Healthc Eng. 2018;2018:1–12.
  • Ai Q, Zhu C, Zuo J. Disturbance-estimated adaptive backstepping sliding mode control of a pneumatic muscles-driven ankle rehabilitation robot. Sensors (Switzerland). 2018;18(1):1-21.
  • Ayas MS, Altas IH, Sahin E. Fractional order based trajectory tracking control of an ankle rehabilitation robot. Trans Inst Meas Control. 2018;40(2):550–564.
  • Rastegarpanah A, Rakhodaei H, Saadat M. Path-planning of a hybrid parallel robot using stiffness and workspace for foot rehabilitation. Adv Mech Eng. 2018;10(1):168781401775415.
  • Du Y, Li R, Li D. An ankle rehabilitation robot based on 3-RRS spherical parallel mechanism. Adv Mech Eng. 2017;9(8):1–8.
  • M Technology. 2020. [cited 2020 Aug]. Available from: https://www.movendo.technology/en/hunova/.
  • Ao D, Song R, Gao J. Movement performance of human-robot cooperation control based on EMG-driven hill-type and proportional models for an ankle power-assist exoskeleton robot. IEEE Trans Neural Syst Rehabil Eng. 2017;25(8):1125–1134.
  • Formaggio E, Masiero S, Bosco A. Quantitative EEG evaluation during robot-assisted foot movement. IEEE Trans Neural Syst Rehabil Eng. 2017;25(9):1633–1640.
  • Kwon J, Park JH, Ku S. A soft wearable robotic ankle-foot-orthosis for post-stroke patients. IEEE Rob Autom Lett. 2019;4(3):2547–2552.
  • Lerner ZF, Harvey TA, Lawson JL. A battery-powered ankle exoskeleton improves gait mechanics in a feasibility study of individuals with cerebral palsy. Ann Biomed Eng. 2019;47(6):1345–1356.
  • Lerner ZF, Gasparri GM, Bair MO. An untethered ankle exoskeleton improves walking economy in a pilot study of individuals with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2018;26(10):1985–1993.
  • Zhang Y, Nolan KJ, Zanotto D. Oscillator-based transparent control of an active/semiactive ankle-foot orthosis. IEEE Rob Autom Lett. 2019;4(2):247–253.
  • Steele KM, Jackson RW, Shuman BR. Muscle recruitment and coordination with an ankle exoskeleton. J Biomech. 2017;59:50–58.
  • Yeung LF, Ockenfeld C, Pang MK. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis. J Neuroeng Rehabil. 2018;15(1). DOI:10.1186/s12984-018-0394-7
  • Boes MK, Bollaert RE, Kesler RM. Six-minute walk test performance in persons with multiple sclerosis while using passive or powered ankle-foot orthoses. Arch Phys Med Rehabil. 2018;99(3):484–490.
  • Low FZ, Lim JH, Yeow CH. Design, characterisation and evaluation of a soft robotic sock device on healthy subjects for assisted ankle rehabilitation. J Med Eng Technol. 2018;42(1):26–34.
  • Galle S, Malcolm P, Collins SH. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. J Neuroeng Rehabil. 2017;14(1). DOI:10.1186/s12984-017-0235-0
  • Choi H, Park YJ, Seo K. A Multifunctional ankle exoskeleton for mobility enhancement of gait-impaired individuals and seniors. IEEE Rob Autom Lett. 2018;3(1):411–418.
  • Erdogan A, Celebi B, Satici AC. Assist On-Ankle: a reconfigurable ankle exoskeleton with series-elastic actuation. Auton Rob. 2017;41(3):743–758.
  • Malcolm P, Lee S, Crea S. Varying negative work assistance at the ankle with a soft exosuit during loaded walking. J Neuroeng Rehabil. 2017;14(1). DOI:10.1186/s12984-017-0267-5
  • Siviy C, Bae J, Baker L. Offline assistance optimization of a soft exosuit for augmenting ankle power of stroke survivors during walking. IEEE Rob Autom Lett. 2020;5(2):828–835.
  • Ren Y, Wu YN, Yang CY. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2017;25(6):589–596.
  • Van Dijk W, Meijneke C, Van Der Kooij H. Evaluation of the achilles ankle exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2017;25(2):151–160.
  • Huo W, Arnez-Paniagua V, Ding G. Adaptive proxy-based controller of an active ankle foot orthosis to assist lower limb movements of paretic patients. Robotica. 2019;37(12):2147–2164.
  • Meng W, Xie SQ, Liu Q. Robust iterative feedback tuning control of a compliant rehabilitation robot for repetitive ankle training. IEEE ASME Trans Mechatron. 2017;22(1):173–184.
  • Choi TY, Choi BS, Seo KH. Position and compliance control of a pneumatic muscle actuated manipulator for enhanced safety. IEEE Trans Control Syst Technol. 2011;19(4):832–842.
  • Slotine J-JE, Li W. Applied nonlinear control. Prentice-Hall: Englewood Cliffs, New Jersey; 1991.
  • Ayas MS, Altas IH. Designing and implementing a plug-in type repetitive controller for a redundantly actuated ankle rehabilitation robot Proceedings of the Institution of Mechanical Engineers Part I. J Sys Cnt Eng. 2018;232(5):592–607.
  • Jamwal PK, Hussain S, Ghayesh MH. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot. IEEE Trans Ind Electron. 2016;63(6):3638–3647.
  • Jamwal PK, Hussain S, Ghayesh MH. Adaptive impedance control of parallel ankle rehabilitation robot. J Dyn Syst Meas Control Trans ASME. 2017;139(11). 10.1115/1.4036560
  • Hogan N. Impedance control: an approach to manipulation. J Dynamic Syst Meas Control. 1985;107(1):1–23.
  • Jamwal PK, Hussain S, Tsoi YH. Musculoskeletal modelling of human ankle complex: estimation of ankle joint moments. Clin Biomech. 2017;44:75–82.
  • Riener R, Lunenburger L, Jezernik S. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005 Sep. ;13(3):380–394.
  • Jezernik S, Colombo G, Morari M. “Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Rob Autom. 2004 Jun. ;20(3):574–582.
  • Pérez-Ibarra JC, Siqueira AAG, Silva-Couto MA. Adaptive impedance control applied to robot-aided neuro-rehabilitation of the ankle. IEEE Rob Autom Lett. 2019;4(2):185–192.
  • Ayas MS, Altas IH. Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot. Control Eng Pract. 2017;59:44–54.
  • Yin K, Xiang K, Pang M. Personalised control of robotic ankle exoskeleton through experience-based adaptive fuzzy inference. IEEE Access. 2019;7:72221–72233.
  • Gasparri GM, Luque J, Lerner ZF. Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance. IEEE Trans Neural Syst Rehabil Eng. 2019;27(4):751–759.
  • N. H. a. M. R. C. (NHMRC). How to use the evidence: assessment and application of scientific evidence. Australia NHMRC: Canberra; 2000.
  • Silva-Couto MA, Siqueira AAG, Santos GL. Ankle torque steadiness and gait speed after a single session of robot therapy in individuals with chronic hemiparesis: a pilot study. Top Stroke Rehabil. 2019;26(8):630–638.
  • Vallery H, Veneman J, van Asseldonk E. Compliant actuation of rehabilitation robots. IEEE Rob Autom Mag. 2008;15(3):60–69.
  • Zanotto D, Akiyama Y, Stegall P. Knee joint misalignment in exoskeletons for the lower extremities: effects on user’s gait. IEEE Trans Rob. 2015;31(4):978–987.
  • Vallery H, Van Asseldonk EHF, Buss M. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):23–30.
  • Jamwal PK, Hussain S, Tsoi YH, et al., Musculoskeletal model for path generation and modification of an ankle rehabilitation robot. IEEE Trans Human-Mach Syst. 2020;50(5):373–383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.