296
Views
0
CrossRef citations to date
0
Altmetric
Review

Stereotaxic-assisted gene therapy in Alzheimer’s and Parkinson’s diseases: therapeutic potentials and clinical frontiers

, , , & ORCID Icon
Pages 319-335 | Received 04 Jun 2021, Accepted 10 Mar 2022, Published online: 13 Apr 2022

References

  • Dorsey ER, Elbaz A, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–953.
  • Tábuas-Pereira M, Santana I, Guerreiro R, et al. Alzheimer’s Disease Genetics: review of Novel Loci Associated with Disease. Current Genet Med Rep. 2020;8(1):1–16.
  • Blauwendraat C, Nalls MA, Singleton AB, et al. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19(2):170–178.
  • Kumar A, Singh A,E. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195–203.
  • Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci. 2021;24(1):1–15.
  • Kimura S, Harashima H. Current Status and Challenges Associated with CNS-Targeted Gene Delivery across the BBB. Pharmaceutics. 2020;12(12):1216.
  • Li Y, Liu L, et al. Strategies and materials of “SMART” non-viral vectors: overcoming the barriers for brain gene therapy. Nano Today. 2020;35:101006.
  • Spiegel EA, Wycis HT, Marks M, et al. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–350.
  • Black PM, Moriarty T, Alexander E, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831–845.
  • Lefranc M, Peltier J. Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures. Expert Rev Med Devices. 2016;13(10):899–906.
  • Dittmar C. Uber die Lage des sogenannten Gefasscentrums der Medulla oblongata. Bericht Verhandl Sachs Akad Wissenschaft Leipzig. 1873;25:449–469.
  • Woroschiloff C. The course of motor and sensory pathways in rabbit’s spinal cord. Bersäch Geswissenschaften. 1874;26:248–304.
  • Zernov D. Encephalometer: device for estimation of parts of brain in human. Proc Soc Physicomed Moscow Univ. 1889;2:70–80.
  • Altukhov N. EntsefalometrIya Mozga CholoveKa v OtnoshenII K Polu, vo Zrastu I Cherepnomu Ukazatelyu. Moscow: Isdatelstvo Moscovskogo Universiteta; 1891.
  • Starr MA. Brain Surgery. New York: William Wood & Company; 1893.
  • Rémy C, Contremoulins G. Sur un nouveau perfectionnement des applications chirurgicales des rayons X. Bulletin de l’Académie de Médecine. 1897;37:354–358.
  • Rémy C, G C. Appareil destiné à déterminer d’une manière précise, au moyen des rayons X, la position des projectiles dans le crâne. Comptes Rendus de l’Académie des Sciences. 1897;125:831–836.
  • Giller CA, Mornet P, Moreau J-F, et al. The first formulation of image-based stereotactic principles: the forgotten work of Gaston Contremoulins. J Neurosurg. 2017;127(6):1426–1435.
  • Horsley V, Clarke RH. The structure and functions of the cerebellum examined by a new method. Brain. 1908;31(1):45–124.
  • Picard C, Olivier A, Bertrand G, et al. The first human stereotaxic apparatus: the contribution of Aubrey Mussen to the field of stereotaxis. J Neurosurg. 1983;59(4):673–676.
  • Leksell L. A stereotaxic apparatus for intracerebral surgery. Acta Chirurgica Scand. 1949;99:229–233.
  • Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chirurgica Scand. 1951;102(4):316–319.
  • Gildenberg PL, Krauss JK. History of Stereotactic Surgery. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of Stereotactic and Functional Neurosurgery. Berlin: Springer; 2009. p. 1–33.
  • Riechert T, Wolff M. Über ein neues Zielgeraet zur intrakraniellen elektrischen Abteilung und Ausschaltung. Archiv für Psychiatrie und Nervenkrankheiten. 1951;186(2):225–230.
  • Bailey P, Stein SN. A stereotaxic apparatus for use on the human brain. Atlantic City: AMA Scientific Exhibit; 1951.
  • Talairach J, Bancaud J, et al. Functional stereotaxic exploration of epilepsy. Confinia Neurologica. 1962;22(3–5):328–331.
  • Bourdillon P, Châtillon C-E, Moles A, et al. Effective accuracy of stereoelectroencephalography: robotic 3D versus Talairach orthogonal approaches. J Neurosurg. 2019;131(6):1938–1946.
  • Willems PWA, Berkelbach van der Sprenkel JW, Tulleken CAF, et al. Neuronavigation and surgery of intracerebral tumours. J Neurol. 2006;253(9):1123–1136.
  • Willems P, van der Sprenkel JWB, Tulleken CAF, et al. Neuronavigation and surgery of intracerebral tumours. J Neurol. 2006;253(9):1123–1136.
  • Perry JH, Rosenbaum AE, Lunsford DL, et al. Computed Tomography-guided Stereotactic Surgery. Neurosurgery. 1980;7(4):376–381.
  • Kondziolka D, Dempsey PK, Lunsford LD, et al. A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination. Neurosurgery. 1992;30(3):402–407.
  • Maciunas RJ, Galloway RL Jr, Latimer JW, et al. The application accuracy of stereotactic frames. Neurosurgery. 1994;35(4):682–695.
  • Guo Z, Leong MCW, Su H, et al. Techniques for stereotactic neurosurgery: beyond the frame, toward the intraoperative magnetic resonance imaging-guided and robot-assisted approaches. World Neurosurg. 2018;116(77–87):77–87.
  • Lee JH, Kim DW, et al. Stereotactic burr hole aspiration surgery for spontaneous hypertensive cerebellar hemorrhage. J Cerebrovasc Endovasc Neurosurg. 2012;14(3):170.
  • Brown RA, Roberts TS, Osborn AG, et al. Stereotaxic frame and computer software for CT-directed neurosurgical localization. Invest Radiol. 1980;15(4):308–312.
  • Gildenberg PL. General concepts of stereotactic surgery. Modern stereotactic neurosurgery. Boston, MA: Springer; 1988. p. 3–11.
  • Alhourani A, McCallum A, et al. Traditional and Mini-Frames. In: Pouratian N, Sheth SAeditors. Stereotactic and Functional Neurosurgery: principles and Applications. Cham: Springer International Publishing; 2020. p. 3–10.
  • Agazaryan N, Tenn S, et al. Frameless Image Guidance in Stereotactic Radiosurgery. In: Pouratian N, Sheth SAeditors. Stereotactic and Functional Neurosurgery: principles and Applications. Cham: Springer International Publishing; 2020. p. 37–48.
  • Gerard IJ, Kersten-Oertel M, Petrecca K, et al. Brain shift in neuronavigation of brain tumors: a review. Med Image Anal. 2017;35:403–420.
  • Mert A, Gan LS, Knosp E, et al. Advanced cranial navigation. Neurosurgery. 2013;72(suppl_1):A43–A53.
  • Hadani M, Spiegelman R, Feldman Z, et al. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery. 2001;48(4):799–809.
  • Nichols E, Szoeke CE, Vollset SE, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106.
  • Prince M, Wimo A, et al. World Alzheimer Report 2015: the Global Impact of Dementia: an analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International, 2015.
  • Scheltens P, Strooper BD, et al. Alzheimer’s disease. Lancet. EMBO J. 2021;1577-1590.
  • Wen MM, El-Salamouni NS, El-Refaie WM, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial, and clinical challenges. J Control Release. 2017;245:95–107.
  • Zoltowska KM, Maesako M, Berezovska O, et al. Interrelationship between Changes in the Amyloid β 42/40 Ratio and Presenilin 1 Conformation. Mol Med. 2016;22(1):329–337.
  • Mobley W, Chen X-Q. Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Front Neurosci. 2019;13:659.
  • Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: causes and Treatment. Molecules. 2020;25(24):5789.
  • Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12(3):292–323.
  • Wattmo C, Minthon L, et al. Mild versus moderate stages of Alzheimer’s disease: three-year outcomes in a routine clinical setting of cholinesterase inhibitor therapy. Alzheimer’s Res Ther. 2016;8(1):7.
  • Espinosa-Val C, Martín-Martínez A, Graupera M, et al. Prevalence, risk factors, and complications of oropharyngeal dysphagia in older patients with dementia. Nutrients. 2020;12(3):863.
  • Li N, Liu K, Qiu Y, et al. Effect of presenilin mutations on APP cleavage; insights into the pathogenesis of FAD. Front Aging Neurosci. 2016;8:51.
  • Scheltens P, Blennow K, et al. Alzheimer’s disease. Lancet. 2016;388(10043):505–517.
  • Xu T-H, Yan Y, Kang Y, et al. Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio. Cell Discov. 2016;2(1):1–14.
  • Yamazaki Y, Zhao N, Caulfield TR, et al. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nature Reviews. Neurology. 2019;15(9):501–518.
  • Mahley RW, Huang Y. Apolipoprotein E Sets the Stage: response to Injury Triggers Neuropathology. Neuron. 2012;76(5):871–885.
  • Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485(7399):512–516.
  • Castellano JM, Kim J, Stewart FR, et al. Human apoE Isoforms Differentially Regulate Brain Amyloid-β Peptide Clearance. Sci Transl Med. 2011;3(89):89ra57–89ra57.
  • Karch CM, Goate AM. Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biol Psychiatry. 2015;77(1):43–51.
  • Zhang B, Gaiteri C, Bodea L-G, et al. Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease. Cell. 2013;153(3):707–720.
  • Calderon-Garcidueñas AL, Duyckaerts C. Alzheimer disease. Handb Clin Neurol. 2018;145:325–337. Elsevier.
  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–259.
  • Thal DR, Rüb U, Orantes M, et al. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–1800.
  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):1–18.
  • Kirshner HS. Frontotemporal dementia and primary progressive aphasia, a review. Neuropsychiatr Dis Treat. 2014;10:1045.
  • Olanow CW, Obeso JA. The significance of defining preclinical or prodromal Parkinson’s disease. Mov Disord. 2012;27(5):666–669.
  • Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem. 2016;139(S1):318–324.
  • Kouli A, Torsney KM, et al. Parkinson’s disease: etiology, neuropathology, and pathogenesis. In: Stoker TB, Greenland JC, editors. Parkinson’s disease: pathogenesis and clinical aspects. Brisbane (AU): Codon Publications; 2018. p. 3–26.
  • Surmeier DJ, Obeso JA, Halliday GM, et al. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci. 2017;18(2):101–113.
  • Pioli EY, Meer W, et al. Differential behavioral effects of partial bilateral lesions of ventral tegmental area or substantia nigra pars compacta in rats. Neuroscience. 2008;153(4):1213–1224.
  • Meade RM, Fairlie DP, Mason JM, et al. Alpha-synuclein structure and Parkinson’s disease–lessons and emerging principles. Mol Neurodegener. 2019;14(1):1–14.
  • Gracia P, Camino JD, Volpicelli-Daley L, et al. Multiplicity of α-Synuclein Aggregated Species and Their Possible Roles in Disease. Int J Mol Sci. 2020;21(21):8043.
  • Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):17013.
  • Devi L, Raghavendran V, Prabhu BM, et al. Mitochondrial Import and Accumulation of α-Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain*. J Biol Chem. 2008;283(14):9089–9100.
  • Liu S, Sawada T, Lee S, et al. Parkinson’s Disease–Associated Kinase PINK1 Regulates Miro Protein Level and Axonal Transport of Mitochondria. PLoS Genet. 2012;8(3):e1002537.
  • Hsieh C-H, Shaltouki A, Gonzalez AE, et al. Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson’s Disease. Cell Stem Cell. 2016;19(6):709–724.
  • Nottia MD, Masciullo M, Verrigni D, et al. DJ-1 modulates mitochondrial response to oxidative stress: clues from a novel diagnosis of PARK7. Clin Genet. 2017;92(1):18–25.
  • Sharma N, Rao SP, Kalivendi SV, et al. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: role of oxidative stress mediated downregulation of DJ-1 in Parkinson’s disease. Free Radic Biol Med. 2019;135:28–37.
  • Zhang Z, Tian Y, et al. δ-secretase in neurodegenerative diseases: mechanisms, regulators and therapeutic opportunities. Transl Neurodegener. 2020;9(1):1–9.
  • Masato A, Plotegher N, Boassa D, et al. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14(1):1–21.
  • Gao J, Zhang W, Chai X, et al. Asparagine endopeptidase deletion ameliorates cognitive impairments by inhibiting proinflammatory microglial activation in MPTP mouse model of Parkinson disease. Brain Res Bull. 2022;178:120–130.
  • Sun Y-X, Wang X-H, Xu A-H, et al. Functional polymorphisms of the MAO gene with Parkinson disease susceptibility: a meta-analysis. J Neurol Sci. 2014;345(1–2):97–105.
  • Bellomo G, Paciotti S, Gatticchi L, et al. The Vicious Cycle Between α -Synuclein Aggregation and Autophagic-Lysosomal Dysfunction. Mov Disord. 2020;35(1):34–44.
  • Roussakis -A-A, Piccini P. Molecular Imaging of Neuroinflammation in Idiopathic Parkinson’s Disease. Int Rev Neurobiol. 2018;141(Movement Disorders 20 2005):347–363.
  • Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091–1102.
  • Li D, Mastaglia FL, Fletcher S, et al. Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson’s disease in the precision medicine era. Med Res Rev. 2020;40(6):2650–2681.
  • Decressac M, Volakakis N, Björklund A, et al. NURR1 in Parkinson disease—from pathogenesis to therapeutic potential. Nat Rev Neurol. 2013;9(11):629–636.
  • Wang Y, Chen X, Wang Y, et al. The essential role of transcription factor Pitx3 in preventing mesodiencephalic dopaminergic neurodegeneration and maintaining neuronal subtype identities during aging. Cell Death Dis. 2021;12(11):1–11.
  • Drui G, Carnicella S, Carcenac C, et al. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol Psychiatry. 2014;19(3):358–367.
  • Giguère N, Burke Nanni S, Trudeau L-E, et al. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson’s Disease. Front Neurol. 2018;9:455.
  • Braak H, Ghebremedhin E, Rüb U, et al. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121–134.
  • Hampel H, Mesulam -M-M, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141(7):1917–1933.
  • Liu C. Targeting the cholinergic system in Parkinson’s disease. Acta Pharmacol Sin. 2020;41(4):453–463.
  • Mao Q, Qin W-Z, Zhang A, et al. Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease. Acta Pharmacol Sin. 2020;41(4):471–482.
  • Benussi L, Binetti G, Ghidoni R, et al. Loss of neuroprotective factors in neurodegenerative dementias: the end or the starting point? Front Neurosci. 2017;11:672.
  • Harris JP, Burrell JC, Struzyna LA, et al. Emerging regenerative medicine and tissue engineering strategies for Parkinson’s disease. NPJ Parkinson’s Dis. 2020;6(1):4.
  • Hanafy AS, Schoch S, Lamprecht A, et al. CRISPR/Cas9 Delivery Potentials in Alzheimer’s Disease Management: a Mini Review. Pharmaceutics. 2020;12(9):801.
  • Cai L-J, Tu L, Huang X-M, et al. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain. 2020;13(1):1–15.
  • Wang F, Zuroske T, et al. RNA therapeutics on the rise. Nat Rev Drug Discov. 2020;19(7):441–442.
  • Scoles DR, Pulst SM. Oligonucleotide therapeutics in neurodegenerative diseases. RNA Biol. 2018;15(6):707–714.
  • Bajan S, Hutvagner G. RNA-Based Therapeutics: from Antisense Oligonucleotides to miRNAs. Cells. 2020;9(1):137.
  • Takahashi H, Kozhuharova A, Sharma H, et al. Identification of functional features of synthetic SINEUPs, antisense lncRNAs that specifically enhance protein translation. PloS one. 2018;13(2):e0183229.
  • Lv L, Yang F, Li H, et al. Brain-targeted co-delivery of β-amyloid converting enzyme 1 shRNA and epigallocatechin-3-gallate by multifunctional nanocarriers for Alzheimer’s disease treatment. IUBMB Life. 2020;72(8):1819–1829.
  • Wang P, Zheng X, Guo Q, et al. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J Control Release. 2018;279:220–233.
  • Yang A, Kantor B, Chiba-Falek O, et al. APOE: the New Frontier in the Development of a Therapeutic Target towards Precision Medicine in Late-Onset Alzheimer’s. Int J Mol Sci. 2021;22(3):1244.
  • Litvinchuk A, Huynh TPV, Shi Y, et al. Apolipoprotein E4 Reduction with Antisense Oligonucleotides Decreases Neurodegeneration in a Tauopathy Model. Ann Neurol. 2021;89(5):952–966.
  • Huynh T-PV, Liao F, Francis CM, et al. Age-Dependent Effects of apoE Reduction Using Antisense Oligonucleotides in a Model of β-amyloidosis. Neuron. 2017;96(5):1013–23 e4.
  • Lauretti E, Dabrowski K, Praticò D, et al. The neurobiology of non-coding RNAs and Alzheimer’s disease pathogenesis: pathways, mechanisms and translational opportunities. Ageing Res Rev. 2021;71:101425.
  • Zhou Y, Ge Y, Liu Q, et al. LncRNA BACE1-AS Promotes Autophagy-Mediated Neuronal Damage Through The miR-214-3p/ATG5 Signalling Axis In Alzheimer’s Disease. Neuroscience. 2021;455:52–64.
  • Han D, Zheng W, Wang X, et al. Proteostasis of α-Synuclein and Its Role in the Pathogenesis of Parkinson’s Disease. Front Cell Neurosci. 2020;14:45.
  • Niu S, Zhang L-K, Zhang L, et al. Inhibition by Multifunctional Magnetic Nanoparticles Loaded with Alpha-Synuclein RNAi Plasmid in a Parkinson’s Disease Model. Theranostics. 2017;7(2):344–356.
  • Izco M, Blesa J, et al. Systemic Exosomal Delivery of shRNA Minicircles Prevents Parkinsonian Pathology. Mol Ther. 2019;27(12):2111–2122.
  • Helmschrodt C, Hobel S, Schöniger S, et al. Polyethylenimine Nanoparticle-Mediated siRNA Delivery to Reduce α-Synuclein Expression in a Model of Parkinson’s Disease. Mol Ther Nucleic Acids. 2017;9:57–68.
  • Saraiva C, Paiva J, et al. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease. J Control Release. 2016;235:291–305.
  • Yu JY, Chung KH, Deo M, et al. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res. 2008;314(14):2618–2633.
  • Li Q, Wang Z, Xing H, et al. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol Ther Nucleic Acids. 2021;23:1334–1344.
  • Tolosa E, Vila M, Klein C, et al. LRRK2 in Parkinson disease: challenges of clinical trials. Nat Rev Neurol. 2020;16(2):97–107.
  • Zhao HT, John N, Delic V, et al. LRRK2 antisense oligonucleotides ameliorate α-synuclein inclusion formation in a Parkinson’s disease mouse model. Mol Ther Nucleic Acids. 2017;8:508–519.
  • Elkouris M, Kouroupi G, Vourvoukelis A, et al. Long non-coding RNAs associated with neurodegeneration-linked genes are reduced in Parkinson’s disease patients. Front Cell Neurosci. 2019;13:58.
  • Kuo M-C, Liu SC-H, Hsu Y-F, et al. The role of noncoding RNAs in Parkinson’s disease: biomarkers and associations with pathogenic pathways. J Biomed Sci. 2021;28(1):1–28.
  • Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids. 2019;16:326–334.
  • Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22(4):524–528.
  • György B, Lööv C, Zaborowski MP, et al. CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol Ther Nucleic Acids. 2018;11:429–440.
  • Sun J, Carlson-Stevermer J, Huber P, et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat Commun. 2019;10(1):1–11.
  • Kuruvilla J, Sasmita AO, Ling APK, et al. Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases. Neurol Sci. 2018;39(11):1827–1835.
  • Karimian A, Gorjizadeh N, Alemi F, et al. CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci. 2020;259:118165.
  • Kantor B, Tagliafierro L, Gu J, et al. Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: a Potential Strategy for Precision Therapy in PD. Mol Ther. 2018;26(11):2638–2649.
  • Buttery PC, Barker RA. Gene and Cell-Based Therapies for Parkinson’s Disease: where Are We? Neurotherapeutics. 2020;17(4):1539–1562.
  • Park K-W, Wood CA, Li J, et al. Gene therapy using Aβ variants for amyloid reduction. Mol Ther. 2021;29(7):2294–2307.
  • Butler CA, Thornton P, Brown GC, et al. CD33M inhibits microglial phagocytosis, migration and proliferation, but the Alzheimer’s disease-protective variant CD33m stimulates phagocytosis and proliferation, and inhibits adhesion. J Neurochem. 2021;158(2):297–310.
  • Malik M, Simpson JF, Parikh I, et al. CD33 Alzheimer’s Risk-Altering Polymorphism, CD33 Expression, and Exon 2 Splicing. J Neurosci. 2013;33(33):13320–13325.
  • Morabito G, Giannelli SG, Ordazzo G, et al. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy. Mol Ther. 2017;25(12):2727–2742.
  • Ramamoorth M, Narvekar A. Non viral vectors in gene therapy-an overview. J clin diagn res. 2015;9(1):GE01.
  • Deverman BE, Ravina BM, Bankiewicz KS, et al. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov. 2018;17(9):641–659.
  • Mátrai J, Chuah MK, VandenDriessche T, et al. Recent advances in lentiviral vector development and applications. Mol Ther. 2010;18(3):477–490.
  • Zhao Z, Ukidve A, Krishnan V, et al. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev. 2019;143:3–21.
  • Jean YY, Baleriola J, et al. Stereotaxic infusion of oligomeric amyloid-beta into the mouse hippocampus. J Vis Exp. 2015;100:e52805.
  • Gáspár A, Hutka B, Ernyey AJ, et al. Intracerebroventricularly Injected Streptozotocin Exerts Subtle Effects on the Cognitive Performance of Long-Evans Rats. Front Pharmacol. 2021;12:662173.
  • Fronza MG, Baldinotti R, Martins MC, et al. Rational design, cognition and neuropathology evaluation of QTC-4-MeOBnE in a streptozotocin-induced mouse model of sporadic Alzheimer’s disease. Sci Rep. 2019;9(1):1–14.
  • Xu A-H, Yang Y, Sun Y-X, et al. Exogenous brain-derived neurotrophic factor attenuates cognitive impairment induced by okadaic acid in a rat model of Alzheimer’s disease. Neural Regen Res. 2018;13(12):2173.
  • Broetto N, Hansen F, Brolese G, et al. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation. Brain Res Bull. 2016;124:136–143.
  • Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155–175.
  • Luo H, Xiang Y, Qu X, et al. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway. Front Pharmacol. 2019;10:395.
  • Kim KY, Suh Y-H, Chang K-A, et al. Therapeutic Effects of Human Amniotic Epithelial Stem Cells in a Transgenic Mouse Model of Alzheimer’s Disease. Int J Mol Sci. 2020;21(7):2658.
  • Zhao J, Yin F, Ji L, et al. Development of a Tau-Targeted Drug Delivery System Using a Multifunctional Nanoscale Metal–Organic Framework for Alzheimer’s Disease Therapy. ACS Appl Mater Interfaces. 2020;12(40):44447–44458.
  • Bécot A, Pardossi-Piquard R, Bourgeois A, et al. The Transcription Factor EB Reduces the Intraneuronal Accumulation of the Beta-Secretase-Derived APP Fragment C99 in Cellular and Mouse Alzheimer’s Disease Models. Cells. 2020;9(5):1204.
  • Zhong L, Xu Y, Huber P, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun. 2019;10(1):1–16.
  • Park YH, Shin SJ, Kim HS, et al. Omega-3 Fatty Acid-Type Docosahexaenoic Acid Protects against Aβ-Mediated Mitochondrial Deficits and Pathomechanisms in Alzheimer’s Disease-Related Animal Model. Int J Mol Sci. 2020;21(11):3879.
  • Meng J, Han L, Piacentini M, et al. TMEM59 Haploinsufficiency Ameliorates the Pathology and Cognitive Impairment in the 5xFAD Mouse Model of Alzheimer’s Disease. Front Cell Dev Biol. 2020;8:8.
  • Masmudi-Martín M, Navarro-Lobato I, López-Aranda MF, et al. Reversal of Object Recognition Memory Deficit in Perirhinal Cortex-Lesioned Rats and Primates and in Rodent Models of Aging and Alzheimer’s Diseases. Neuroscience. 2020;448:287–298.
  • Chai G-S, Feng Q, et al. Downregulating ANP32A rescues synapse and memory loss via chromatin remodeling in Alzheimer model. Mol Neurodegener. 2017;12(1):1–12.
  • Ghasemi-Kasman M, Shojaei A, Gol M, et al. miR-302/367-induced neurons reduce behavioral impairment in an experimental model of Alzheimer’s disease. Mol Cell Neurosci. 2018;86:50–57.
  • Tuszynski MH, Thal L, Pay M, et al., A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med. 11(5): 551–555. 2005.
  • Rafii MS, Tuszynski MH, Thomas RG, et al. Adeno-associated viral vector (serotype 2)–nerve growth factor for patients with Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2018;75(7):834–841.
  • Bishop KM, Hofer EK, Mehta A, et al. Therapeutic potential of CERE-110 (AAV2-NGF): targeted, stable, and sustained NGF delivery and trophic activity on rodent basal forebrain cholinergic neurons. Exp Neurol. 2008;211(2):574–584.
  • Castle MJ, Baltanás FC, Kovacs I, et al. Postmortem Analysis in a Clinical Trial of AAV2-NGF Gene Therapy for Alzheimer’s Disease Identifies a Need for Improved Vector Delivery. Hum Gene Ther. 2020;31(7–8):415–422.
  • Konnova EA, Swanberg M. Animal models of Parkinson’s disease. In: Stoker TB, Greenland JC, editors. Parkinson’s disease: pathogenesis and clinical aspects. Brisbane (AU): Codon Publications 2018. p. 83–106.
  • Günaydın C, Avcı B, Bozkurt A, et al. Effects of agomelatine in rotenone-induced Parkinson’s disease in rats. Neurosci Lett. 2019;699:71–76.
  • Ferro MM, Bellissimo MI, Anselmo-Franci JA, et al. Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations. J Neurosci Methods. 2005;148(1):78–87.
  • Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–1391.
  • Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A, et al. The 6-hydroxydopamine model and parkinsonian pathophysiology: novel findings in an older model. Neurologia. 2017;32(8):533–539.
  • Altarche-Xifro W, Di Vicino U, Muñoz-Martin MI, et al. Functional rescue of dopaminergic neuron loss in Parkinson’s disease mice after transplantation of hematopoietic stem and progenitor cells. EBioMedicine. 2016;8:83–95.
  • Xue J, Liu Y, Darabi MA, et al. An injectable conductive Gelatin-PANI hydrogel system serves as a promising carrier to deliver BMSCs for Parkinson’s disease treatment. Mater Sci Eng C. 2019;100:584–597.
  • Baluchnejadmojarad T, Eftekhari S-M, Jamali-Raeufy N, et al. The anti-aging protein klotho alleviates injury of nigrostriatal dopaminergic pathway in 6-hydroxydopamine rat model of Parkinson’s disease: involvement of PKA/CaMKII/CREB signaling. Exp Gerontol. 2017;100:70–76.
  • Hadadianpour Z, Fatehi F, Ayoobi F, et al. The effect of orexin-A on motor and cognitive functions in a rat model of Parkinson’s disease. Neurol Res. 2017;39(9):845–851.
  • Jamali-Raeufy N, Mojarrab Z, Baluchnejadmojarad T, et al. The effects simultaneous inhibition of dipeptidyl peptidase-4 and P2X7 purinoceptors in an in vivo Parkinson’s disease model. Metab Brain Dis. 2020;35(3):539–548.
  • Meng XY, Huang AQ, Khan A, et al. Vascular endothelial growth factor‐loaded poly‐lactic‐co‐glycolic acid nanoparticles with controlled release protect the dopaminergic neurons in Parkinson’s rats. Chem Biol Drug Des. 2020;95(6):631–639.
  • Kwon HJ, Kim D, Seo K, et al. Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson’s Disease. Angew Chem. 2018;57(30):9408–9412.
  • Zheng X, Pang X, Yang P, et al. A hybrid siRNA delivery complex for enhanced brain penetration and precise amyloid plaque targeting in Alzheimer’s disease mice. Acta Biomater. 2017;49:388–401.
  • Szabó C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov. 2007;6(11):917–935.
  • McFarthing K, Prakash N, Simuni T, et al. Clinical trial highlights: 1. Gene therapy for Parkinson’s, 2. Phase 3 study in focus-intec pharma’s accordion pill, 3. Clinical trials resources. J Parkinsons Dis. 2019;9(2):251.
  • Argersinger, DP , Lungu, C et al Phase 1 Trial of Convection-Enhanced Delivery of Adeno-Associated Virus Encoding Glial Cell Line-Derived Neurotrophic Factor in Patients with Advanced Parkinson’s Disease The 2019 AANS Annual Scientific Meeting San Diego, California, United States of America. , , et al. editors. . . ; 2019.
  • Ciesielska A, Samaranch L, San Sebastian W, et al. Depletion of AADC activity in caudate nucleus and putamen of Parkinson’s disease patients; implications for ongoing AAV2-AADC gene therapy trial. PloS one. 2017;12(2):e0169965.
  • Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology. 2009;73(20):1662–1669.
  • Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther. 2012;23(4):377–381.
  • Christine CW, Bankiewicz KS, Van Laar AD, et al., Magnetic resonance imaging–guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease. Ann Neurol. 85(5): 704–714. 2019.
  • Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet. 2007;369(9579):2097–2105.
  • LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–319.
  • Niethammer M, Tang CC, LeWitt PA, et al. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease. JCI Insight. 2017;2(7):e90133.
  • Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014;383(9923):1138–1146.
  • Palfi S, Gurruchaga JM, Lepetit H, et al. Long-Term Follow-Up of a Phase I/II Study of ProSavin, a Lentiviral Vector Gene Therapy for Parkinson’s Disease. Hum Gene Ther Clin Dev. 2018;29(3):148–155.
  • Chao Y, Gang L, Na ZL, et al. Surgical management of Parkinson’s disease: update and review. Interventional Neuroradiol. 2007;13(4):359–368.
  • Luo H, Xiang Y, Qu X, et al. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s Disease through activation of BDNF-TrkB signaling pathway. Front Pharmacol. 2019;10:395.
  • White E, Woolley M, Bienemann A, et al. A robust MRI-compatible system to facilitate highly accurate stereotactic administration of therapeutic agents to targets within the brain of a large animal model. J Neurosci Methods. 2011;195(1):78–87.
  • Fomenko A, Serletis D. Robotic stereotaxy in cranial neurosurgery: a qualitative systematic review. Neurosurgery. 2018;83(4):642–650.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.