1,201
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Spinal automaticity of movement control and its role in recovering function after spinal injury

&
Pages 655-667 | Received 24 Dec 2020, Accepted 17 Aug 2022, Published online: 12 Sep 2022

References

  • Stuart DG, Hultborn H. Thomas Graham Brown (1882–1965), Anders Lundberg (1920-), and the neural control of stepping. Brain Res Rev. 2008;59(1):74–95.
  • Kiehn O. Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci. 2006;29:279–306.
  • Henneman E, Somjen G, Carpenter DO. Excitability and inhibitability of motoneurons of different sizes. J Neurophysiol. 1965;28(3):599–620.
  • Mendell LM. The size principle: a rule describing the recruitment of motoneurons. J Neurophysiol. 2005;93(6):3024–3026 .
  • Heckman CJ, Enoka RM. Motor unit. Compr Physiol. 2012;2(4):2629–2682.
  • Burke RE and Edgerton VR. Motor unit properties and selective involvement in movement. Exerc Sport Sci Rev. 1975;3:31–81.
  • Bodine SC, Roy RR, Eldred E, et al. Maximal force as a function of anatomical features of motor units in the cat tibialis anterior. J Neurophysiol. 1987;57(6):1730–1745.
  • Burke R E, Levine D N, Salcman M, et al. Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol, 1974;238(3):503–14. DOI:10.1113/jphysiol.1974.sp010540
  • Courtine G, Gerasimenko Y, van den Brand R, et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009;12(10):1333–1342.
  • Swanson LW, Newman E, Araque A, et al. The Beautiful Brain: The Drawings of Santiago Ramon y Cajal. Abrams. New York. 2017.
  • Gerasimenko Y, Sayenko D, Gad P, et al. Feed-forwardness of spinal networks in posture and locomotion. Neuroscientist. 2016;23(5):441–453.
  • Gad P, Lavrov I, Shah P, et al. Neuromodulation of motor-evoked potentials during stepping in spinal rats. J Neurophysiol. 2013;110(6):1311–1322.
  • Gad P, Roy RR, Choe J, et al. Electrophysiological biomarkers of neuromodulatory strategies to recover motor function after spinal cord injury. J Neurophysiol. 2015;113(9):3386–3396.
  • Prochazka A, Gorassini M. Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. J Physiol. 1998;507(Pt 1):277–291.
  • Gao Y, Miller KN, Rudd ME, et al. Duration comparisons for vision and touch are dependent on presentation order and temporal context. Front Integr Neurosci. 2021;15:664264.
  • Abbas Shangari T, Falahi M, Bakouie F, et al. Multisensory integration using dynamical Bayesian networks. Front Comput Neurosci. 2015;9:58.
  • Forssberg H, Grillner S, Rossignol S. Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res. 1977;132(1):121–139 .
  • Musienko P, Courtine G, Tibbs JE, et al. Somatosensory control of balance during locomotion in decerebrated cat. J Neurophysiol. 2012;107(8):2072–2082 .
  • Musienko PE, Gorskii OV, Kilimnik VA, et al. [Neuronal control of posture and locomotion in decerebrated and spinalized animals]. Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova/Rossiiskaia akademiia nauk. 2013;99(3): 392–405.
  • Shah PK, Gerasimenko Y, Shyu A, et al. Variability in step training enhances locomotor recovery after a spinal cord injury. Eur J Neurosci. 2012;36(1):2054–2062.
  • Yakovenko S, McCrea DA, Stecina K, et al. Control of locomotor cycle durations. J Neurophysiol. 2005;94(2):1057–1065.
  • Bernstein, N.A. The Co-Ordination and Regulation of Movements. Pergamon Press, Oxford. (1967).
  • Collatos TC, Edgerton VR, Smith JL, et al. Contractile properties and fiber type compositions of flexors and extensors of elbow joint in cat: implications for motor control. J Neurophysiol. 1977;40(6):1292–1300.
  • Edelman GM. Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron. 1993;10(2):115–125.
  • Edelman GM. Neural Darwinism: the theory of neuronal group selection. New York: Basic books incorporated publishers. 23–67. 1987.
  • Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781):1938–1947 .
  • Angeli C, Edgerton VR, Gerasimenko Y, et al. Reply: no dawn yet of a new age in spinal cord rehabilitation. Brain. 2015;138(Pt 7):e363.
  • Grahn PJ, Lavrov IA, Sayenko DG, et al. Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin Proc. 2017;92(4):544–554.
  • Gerasimenko YP, Lu DC, Modaber M, et al. Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma. 2015;32(24):1968–1980.
  • Gad P, Lee S, Terrafranca N, et al. Non-invasive activation of cervical spinal networks after severe paralysis. J Neurotrauma. 2018;35(18):2145–2158.
  • Gad P, Gerasimenko Y, Reggie Edgerton V. Tetraplegia to overground stepping using non-invasive spinal neuromodulation. IEEE, 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA USA, 2019. p.89–92.
  • Lovely RG, Gregor RJ, Roy RR, et al. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol. 1986;92(2):421–435.
  • De Leon RD, Hodgson JA, Roy RR, et al. Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training. J Neurophysiol. 1999;81(1):85–94.
  • De Leon RD, Hodgson JA, Roy RR, et al. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol. 1998;80(1):83–91.
  • Ichiyama RM, Courtine G, Gerasimenko YP, et al. Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J Neurosci. 2008;28(29):7370–7375.
  • Falgairolle M, O’Donovan MJ. Optogenetic activation of V1 interneurons reveals the multimodality of spinal locomotor networks in the neonatal mouse. J Neurosci. 2021;41(41):8545–8561.
  • Pham BN, Luo J, Anand H, et al. Redundancy and multifunctionality among spinal locomotor networks. J Neurophysiol. 2020;124(5):1469–1479 .
  • Mattos D, Schoner G, Zatsiorsky VM, et al. Task-specific stability of abundant systems: structure of variance and motor equivalence. Neuroscience. 2015;310:600–615.
  • Bizzi E, Ajemian RJ. From motor planning to execution: a sensorimotor loop perspective. J Neurophysiol. 2020;124(6):1815–1823.
  • Lacquaniti F, Ivanenko YP, Zago M. Patterned control of human locomotion. J Physiol. 2012;590(10):2189–2199.
  • Hodgson JA, Roy RR, de Leon R, et al. Can the mammalian lumbar spinal cord learn a motor task? Med Sci Sports Exerc. 1994;26(12):1491–1497.
  • de Leon RD, London NJ, Roy RR, et al. Failure analysis of stepping in adult spinal cats. Prog Brain Res. 1999;123:341–348.
  • Ziegler MD, Zhong H, Roy RR, et al. Why variability facilitates spinal learning. J Neurosci. 2010;30(32):10720–10726.
  • Carhart MR, He J, Herman R, et al. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng. 2004;12(1):32–42.
  • Edgerton VR, Leon RD, Harkema SJ, et al. Retraining the injured spinal cord. J Physiol. 2001;533(Pt 1):15–22.
  • de Leon RD, Tamaki H, Hodgson JA, et al. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J Neurophysiol. 1999;82(1):359–369.
  • van den Brand R, Heutschi J, Barraud Q, et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 2012;336(6085):1182–1185.
  • Urban L, Thornton M, Ingraham K, et al. Formation of a novel supraspinal-spinal connectome that relearns the same motor task after complete paralysis. J Neurophysiol. 2021;126(3):957–966 .
  • Pettigrew RI, Heetderks WJ, Kelley CA, et al. Epidural spinal stimulation to improve bladder, bowel, and sexual function in individuals with spinal cord injuries: a framework for clinical research. IEEE Trans Biomed Eng. 2017;64(2):253–262 .
  • Kreydin E, Zhong H, Latack K, et al. Transcutaneous Electrical Spinal Cord Neuromodulator (TESCoN) improves symptoms of overactive bladder. Front Syst Neurosci. 2020;14:1.
  • Gad PN, Kreydin E, Zhong H, et al. Non-invasive neuromodulation of spinal cord restores lower urinary tract function after paralysis. Front Neurosci. 2018;12:432.
  • Hubscher CH, Herrity AN, Williams CS, et al. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury. PloS one. 2018;13(1):e0190998.
  • Herrity AN, Williams CS, Angeli CA, et al. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep. 2018;8(1):8688.
  • Gad P, Gerasimenko Y, Zdunowski S, et al. Weight bearing over-ground stepping in an exoskeleton with non-invasive spinal cord neuromodulation after motor complete paraplegia. Front Neurosci. 2017;11:333.
  • Phillips AA, Squair JW, Sayenko DG, et al. An autonomic neuroprosthesis: noninvasive electrical spinal cord stimulation restores autonomic cardiovascular function in individuals with spinal cord injury. J Neurotrauma. 2018;35(3):446–451 .
  • Gad PN, Kreydin E, Zhong H, et al. Enabling respiratory control after severe chronic tetraplegia: an exploratory case study. J Neurophysiol. 2020;124(3):774–780.
  • Grillner S, El Manira A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion. Physiol Rev. 2020;100(1):271–320. DOI:10.1152/physrev.00015.2019
  • Musienko P, van den Brand R, Marzendorfer O, et al. Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuitries. J Neurosci. 2011;31(25):9264–9278.
  • Rossignol S, Frigon A. Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci. 2011;34:413–40. DOI:10.1146/annurev-neuro-061010-113746