347
Views
3
CrossRef citations to date
0
Altmetric
Review

Acute symptomatic neonatal seizures, brain injury, and long-term outcome: The role of neuroprotective strategies

, , &
Pages 189-203 | Received 08 Sep 2020, Accepted 05 Nov 2020, Published online: 06 Dec 2020

References

  • Pisani F, Facini C, Bianchi E, et al. Incidence of neonatal seizures, perinatal risk factors for epilepsy and mortality after neonatal seizures in the province of Parma, Italy. Epilepsia. 2018;59(9):1764–1773.
  • Pisani F, Fusco C, Spagnoli C. Linking acute symptomatic neonatal seizures, brain injury and outcome in preterm infants. Epilepsy Behav. 2020;112:107406.
  • Vasudevan C, Levene M. Epidemiology and aetiology of neonatal seizures. Semin Fetal Neonatal Med. 2013;18(4):185–191.
  • Clancy RR, Legido A. The exact ictal and interictal duration of electroencephalographic neonatal seizures. Epilepsia. 1987;28(5):537–541.
  • Volpe JJ. Neonatal seizures: Current concepts and revised classification. Pediatrics. 1989;84:422–428.
  • Lombroso CT. Neonatal seizures: Historic note and present controversies. Epilepsia. 1996;37(s3):5–13.
  • Mizrahi EM, Kellaway P. Characterization and classification of neonatal seizures. Neurology. 1987;37(12):1837–1844.
  • Nagarajan L, Palumbo L, Ghosh S. Classification of clinical semiology in epileptic seizures in neonates. Eur J Paediatr Neurol. 2012;16(2):118–125.
  • Pisani F, Pavlidis E. The role of electroencephalogram in neonatal seizure detection. Expert Rev Neurother. 2018;18:95-100.
  • Rakshasbhuvankar A, Rao S, Palumbo L, et al. Amplitude integrated electroencephalography compared with conventional video eeg for neonatal seizure detection: A diagnostic accuracy study. J Child Neurol. 2017;32(9):815–822.
  • Nagarajan L, Ghosh S, Palumbo L. Ictal electroencephalograms in neonatal seizures: Characteristics and associations. Pediatr Neurol. 2011;45(1):11–16.
  • Murray DM, Boylan GB, Ali I, et al. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal.Fetal Neonatal Ed. 2008;93:F187-91.
  • Malone A, Ryan CA, Fitzgerald A, et al. Interobserver agreement in neonatal seizure identification. Epilepsia. 2009;50(9):2097–2101.
  • McBride MC, Laroia N, Guillet R. Electrographic seizures in neonates correlate with poor neurodevelopmental outcome. Neurology. 2000;55(4):506–513.
  • Shellhaas RA, Chang T, Tsuchida T, et al. The american clinical neurophysiology society’s guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011;28(6):611–617.
  • Slaughter LA, Patel AD, Slaughter JL. Pharmacological treatment of neonatal seizures: a systematic review. J Child Neurol. 2013;28(3):351–364.
  • Sharpe C, Reiner GE, Davis SL, et al. NEOLEV2 INVESTIGATORS. LevetiracetamVersus Phenobarbital for Neonatal Seizures: A randomized controlled trial. Pediatrics. 2020;145(6):e20193182.
  • Painter MJ, Scher MS, Stein AD, et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N Engl J Med. 1999;341(7):485–489.
  • Spagnoli C, Seri S, Pavlidis E, et al. Phenobarbital for neonatal seizures: Response rate and predictors of refractoriness. Neuropediatrics. 2016;47(5):318–326.
  • Glass HC, Shellhaas RA, Tsuchida TH, et al. Seizures in preterm neonates: A multicenterobservational cohort study. Pediatr Neurol. 2017;72(72):19–24.
  • Boylan GB, Rennie JM, Pressler RM, et al. Phenobarbitone, neonatal seizures, and video- EEG. Arch Dis Child Fetal Neonatal Ed. 2002;86(3):F165–70.
  • Glass HC, Costarino AT, Stayer SA, et al. Outcomes for extremely premature infants. Anesth Analg. 2015;120(6):1337–1351.
  • Andreolli A, Turco EC, Pedrazzi G, et al. Incidence of epilepsy after neonatal seizures: Apopulation-based study. Neuroepidemiology. 2019;52(3–4):144–151.
  • Pisani F, Facini C, Pavlidis E, et al. Epilepsy after neonatal seizures: Literature review. Eur J Paediatr Neurol. 2015;19(1):6–14.
  • Pisani F, Barilli AM, Sisti L, et al. Preterm infants with video-EEG confirmed seizures: Outcome at 30 months of age. Brain Dev. 2008;30(1):20–30.
  • Pisani F, Copioli C, Di Gioia C, et al. Neonatal seizures: Relation of ictal videoelectroencephalography findings with neurodevelopmental outcome. J Child Neurol. 2008;23:394–398.
  • Pisani F, Facini C, Pelosi A, et al. Neonatal seizures in preterm newborns: A predictive model for outcome. Eur J Paediatr Neurol. 2016;20(2):243–251.
  • Dwivedi D, Lin N, Venkatesan C, et al. Clinical, neuroimaging, and electrographicpredictors of phenobarbital failure in newborns with hypoxic ischemic encephalopathy and seizures. J Child Neurol. 2019;34(8):458–463.
  • Pisani F, Sisti L, Seri S. A scoring system for early prognostic assessment after neonatal seizures. Pediatrics. 2009;124(4):580–587.
  • Garfinkle J, Shevell MI. Prognostic factors and development of a scoring system for outcome of neonatal seizures in term infants. Eur J Paediatr Neurol. 2011;15(3):222–229.
  • Johnston MV, Fatemi A, Wilson MA, et al. Treatment advances in neonatal neuroprotection and neurointensive care. Lancet Neurol. 2011;10(4):372–382.
  • Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976;33(10):696–705.
  • Hope PL, Costello AM, Cady EB, et al. Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet. 1984;2(8399):366–370.
  • Hope PL, Reynolds EO. Investigation of cerebral energy metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Clin Perinatol. 1985;12:261–275.
  • Ferriero DM. Neonatal brain injury. N Engl J Med. 2004;351(19):1985–1995.
  • Johnston MV. Excitotoxicity in perinatal brain injury. Brain Pathol. 2005;15(3):234–240.
  • Johnston MV, Trescher WH, Ishida A, et al. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatric Res. 2001;49(6):735–741.
  • Ben-Ari Y, Holmes GL. Effects of seizures on developmental processes in the immature brain. Lancet Neurol. 2006;5(12):1055–1063.
  • Jensen FE. The role of glutamate receptor maturation in perinatal seizures and brain injury. Int J Dev Neurosci. 2002;20(3–5):339–347.
  • Volpe JJ. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–124.
  • Kidokoro H, Anderson PJ, Doyle LW, et al. Brain injury and altered brain growth in preterm infants: Predictors and prognosis. Pediatrics. 2014;134(2):e444–53.
  • Vesoulis ZA, Mathur AM, Autoregulation C, et al. the Transitioning Premature Infant. Front Pediatr. 2017;5:64.
  • Lein ES, Finney EM, McQuillen PS, et al. Subplate neuron ablation alters neurotrophin expression and ocular dominance column formation. Proc Natl Acad Sci USA. 1999;96(23):13491–13495.
  • McQuillen PS, Sheldon RA, Shatz CJ, et al. Selective vulnerability of subplate neurons after early neonatal hypoxiaischemia. J Neurosci. 2003;23(8):3308–3315.
  • Fleiss B, Tann CJ, Degos V, et al. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol. 2015;57:17–28.
  • Pisani F, Cerminara C, Fusco C, et al. Neonatal status epilepticus vs recurrent neonatal seizures: Clinical findings and outcome. Neurology. 2007;69:2177–2185.
  • Nunes ML, Yozawitz EG, Zuberi S, et al. Neonatal seizures: Is there a relationship between ictal electroclinical features and etiology? A critical appraisal based on a systematic literature review. Epilepsia Open. 2019;4(1):10–29.
  • Glass HC, Shellhaas RA, Wusthoff CJ, et al. Contemporary profile of seizures in neonates: A prospective cohort study. J Pediatr. 2016;174:98–103.
  • Pavlidis E, Spagnoli C, Pelosi A, et al. Neonatal status epilepticus: Differences between preterm and term newborns. Eur J Paediatr Neurol. 2015;19(3):314–319.
  • Herman ST. Epilepsy after brain insult: Targeting epileptogenesis. Neurology. 2002;59(Issue 9, Supplement 5):S21–26.
  • Harris ML, Malloy KM, Lawson SN, et al. Standardized treatment of neonatal status epilepticus improves outcome. J Child Neurol. 2016;31(14):1546–1554.
  • De Haan TR, Langeslag J, van der Lee JH, et al. A systematic review comparing neurodevelopmental outcome in term infants with hypoxic and vascular brain injury with and without seizures. BMC Pediatr. 2018;18(1):147.
  • Kharoshankaya L, Stevenson NJ, Livingstone V, et al. Seizure burden and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy. Dev Med Child Neurol. 2016;58(12):1242–1248.
  • Fox CK, Mackay MT, Dowling MM, et al. Prolonged or recurrent acute seizures after pediatric arterial ischemic stroke are associated with increasing epilepsy risk. Dev Med Child Neurol. 2017;59(1):38–44.
  • van Rooij LG, Toet MC, van Huffelen AC, et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: Randomized, controlled trial. Pediatrics. 2010;125(2):e358–66.
  • Glass HC, Glidden D, Jeremy RJ, et al. Clinical neonatal seizures are independently associated with outcome in infants at risk for hypoxic-ischemic brain injury. J Pediatr. 2009;155(3):318–323.
  • Ramantani G, Schmitt B, Plecko B, et al. Neonatal Seizures-Are We there Yet? Neuropediatrics. 2019;50(5):280–293 .
  • Pisani F, Pavlidis E. What is new: Talk about status epilepticus in the neonatal period. Eur J Paediatr Neurol. 2018;22:757-762..
  • Perlman JM, Volpe JJ. Seizures in the preterm infant: Effects on cerebral blood flow velocity, intracranial pressure, and arterial blood pressure. J Pediatr. 1983;102(2):288‐93.
  • Boylan GB, Panerai RB, Rennie JM, et al. Cerebral blood flow velocity during neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 1999;80(2):F105‐F110.
  • Shuhaiber H, Bolton S, Alfonso I, et al. Cerebral regional oxygen fluctuations and decline during clinically silent focal electroencephalographic seizures in a neonate. J Child Neurol. 2004;19:539‐540.
  • Boylan GB, Young K, Panerai RB, et al. Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res. 2000;48(1):12‐7.
  • Pourcyrous M, Basuroy S, Tcheranova D, et al. Brain-derived circulating endothelial cells in peripheral blood of newborn infants with seizures: A potential biomarker for cerebrovascular injury. Physiol Rep. 2015;3(3):e12345.
  • Murray DM, Boylan GB, Fitzgerald AP, et al. Persistent lactic acidosis in neonatal hypoxic-ischaemic encephalopathy correlates with EEG grade and electrographic seizure burden. Arch Dis Child Fetal Neonatal Ed. 2008;93(3):F183–6.
  • Fernandez F, Verdu A, Quero J, et al. Cerebrospinal fluid lactate levels in term infants with perinatal hypoxia. Pediatr Neurol. 1986;2(1):39–42.
  • Hanrahan JD, Cox IJ, Azzopardi D, et al. Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol. 1999;41(2):76–82.
  • Hanrahan JD, Cox IJ, Edwards AD, et al. Persistent increases in cerebral lactate concentration after birth asphyxia. Pediatr Res. 1998;44(3):304–311.
  • Zimmermann A, Domoki F, Bari F. Seizure-induced alterations in cerebrovascular function in the neonate. Dev Neurosci. 2008;30(5):293‐305.
  • Miller SP, Weiss J, Barnwell A, et al. Seizure- associated brain injury in term newborns with perinatal asphyxia. Neurology. 2002;58(4):542–548.
  • Wirrell EC. Neonatal seizures: To treat or not to treat? Semin Pediatr Neurol. 2005;12(2):97–105.
  • Ikeda T, Murata Y, Quilligan EJ, et al. Foetal heart rate patterns in post-asphyxiated foetal lambs with brain damage. Am J Obstet Gynecol. 1998;179(5):1330–1337.
  • Yager JY, Armstrong EA, Mujashita H, et al. Prolonged neonatal seizures exacerbate hypoxic-ischaemic brain damage: Correlation with cerebral energy metabolism and excitatory amino acid release. Dev Neurosci. 2002;24(5):367–381.
  • Zhang G, Raol YH, Hsu FC, et al. Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience. 2004;125(2):299–303.
  • Zhang G, Raol YS, Hsu FC, et al. Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J Neurochem. 2004;88(1):91–101.
  • McCabe BK, Silveira DC, Cilio MR, et al. Reduced neurogenesis after neonatal seizures. J Neurosci. 2001;21(6):2094–2103.
  • Liu Z, Yang Y, Silveira DC, et al. Consequences of recurrent seizures during early brain development. Neuroscience. 1999;92(4):1443–1454.
  • Holmes GL, Gairsa JL, Chevassus-Au-Louis N, et al. Consequences of neonatal seizures in the rat: morphological and behavioral eff ects. Ann Neurol. 1998;44(6):845–857.
  • Holmes GL, Sarkisian M, Ben-Ari Y, et al. Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol. 1999;404:537–553.
  • Bickler PE, Gallego SM, Hansen BM. Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia. J Cereb Blood Flow Metab. 1993;13(5):811–819.
  • Marks JD, Friedman JE, Haddad GG. Vulnerability of CA1 neurons to glutamate is developmentally regulated. Brain Res Dev Brain Res. 1996;97(2):194–206.
  • Patel M, Li QY. Age dependence of seizure-induced oxidative stress. Neuroscience. 2003;118(2):431–437.
  • Stafstrom CE. Mother’s milk protects the immature brain from seizure-induced cell death. Epilepsy Curr. 2003;3(4):144–145.
  • Parfenova H, Leffler CW, Basuroy S, et al. Antioxidant roles of heme oxygenase, carbon monoxide, and bilirubin in cerebral circulation during seizures. J Cereb Blood Flow Metab. 2012;32(6):1024–1034.
  • Volpe JJ. Dysmaturation of premature brain: Importance, cellular mechanisms, and potential interventions. Pediatr Neurol. 2019;95:42–66.
  • Ghosh S. Development of the neonatal cerebral cortex. In: Nagarajan L, editor. Neonatal seizures. Current management and future challenges. Mc Keith Press; 2016:1-11.
  • Wyckoff MH, Aziz K, Escobedo MB, et al. Part 13: Neonatal resuscitation: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 suppl 2):S543–S560.
  • Azzopardi D, Strohm B, Marlow N, et al. TOBY Study Group. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med. 2014;371:140–149.
  • Guillet R, Edwards AD, Thoresen M, et al. Seven- to eight-year follow-up of the CoolCap trial of head cooling for neonatal encephalopathy. Pediatr Res. 2012;71(2):205–209.
  • Edwards AD, Brocklehurst P, Gunn AJ, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: Synthesis and meta-analysis of trial data. BMJ. 2010;340(feb09 3):c363.
  • Liu X, Jary S, Cowan F, et al. Reduced infancy and childhood epilepsy following hypothermia-treated neonatal encephalopathy. Epilepsia. 2017;58(11):1902.
  • Gunn AJ, Thoresen M. Hypothermic neuroprotection. NeuroRx. 2006;3(2):154–169.
  • Jacobs SE, Berg M, Hunt R, et al. Cooling for newborns with hypoxic-ischemic encephalopathy. Cochrane Database Syst Rev. 2013;1:CD003311.
  • Shah PS. Hypothermia: A systematic review and meta-analysis of clinical trials. Semin Fetal Neonatal Med. 2010;15:238-46..
  • Low E, Boylan GB, Mathieson SR, et al. Cooling and seizure burden in term neonates: An observational study. Arch Dis Child Fetal Neonatal Ed. 2012;97(4):F267–F272.
  • Srinivasakumar P, Zempel J, Wallendorf M, et al. Therapeutic hypothermia in neonatal hypoxic ischemic encephalopathy: Electrographic seizures and magnetic resonance imaging evidence of injury. J Pediatr. 2013;163(2):465–470.
  • Harbert MJ, Tam EW, Glass HC, et al. Hypothermia is correlated with seizure absence in perinatal stroke. J Child Neurol. 2011;26(9):1126–1130.
  • Orbach SA, Bonifacio SL, Kuzniewicz MW, et al. Lower incidence of seizure among neonates treated with therapeutic hypothermia. J Child Neurol. 2014;29(11):1502–1507.
  • Thoresen M, Satas S, Løberg EM, et al. Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxicischemic insult is not neuroprotective. Pediatr Res. 2001;50(3):405–411.
  • Roelfsema V, Bennet L, George S, et al. Window of opportunity of cerebral hypothermia for post-ischemic white matter injury in the near-term fetal sheep. J Cereb Blood Flow Metab. 2004;24(8):877–886.
  • Hammerman C, Kaplan M. Ischemia and reperfusion injury. The ultimate pathophysiologic paradox. Clin Perinatol. 1998;25(3):757–777.
  • Smit E, Liu X, Jary S, et al. Cooling neonates who do not fulfil the standard cooling criteria - short- and longterm outcomes. Acta Paediatr. 2015;104(2):138–145.
  • Herrera TI, Edwards L, Malcolm WF, et al. Outcomes of preterm infants treated with hypothermia for hypoxic-ischemic encephalopathy. Early Hum Dev. 2018;125:1–7.
  • Rao R, Trivedi S, Vesoulis Z, et al. Safety and short-term outcomes of therapeutic hypothermia in preterm neonates 34-35 weeks gestational age with hypoxic-ischemic encephalopathy. J Pediatr. 2017;183:37–42.
  • Lee JK, Poretti A, Perin J, et al. Optimizing cerebral autoregulation may decrease neonatal regional hypoxic-ischemic brain injury. Dev Neurosci. 2017;39(1–4):248–256.
  • Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative- stress related brain injury in neonatal asphyxia. Free Radic Biol Med. 2019;142:113–122.
  • Palmer C, Towfighi J, Roberts RL, et al. Allopurinol administered after inducing hypoxia-ischemia reduces brain injury in 7-day-old rats. Pediatr Res. 1993;33:405–411.
  • Van Bel F, Shadid M, Moison RM, et al. Effect of allopurinol on postasphyxial free radical formation, cerebral hemodynamics, and electrical brain activity. Pediatrics. 1998;101(2):185.
  • Gunes T, Ozturk MA, Koklu E, et al. Effect of allopurinol supplementation on nitric oxide levels in asphyxiated newborns. Pediatr Neurol. 2007;36(1):17–24.
  • Kaandorp JJ, Van Bel F, Veen S, et al. Long-term neuroprotective effects of allopurinol after moderate perinatal asphyxia: Follow-up of two randomised controlled trials. Arch Dis Child Fetal Neonatal Ed. 2012;97:F162-6.
  • Klumper J, Kaandorp JJ, Schuit E, et al. Behavioral and neurodevelopmental outcome of children after maternal allopurinol administration during suspected fetal hypoxia: 5-Year follow up of the ALLO-trial. PLoS One. 2018;13(8):e0201063.
  • Azzopardi D, Robertson NJ, Kapetanakis A, et al. Anticonvulsant effect of xenon on neonatal asphyxial seizures. Arch Dis Child Fetal Neonatal Ed. 2013;98(5):F437–9.
  • Goldenberg RL, Rouse DJ. Preterm birth, cerebral palsy and magnesium. Nat Med. 1997;3(2):146–147.
  • Nowak L, Bregestovski P, Ascher P. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307(5950):462–465.
  • Bhat MA, Charoo BA, Bhat JI, et al. Magnesium sulfate in severe perinatal asphyxia: A randomized, placebo-controlled trial. Pediatrics. 2009;123(5):e764–9.
  • Khashaba MT, Shouman BO, Shaltout AA, et al. Excitatory amino acids and magnesium sulfate in neonatal asphyxia. Brain Dev. 2006;28(6):375–379.
  • Ichiba H, Yokoi T, Tamai H, et al. Neurodevelopmental outcome of infants with birth asphyxia treated with magnesium sulfate. Pediatr Int. 2006;48(1):70–75.
  • Gathwala G, Khera A, Singh J, et al. Magnesium for neuroprotection in birth asphyxia.
  • Groenendaal F, Rademaker CM, Toet MC, et al. Effects of magnesium sulphate on amplitude-integrated continuous EEG in asphyxiated term neonates. Acta Paediatr. 2002;91(10):1073–1077.
  • Tagin M, Shah PS, Lee KS. Magnesium for newborns with hypoxic-ischemic encephalopathy: A systematic review and meta-analysis. J Perinatol. 2013;33(9):663–669.
  • Jung EJ, Byun JM, Kim YN, et al. Antenatal magnesium sulfate for both tocolysis and fetal neuroprotection in premature rupture of the membranes before 32 weeks’ gestation. J Matern Fetal Neonatal Med. 2018;31(11):1431–1441.
  • Alonso-Alconada D, Alvarez A, Arteaga O, et al. Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia. Int J Mol Sci. 2013;14(5):9379–9395.
  • Reiter RJ, Tan DX, Osuna C, et al. Actions of melatonin in the reduction of oxidative stress: A review. J Biomed Sci. 2000;7:444–458.
  • Fulia F, Gitto E, Cuzzocrea S, et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: Reduction by melatonin. J Pineal Res. 2001;31(4):343–349.
  • Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol. 2010;80(12):1844–1852.
  • Mayo JC, Sainz RM, Tan DX, et al. Antiinflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5- methoxykynuramine (AFMK) and N1-acetyl-5- methoxykynuramine (AMK), in macrophages. J Neuroimmunol. 2005;165(1–2):139–149.
  • Kaur C, Sivakumar V, Lu J, et al. Melatonin attenuates hypoxia-induced ultrastructural changes and increased vascular permeability in the developing hippocampus. Brain Pathol. 2008;18:533–547.
  • Aly H, Elmahdy H, El-Dib M, et al. Melatonin use for neuroprotection in perinatal asphyxia: A randomized controlled pilot study. J Perinatol. 2015;35(3):186–191.
  • Jantzie LL, Miller RH, Robinson S. Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr Res. 2013;74(6):658–667.
  • Felderhoff-Mueser U, Bittigau P, Sifringer M, et al. causes cell death in the developing brain. Neurobiol Dis. 2004;17(2):273–282.
  • Brehmer F, Bendix I, Prager S, et al. Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage. PLoS One. 2012;7:1–13.
  • Gerstner B, DeSilva TM, Genz K, et al. Hyperoxia causes maturation-dependent cell death in the developing white matter. J Neurosci. 2008;28(5):1236–1245.
  • Serdar M, Herz J, Kempe K, et al. Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia. Brain Behav Immun. 2016;52:106–119.
  • Hoeber D, Sifringer M, van de Looij Y, et al. Erythropoietin Restores Long-Term.
  • Juul SE, McPherson RJ, Bauer LA, et al. A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. Pediatrics. 2008;122(2):383–391.
  • Fauchère J-C, Dame C, Vonthein R, et al. An approach to using recombinant erythropoietin for neuroprotection in very preterm infants. Pediatrics. 2008;122(2):375–382.
  • Rogers EE, Bonifacio SL, Glass HC, et al. Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy. Pediatr Neurol. 2014;51(5):657–662.
  • McAdams RM, McPherson RJ, Mayock DE, et al. Outcomes of extremely low birth weight infants given early high-dose erythropoietin. J Perinatol. 2013;33(3):226–230.
  • Leuchter RH, Gui L, Poncet A, et al., Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age. JAMA. 312(8): 817–824. 2014.
  • Jakab A, Ruegger C, Bucher HU, et al. Swiss EPO neuroprotection trial group. network based statistics reveals trophic and neuroprotective effect of early high dose erythropoetin on brain connectivity in very preterm infants. Neuroimage Clin. 2019;22:101806.
  • Juul SE, Comstock BA, Wadhawan R, et al. PENUT trial consortium. a randomized trial of erythropoietin for neuroprotection in preterm infants. N Engl J Med. 2020;382:233–243.
  • Shingo T, Sorokan ST, Shimazaki T, et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci. 2001;21:9733–9743.
  • Osredkar D, Sall JW, Bickler PE, et al. Erythropoietin promotes hippocampal neurogenesis in in vitro models of neonatal stroke. Neurobiol Dis. 2010;38(2):259–265.
  • Gonzalez FF, McQuillen P, Mu D, et al. Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci. 2007;29(4–5):321–330.
  • Sola A, Wen T-C, Hamrick SEG, et al. Potential for protection and repair following injury to the developing brain: a role for erythropoietin? Pediatr Res. 2005;57:110R–7R.
  • Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004;35(7):1732–1737.
  • Gonzalez FF, Abel R, Almli CR, et al. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci. 2009;31(5):403–411.
  • Larpthaveesarp A, Georgevits M, Ferriero DM, et al. Delayed erythropoietin therapy improves histological and behavioral outcomes after transient neonatal stroke. Neurobiol Dis. 2016;93:57–63.
  • Brion LP, Bell EF, Raghuveer TS. Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2003;16(4):CD003665.
  • Mathew OP. Apnea of prematurity: pathogenesis and management strategies. J Perinatol. 2011;31:302–310.
  • Rivkees SA, Wendler CC. Adverse and protective influences of adenosine on the newborn and embryo: Implications for preterm white matter injury and embryo protection. Pediatr Res. 2011;69:271-8.
  • Silva CG, Métin C, Fazeli W, et al. Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Sci Transl Med. 2013;5(197):197ra104.
  • Fleiss B, Tann CJ, Degos V, et al. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol. 2015;57(Suppl 3):17–28.
  • Fazeli W, Zappettini S, Marguet SL, et al. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice. Exp Neurol. 2017;295:88–103.
  • Vesoulis ZA, McPherson C, Neil JJ, et al. Early high-dose caffeine increases seizure burden in extremely preterm neonates: A preliminary study. J Caffeine Res. 2016;6:101–107.
  • Dix LML, van Bel F, Baerts W, et al. Effects of caffeine on the preterm brain: An observational study. Early Hum Dev. 2018;120:17–20.
  • Hoecker C, Nelle M, Poeschl J, et al. Caffeine impairs cerebral and intestinal blood flow velocity in preterm infants. Pediatrics. 2002;109(5):784–787.
  • Endesfelder S, Weichelt U, Schiller C, et al. Caffeine protects against anticonvulsant induced impaired neurogenesis in the developing rat brain. Neurotox Res. 2018;34:173–187.
  • Wagenaar N, de Theije CGM, de Vries LS, et al. Promoting neuroregeneration after perinatal arterial ischemic stroke: neurotrophic factors and mesenchymal stem cells. Pediatr Res. 2018;83(1–2):372–384.
  • Wei ZZ, Gu X, Ferdinand A, et al. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 2015;;24:391-402.
  • Van Velthoven CTJ, Kavelaars A, van Bel F, et al. Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav Immun. 2011;25(7):1342–1348.
  • Stanne TM, Aberg ND, Nilsson S, et al. Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. Stroke. 2016;47(7):1943–1945.
  • El Shimi MS, Hassanein SMA, Mohamed MH, et al. Predictive value of vascular endothelial growth factor in preterm neonates with intraventricular haemorrhage. J Matern Fetal Neonatal Med. 2012;25(9):1586–1590.
  • Koehne P, Hochhaus F, Felderhoff-Mueser U, et al. Vascular endothelial growth factor and erythropoietin concentrations in cerebrospinal fluid of children with hydrocephalus. Childs Nerv Syst. 2002;18(3–4):137–141.
  • Imam SS, Gad GI, Atef SH, et al. Cord blood brain derived neurotrophic factor: Diagnostic and prognostic marker in full-term newborns with perinatal asphyxia. Pak J Biol Sci. 2009;12(23):1498–1504.
  • Cotten CM, Murtha AP, Goldberg RN, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164(973):e1–9.e1.
  • Shimotake J, Derugin N, Wendland M, et al. Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke. 2010;41(2):343–349.
  • Kim ES, Ahn SY, Im GH, et al. Human umbilical cord blood-derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats. Pediatr Res. 2012;72(3):277–284.
  • Scafidi J, Hammond TR, Scafidi S, et al., Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature. 2014; 506(7487): 230e234.
  • Wood TL, Loladze V, Altieri S, et al. Delayed IGF-1 administration rescues oligodendrocyte progenitors from glutamate-induced cell death and hypoxic-ischemic brain damage. Dev Neurosci. 2007;29(4–5):302e310.
  • Zhong J, Zhao L, Du Y, et al. Delayed IGF-1 treatment reduced long-term hypoxia-ischemia- induced brain damage and improved behavior recovery of immature rats. Neurol Res. 2009;31(5):483e89.
  • Oppliger B, Joerger-Messerli M, Mueller M, et al. Intranasal delivery of umbilical cord-derived mesenchymal stem cells preserves myelination in perinatal brain damage. Stem Cells Dev. 2016;25:1234-42.
  • Chen LX, Ma SM, Zhang P, et al. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury. PLoS One. 2015;10(3):e0115997.
  • El-Dib M, Soul JS. The use of phenobarbital and other anti-seizure drugs in newborns. Semin Fetal Neonatal Med. 2017;22(5):321–327.
  • Van Den Broek MPH, Groenendaal F, Toet MC, et al. Pharmacokinetics and clinical efficacy of phenobarbital in asphyxiated newborns treated with hypothermia: A thermopharmacological approach. Clin Pharmacokinet. 2012;51(10):671e9.
  • Shellhaas RA, Ng CM, Dillon CH, et al. Population pharmacokinetics of phenobarbital in infants with neonatal encephalopathy treated with therapeutic hypothermia. Pediatr Crit Care Med. 2013;14(2):194e202.
  • Bittigau P, Sifringer M, Genz K, et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Nat Acad Sci U S A. 2002;99:15089e94.
  • Forcelli PA, Kim J, Kondratyev A, et al. Pattern of antiepileptic drug-induced cell death in limbic regions of the neonatal rat brain. Epilepsia. 2011;52(12):E207e11.
  • Kaushal S, Tamer Z, Opoku F, et al. Anticonvulsant drug-induced cell death in the developing white matter of the rodent brain. Epilepsia. 2016;57(5):727e34.
  • Hellstrom-Westas L, Boylan G, Agren J. Systematic review of neonatal seizure management strategies provides guidance on anti-epileptic treatment. Acta Paediatr. 2015;104(2):123e9.
  • Sarkar S, Barks JD, Bapuraj JR, et al. Does phenobarbital improve the effectiveness of therapeutic hypothermia in infants with hypoxic-ischemic encephalopathy? J Perinatol. 2012;32(1):15e20.
  • Young L, Berg M, Soll R. Prophylactic barbiturate use for the prevention of morbidity and mortality following perinatal asphyxia. Cochrane Database Syst Rev. 2016;5:CD001240.
  • Strasser K, Lueckemann L, Kluever V, et al. Dose-dependent effects of levetiracetam after hypoxia and hypothermia in the neonatal mouse brain. Brain Res. 2016;1646:116–124.
  • Arican P, Olgac Dundar N, Mete Atasever N, et al. Comparison of the neurocognitive outcomes in term infants treated with levetiracetam and phenobarbital monotherapy for neonatal clinical seizures. Seizure. 2020;80:71–77.
  • Rennie JM, de Vries LS, Blennow M, et al. Characterisation of neonatal seizures and their treatment using continuous EEG monitoring: A multicentre experience. Arch Dis Child Fetal Neonatal Ed. 2019;104(5):F493–F501.
  • Dzhala VI, Kuchibhotla KV, Glykys JC, et al. Progressive NKCC1-dependent neuronal chloride accumulation during neonatal seizures. J Neurosci. 2010;30(35):11745‐61.
  • Nardou R, Yamamoto S, Chazal G, et al. Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. Brain. 2011;134(4):987–1002.
  • Fitzgerald MP, Kessler SK, Abend NS. Early discontinuation of antiseizure medications in neonates with hypoxic-ischemic encephalopathy. Epilepsia. 2017;58(6):1047–1053.
  • Guillet R, Kwon J. Seizure recurrence and developmental disabilities after neonatal seizures: outcomes are unrelated to use of phenobarbital prophylaxis. J Child Neurol. 2007;22(4):389–395.
  • Guillet R, Kwon JM. Prophylactic phenobarbital administration after resolution of neonatal seizures: survey of current practice. Pediatrics. 2008;122(4):731–735.
  • Dixon BJ, Reis C, Ho WM, et al. Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int J Mol Sci. 2015;16(9):22368–22401.
  • Follet PL, Deng W, Dai W, et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: A protective role for topiramate. J Neurosci. 2004;24:4412e20.
  • Schubert S, Brandl U, Brodhun M, et al. Neuroprotective effects of topiramate after hypoxia ischemia in newborn piglets. Brain Res. 2005;1058(1–2):129e36.
  • Liu Y, Barks JD, Xu G, et al. Topiramate extends the therapeutic window for hypothermia mediated neuroprotection after stroke in neonatal rats. Stroke. 2004;35(6):1460e5.
  • Filippi L, Fiorini P, Catarzi S, et al. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI): A feasibility study. J Matern Fetal Neonatal Med. 2018;31(8):973–980.
  • Nuñez-Ramiro A, Benavente-Fernández I, Valverde E, et al. On behalf of the hypotop study group. topiramate plus cooling for hypoxic-ischemic encephalopathy: A randomized, controlled, multicenter, double-blinded trial. Neonatology. 2019;116:76–84.
  • Dzhala VI, Brumback AC, Staley KJ. Bumetanide enhances phenobarbital efficacy in a neonatal seizure model. Ann Neurol. 2008;63(2):222–235.
  • Cleary RT, Sun H, Huynh T, et al. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures. PLoS One. 2013;8(3):e57148.
  • Pressler RM, Boylan GB, Marlow N, et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol. 2015;14(5):469–477.
  • Brandt C, Seja P, Töllner K, et al. Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital’s anti-seizure efficacy. Neuropharmacology. 2018;143:186–204.
  • Raol YH, Lapides DA, Keating JG, et al. A KCNQ channel opener for experimental neonatal seizures and status epilepticus. Ann Neurol. 2009;65(3):326–336.
  • Sampath D, Shmueli D, White AM, et al. Flupirtine effectively prevents development of acute neonatal seizures in an animal model of global hypoxia. Neurosci Lett. 2015;607:46–51.
  • Kristensen LV, Sandager-Nielsen K, Hansen HH. Kv7 (KCNQ) channel openers induce hypothermia in the mouse. Neurosci Lett. 2011;488(2):178–182.
  • Bouyssi-Kobar M, Du Plessis AJ, McCarter R, et al. Third trimester brain growth in preterm infants compared with in utero healthy fetuses. Pediatrics. 2016;138:e20161640.
  • Lasky RE, Williams AL. Noise and light exposures for extremely low birth weight newborns during their stay in the neonatal intensive care unit. Pediatrics. 2009;123(2):540–546.
  • Pineda RG, Neil J, Dierker D, et al. Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. J Pediatr. 2014;164(52–60.e2):52–60.e2.
  • Schneider J, Duerden EG, Guo T, et al. Procedural pain and oral glucose in preterm neonates: brain development and sex-specific effects. Pain. 2018;159(3):515e525.
  • Kamino D, Studholme C, Liu M, et al. Postnatal polyunsaturated fatty acids associated with larger preterm brain tissue volumes and better outcomes. Pediatr Res. 2018;83(1):93e101.
  • Tam EW, Chau V, Barkovich AJ, et al. Early postnatal docosahexaenoic acid levels and improved preterm brain development. Pediatr Res. 2016;79:723e730.
  • Rose AL, Lombroso CT. A study of clinical, pathological, and electroencephalographic features in 137 full-term babies with a long-term follow-up. Pediatrics. 1970;45:404–425.
  • Pressler RM.From Channels to commissioning: a practical guide to epilepsy:Neonatal seizures;www.epilepsysociety.org.uk/sites/default/files/attachments/Chapter06Pressler2015.pdf.
  • Castro Conde JR, Hernández Borges AA, Doménech Martínez E, et al. Midazolam in neonatal seizures with no response to phenobarbital. Neurology. 2005;64(5):876–879.
  • van Leuven K, Groenendaal F, Toet MC, et al. Midazolam and amplitude-integrated EEG in asphyxiated full-term neonates. Acta Paediatr. 2004;93(9):1221–1227.
  • Abend NS, Gutierrez-Colina AM, Monk HM, et al. Levetiracetam for treatment of neonatal seizures. J Child Neurol. 2011;26:465–470.
  • Weeke LC, Toet MC, van Rooij LG, et al. Lidocaine response rate in aEEG-confirmed neonatal seizures: Retrospective study of 413 full-term and preterm infants. Epilepsia. 2016;57(2):233–242.
  • Glass HC, Poulin C, Shevell MI. Topiramate for the treatment of neonatal seizures. Pediatr Neurol. 2011;44(6):439–442.
  • Riesgo R, Winckler MI, Ohlweiler L, et al. Treatment of refractory neonatal seizures with topiramate. Neuropediatrics. 2012;43(6):353–356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.