469
Views
0
CrossRef citations to date
0
Altmetric
Review

Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies

ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 123-140 | Received 27 Dec 2022, Accepted 01 Feb 2023, Published online: 10 Feb 2023

References

  • Collaborators GBDE. Global, regional, and national burden of epilepsy, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 Apr;18(4):357–375.
  • Begley CE, Durgin TL. The direct cost of epilepsy in the United States: a systematic review of estimates. Epilepsia. 2015 Sep;56(9):1376–1387.
  • Kramer MA, Cash SS. Epilepsy as a Disorder of Cortical Network Organization. Neuroscientist. 2012;18(4):360–372.
  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000 Feb 3;342(5):314–319.
  • Chen Z, Brodie MJ, Liew D, et al. Treatment Outcomes in Patients With Newly Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs: a 30-Year Longitudinal Cohort Study. JAMA Neurol. [2018 Mar 1];75(3):279–286.
  • Perucca E, Brodie MJ, Kwan P, et al. 30 years of second-generation antiseizure medications: impact and future perspectives. Lancet Neurol. 2020 Jun;19(6):544–556.
  • Spencer SS. Neural Networks in Human Epilepsy: evidence of and Implications for Treatment. Epilepsia. 2002;43(3):219–227.
  • van Diessen E, Wjem Z, Jansen FE, et al. Brain Network Organization in Focal Epilepsy: a Systematic Review and Meta-Analysis. PLOS ONE. 2014;9(12):e114606.
  • Pittau F, Megevand P, Sheybani L, et al. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol. 2014;5:218.
  • Amorim-Leite R, Remick M, Welch W, et al. History of the Network Approach in Epilepsy Surgery. Neurosurg Clin N Am. 2020 Jul;31(3):301–308.
  • Zhu J, Xu C, Zhang X, et al. The thalamus-precentral gyrus functional connectivity changes in epilepsy patients following vagal nerve stimulation. Neurosci Lett. 2021 Apr 23;751:135815.
  • Ryvlin P, Rheims S, Hirsch LJ, et al. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol. 2021 Dec;20(12):1038–1047.
  • Carron R, Roncon P, Lagarde S, et al. Latest Views on the Mechanisms of Action of Surgically Implanted Cervical Vagal Nerve Stimulation in Epilepsy. Neuromodulation. 2022 Sep 1. Advance online publication.
  • Yu T, Wang X, Li Y, et al. High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain. [2018 Sep 1];141(9):2631–2643.
  • Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat Rev Neurol. 2014 [2014 may 01];10(5):261–270.
  • Tripoliti E, Limousin P, Foltynie T, et al. Predictive factors of speech intelligibility following subthalamic nucleus stimulation in consecutive patients with Parkinson’s disease. Mov Disord. 2014 Apr;29(4):532–538.
  • Lizarraga KJ, Gnanamanogaran B, Al-Ozzi TM, et al. Lateralized Subthalamic Stimulation for Axial Dysfunction in Parkinson’s Disease: a Randomized Trial. Mov Disord. 2022 May;37(5):1079–1087.
  • Jones EG. The thalamus. Second ed. Cambridge UK New York: Cambridge University Press; 2007. p. 2007.
  • Mendoza JE, Foundas AL. The Thalamus. Clinical Neuroanatomy: a Neurobehavioral Approach. New York NY: Springer New York; 2008. p. 195–211.
  • Zhou H, Schafer RJ, Desimone R. Pulvinar-Cortex Interactions in Vision and Attention. Neuron. 2016 Jan 6;89(1):209–220.
  • Benarroch EE. Pulvinar: associative role in cortical function and clinical correlations. Neurology. 2015 Feb 17;84(7):738–747.
  • Bertini C, Pietrelli M, Braghittoni D, et al. Pulvinar Lesions Disrupt Fear-Related Implicit Visual Processing in Hemianopic Patients. Front Psychol. 2018;9:2329.
  • Jaramillo J, Mejias JF, Wang XJ. Engagement of Pulvino-cortical Feedforward and Feedback Pathways in Cognitive Computations. Neuron. 2019 Jan 16;101(2):321–336 e9.
  • Homman-Ludiye J, Bourne JA. The medial pulvinar: function, origin and association with neurodevelopmental disorders. J Anat. 2019 Sep;235(3):507–520.
  • Homman-Ludiye J, Mundinano IC, Kwan WC, et al. Extensive Connectivity Between the Medial Pulvinar and the Cortex Revealed in the Marmoset Monkey. Cereb Cortex. [2020 Mar 14];30(3):1797–1812.
  • Rikhye RV, Wimmer RD, Halassa MM. Toward an Integrative Theory of Thalamic Function. Annu Rev Neurosci. 2018;41(1):163–183.
  • Jones EG. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 2001;24(10):595–601.
  • Sherman SM. Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci. 2016 Apr;19(4):533–541.
  • Halassa MM, Sherman SM. Thalamocortical Circuit Motifs: a General Framework. Neuron. 2019;103(5):762–770. .
  • Muller EJ, Munn B, Hearne LJ, et al. Core and matrix thalamic sub-populations relate to spatio-temporal cortical connectivity gradients. Neuroimage. 2020 Nov 15;222:117224.
  • Cappe C, Morel A, Barone P, et al. The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimotor interplay. Cereb Cortex. 2009 Sep;19(9):2025–2037.
  • Georgescu IA, Popa D, Zagrean L. The Anatomical and Functional Heterogeneity of the Mediodorsal Thalamus. Brain Sci. 2020 Sep 9. 10(9):624.
  • Campi KL, Bales KL, Grunewald R, et al. Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex. 2010 Jan;20(1):89–108.
  • Tyll S, Budinger E, Noesselt T. Thalamic influences on multisensory integration. Commun Integr Biol. 2011 Jul;4(4):378–381.
  • Antunes FM, Malmierca MS. Corticothalamic Pathways in Auditory Processing: recent Advances and Insights From Other Sensory Systems. Front Neural Circuits. 2021;15:721186.
  • der Werf Yd V, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev. 2002;39(2–3):107–140.
  • Llinas R, Ribary U, Contreras D, et al. The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci. 1998 [Nov 29];353:1841–1849.
  • Baker R, Gent TC, Yang Q, et al. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia. J Neurosci. [2014 Oct 1];34(40):13326–13335.
  • Redinbaugh MJ, Phillips JM, Kambi NA, et al. Thalamus Modulates Consciousness via Layer-Specific Control of Cortex. Neuron. [2020 Apr 8];106(1):66–75 e12.
  • Pouchelon G, Gambino F, Bellone C, et al. Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature. [2014 Jul 24];511(7510):471–474.
  • Alzu’bi A, Homman-Ludiye J, Bourne JA, et al. Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent. Cereb Cortex. [2019 Apr 1];29(4):1706–1718.
  • Beierlein M, Connors BW. Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. J Neurophysiol. 2002 Oct;88(4):1924–1932.
  • Zarrinpar A, Callaway EM. Local connections to specific types of layer 6 neurons in the rat visual cortex. J Neurophysiol. 2006 Mar;95(3):1751–1761.
  • Crandall SR, Patrick SL, Cruikshank SJ, et al. Infrabarrels Are Layer 6 Circuit Modules in the Barrel Cortex that Link Long-Range Inputs and Outputs. Cell Rep. [2017 Dec 12];21(11):3065–3078.
  • Sherman SM, Guillery RW. The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci. 2002 [Dec 29];357:1695–1708.
  • Thomson AM. Neocortical layer 6, a review. Front Neuroanat. 2010;4:13.
  • Prasad JA, Carroll BJ, Sherman SM. Layer 5 Corticofugal Projections from Diverse Cortical Areas: variations on a Pattern of Thalamic and Extrathalamic Targets. J Neurosci. 2020 Jul 22;40(30):5785–5796.
  • Guillery RW, Sherman SM. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002 Jan 17;33(2):163–175.
  • Kinomura S, Larsson J, Gulyas B, et al. Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science. [1996 Jan 26];271(5248):512–515.
  • Poulet JF, Fernandez LM, Crochet S, et al. Thalamic control of cortical states. Nat Neurosci. [2012 Jan 22];15(3):370–372.
  • Nakajima M, Halassa MM. Thalamic control of functional cortical connectivity. Curr Opin Neurobiol. 2017 Jun;44:127–131.
  • Schmitt LI, Wimmer RD, Nakajima M, et al. Thalamic amplification of cortical connectivity sustains attentional control. Nature. 2017 [2017 may 01];545(7653):219–223.
  • Honjoh S, Sasai S, Schiereck SS, et al. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun. [2018 May 29];9(1):2100.
  • Phillips JM, Kambi NA, Redinbaugh MJ, et al. Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control. Neurosci Biobehav Rev. 2021;128:487–510.
  • Reinhold K, Lien AD, Scanziani M. Distinct recurrent versus afferent dynamics in cortical visual processing. Nat Neurosci. 2015 Dec;18(12):1789–1797.
  • Theyel BB, Llano DA, Sherman SM. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat Neurosci. 2010 Jan;13(1):84–88.
  • Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005 Oct;9(10):474–480.
  • Saalmann YB, Pinsk MA, Wang L, et al. The pulvinar regulates information transmission between cortical areas based on attention demands. Science. [2012 Aug 10];337(6095):753–756.
  • Halassa MM, Kastner S. Thalamic functions in distributed cognitive control. Nat Neurosci. 2017 Dec;20(12):1669–1679.
  • Weyand TG. The multifunctional lateral geniculate nucleus. Rev Neurosci. 2016 Feb;27(2):135–157.
  • Halassa MM, Chen Z, Wimmer RD, et al. State-dependent architecture of thalamic reticular subnetworks. Cell. [2014 Aug 14];158(4):808–821.
  • Durkin JM, Aton SJ. How Sleep Shapes Thalamocortical Circuit Function in the Visual System. Annu Rev Vis Sci. 2019 Sep 15;5:295–315.
  • McAlonan K, Brown VJ, Bowman EM. Thalamic reticular nucleus activation reflects attentional gating during classical conditioning. J Neurosci. 2000 Dec 1;20(23):8897–8901.
  • Castro-Alamancos MA. Role of thalamocortical sensory suppression during arousal: focusing sensory inputs in neocortex. J Neurosci. 2002 Nov 15;22(22):9651–9655.
  • Lewis LD, Voigts J, Flores FJ, et al. Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife. 2015 Oct 13;4:e08760.
  • Matyas F, Komlosi G, Babiczky A, et al. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat Neurosci. 2018 Nov;21(11):1551–1562.
  • Murata Y, Colonnese MT. Thalamus Controls Development and Expression of Arousal States in Visual Cortex. J Neurosci. 2018 Oct 10;38(41):8772–8786.
  • Martinez-Garcia RI, Voelcker B, Zaltsman JB, et al. Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature. 2020 Jul;583(7818):813–818.
  • Molnar B, Sere P, Borde S, et al. Cell Type-Specific Arousal-Dependent Modulation of Thalamic Activity in the Lateral Geniculate Nucleus. Cereb Cortex Commun. 2021;2(2):tgab020.
  • Hay YA, Deperrois N, Fuchsberger T, et al. Thalamus mediates neocortical Down state transition via GABAB-receptor-targeting interneurons. Neuron. [2021 Sep 1];109(17):2682–2690 e5.
  • Erro E, Lanciego JL, Gimenez-Amaya JM. Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat. Exp Brain Res. 1999 Jul;127(2):162–170.
  • Krout KE, Belzer RE, Loewy AD. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol. 2002 Jun 17;448(1):53–101.
  • Fuller PM, Sherman D, Pedersen NP, et al. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. [2011 Apr 1];519(5):933–956.
  • Houser CR, Vaughn JE, Barber RP, et al. GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. [1980 Nov 3];200(2):341–354.
  • Halassa MM, Acsady L. Thalamic Inhibition: diverse Sources, Diverse Scales. Trends Neurosci. 2016 Oct;39(10):680–693.
  • Lam YW, Sherman SM. Functional organization of the thalamic input to the thalamic reticular nucleus. J Neurosci. 2011 May 4;31(18):6791–6799.
  • Huguenard JR, Prince DA. A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci. 1992 Oct;12(10):3804–3817.
  • Ulrich D, Huguenard JR. Gamma-aminobutyric acid type B receptor-dependent burst-firing in thalamic neurons: a dynamic clamp study. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13245–13249.
  • Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci. 2002 [Dec 29];357:1659–1673.
  • DA M, Pape H-C. Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol. 1990;431(1):291–318.
  • Nun A, Amzica F, Steriade M. Intrinsic and synaptically generated delta (1–4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light-induced fast (30–70 Hz) events. Neuroscience. 1992;51(2):269–284.
  • Soltesz I, Lightowler S, Leresche N, et al. Two inward currents and the transformation of low‐frequency oscillations of rat and cat thalamocortical cells. J Physiol. 1991;441(1):175–197.
  • Morison R, Bassett D. Electrical activity of the thalamus and basal ganglia in decorticate cats. J Neurophysiol. 1945;8(5):309–314.
  • Steriade M, Deschenes M, Domich L, et al. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol. 1985;54(6):1473–1497.
  • Huguenard JR, McCormick DA. Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci. 2007 Jul;30(7):350–356.
  • Rogala J, Waleszczyk WJ, Leski S, et al. Reciprocal inhibition and slow calcium decay in perigeniculate interneurons explain changes of spontaneous firing of thalamic cells caused by cortical inactivation. J Comput Neurosci. 2013 Jun;34(3):461–476.
  • Paz JT, Huguenard JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci. 2015 Mar;18(3):351–359.
  • Ali I, Gandrathi A, Zheng T, et al. Neuropeptide Y affects thalamic reticular nucleus neuronal firing and network synchronization associated with suppression of spike-wave discharges. Epilepsia. 2018 Jul;59(7):1444–1454.
  • Wilson JR. Synaptic organization of individual neurons in the macaque lateral geniculate nucleus. J Neurosci. 1989 Aug;9(8):2931–2953.
  • Arcelli P, Frassoni C, Regondi MC, et al. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull. 1997;42(1):27–37.
  • Sherman SM. Interneurons and triadic circuitry of the thalamus. Trends Neurosci. 2004 Nov;27(11):670–675.
  • Govindaiah CCL. Synaptic activation of metabotropic glutamate receptors regulates dendritic outputs of thalamic interneurons. Neuron. 2004 Feb 19;41(4):611–623.
  • Simko J, Markram H. Morphology, physiology and synaptic connectivity of local interneurons in the mouse somatosensory thalamus. J Physiol. 2021 Nov;599(22):5085–5101.
  • Charalambakis NE, Govindaiah G, Campbell PW, et al. Developmental Remodeling of Thalamic Interneurons Requires Retinal Signaling. J Neurosci. [2019 May 15];39(20):3856–3866.
  • Sherman SM. Functioning of Circuits Connecting Thalamus and Cortex. Compr Physiol. 2017 Mar 16;7(2):713–739.
  • Zimmermann E, Ghio M, Pergola G, et al. Separate and overlapping functional roles for efference copies in the human thalamus. Neuropsychologia. 2020;147:107558.
  • Bolkan SS, Stujenske JM, Parnaudeau S, et al. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci. 2017 [2017 july 01];20(7):987–996.
  • Guo ZV, Inagaki HK, Daie K, et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature. 2017 [2017 may 01];545(7653):181–186.
  • Rikhye RV, Gilra A, Halassa MM. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat Neurosci. 2018 [2018 dec 01];21(12):1753–1763.
  • Ouhaz Z, Fleming H, Mitchell AS. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus. Front Neurosci. 2018;12:33.
  • Sorokin JM, Davidson TJ, Frechette E, et al. Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of Firing Mode. Neuron. 2017;93(1):194–210.
  • Wicker E, Forcelli PA. Optogenetic activation of the reticular nucleus of the thalamus attenuates limbic seizures via inhibition of the midline thalamus. Epilepsia. 2021 Sep;62(9):2283–2296.
  • Cruikshank SJ, Lewis TJ, Connors BW. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci. 2007 Apr;10(4):462–468.
  • Gabernet L, Jadhav SP, Feldman DE, et al. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron. [2005 Oct 20];48(2):315–327.
  • Bruno RM, Sakmann B. Cortex is driven by weak but synchronously active thalamocortical synapses. Science. 2006 Jun 16;312(5780):1622–1627.
  • Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci. 2013 May;14(5):337–349.
  • Gil Z, Amitai Y. Properties of convergent thalamocortical and intracortical synaptic potentials in single neurons of neocortex. J Neurosci. 1996 Oct 15;16(20):6567–6578.
  • Astori S, Luthi A. Synaptic plasticity at intrathalamic connections via CaV3.3 T-type Ca2+ channels and GluN2B-containing NMDA receptors. J Neurosci. 2013 Jan 9;33(2):624–630.
  • Fernandez LMJ, Pellegrini C, Vantomme G, et al. Cortical afferents onto the nucleus Reticularis thalami promote plasticity of low-threshold excitability through GluN2C-NMDARs. Sci Rep. [2017 Sep 25];7(1):12271.
  • Jasper HH, Droogleever-Fortuyn J. Experimental studies on the functional anatomy of petit mal epilepsy. Res Publ Ass nerv ment Dis. 1947;26:272–298.
  • Spiegel EA, Wycis HT. Thalamic recordings in man with special reference to seizure discharges. Electroencephalogr Clin Neurophysiol. 1950 [1950 jan 01];2(1):23–27.
  • Williams D. A study of thalamic and cortical rhythms in petit mal. Brain. 1953 Mar;76(1):50–69.
  • Blumenfeld H. The thalamus and seizures. Arch Neurol. 2002 Jan;59(1):135–137.
  • Natsume J, Bernasconi N, Andermann F, et al. MRI volumetry of the thalamus in temporal, extratemporal, and idiopathic generalized epilepsy. Neurology. [2003 Apr 22];60(8):1296–1300.
  • Caciagli L, Allen LA, He X, et al. Thalamus and focal to bilateral seizures: a multiscale cognitive imaging study. Neurology. [2020 Oct 27];95(17):e2427–e2441.
  • Kuzniecky R, Bilir E, Gilliam F, et al. Quantitative MRI in temporal lobe epilepsy: evidence for fornix atrophy. Neurology. [1999 Aug 11];53(3):496–501.
  • Keller SS, Glenn GR, Weber B, et al. Preoperative automated fibre quantification predicts postoperative seizure outcome in temporal lobe epilepsy. Brain. 2017 Jan;140(1):68–82.
  • Concha L, Beaulieu C, Collins DL, et al. White-matter diffusion abnormalities in temporal-lobe epilepsy with and without mesial temporal sclerosis. J Neurol Neurosurg Psychiatry. 2009 Mar;80(3):312–319.
  • Keller SS, Richardson MP, O’Muircheartaigh J, et al. Morphometric MRI alterations and postoperative seizure control in refractory temporal lobe epilepsy. Hum Brain Mapp. 2015 May;36(5):1637–1647.
  • Barron DS, Fox PT, Pardoe H, et al. Thalamic functional connectivity predicts seizure laterality in individual TLE patients: application of a biomarker development strategy. Neuroimage Clin. 2015;7:273–280.
  • Gonzalez HFJ, Chakravorti S, Goodale SE, et al. Thalamic arousal network disturbances in temporal lobe epilepsy and improvement after surgery. J Neurol Neurosurg Psychiatry. 2019 Oct;90(10):1109–1116.
  • Mirski MA, Ferrendelli JA. Interruption of the mammillothalamic tract prevents seizures in Guinea pigs. Science. 1984 Oct 5;226(4670):72–74.
  • Mirski MA, Ferrendelli JA. Interruption of the connections of the mammillary bodies protects against generalized pentylenetetrazol seizures in Guinea pigs. J Neurosci. 1987 Mar;7(3):662–670.
  • Feng L, Motelow JE, Ma C, et al. Seizures and Sleep in the Thalamus: focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei. J Neurosci. [2017 Nov 22];37(47):11441–11454.
  • Yang AC, Meng DW, Liu HG, et al. The ability of anterior thalamic signals to predict seizures in temporal lobe epilepsy in kainate-treated rats. Epilepsia. 2016 Sep;57(9):1369–1376.
  • Rosenberg DS, Mauguiere F, Demarquay G, et al. Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures. Epilepsia. 2006 Jan;47(1):98–107.
  • Burton H, Jones EG . The posterior thalamic region and its cortical projection in New World and Old World monkeys. J Comp Neurol. 1976 Jul;168(2):249–301.
  • Mauguiere F, Baleydier C. Topographical organization of medial pulvinar neurons sending fibres to Brodman’s areas 7, 21 and 22 in the monkey. Exp Brain Res. 1978 Apr 14;31(4):605–607.
  • Baleydier C, Morel A. Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey. Vis Neurosci. 1992 May;8(5):391–405.
  • Velasco M, Velasco F, Velasco AL, et al. Epileptiform EEG activities of the centromedian thalamic nuclei in patients with intractable partial motor, complex partial, and generalized seizures. Epilepsia. 1989 May-Jun;30(3):295–306.
  • Velasco M, Velasco F, Alcala H, et al. Epileptiform EEG activity of the centromedian thalamic nuclei in children with intractable generalized seizures of the Lennox-Gastaut syndrome. Epilepsia. 1991 May-Jun;32(3):310–321.
  • Dalic LJ, Warren AEL, Young JC, et al. Cortex leads the thalamic centromedian nucleus in generalized epileptic discharges in Lennox-Gastaut syndrome. Epilepsia. 2020 Oct;61(10):2214–2223.
  • Martín-López D, Jiménez-Jiménez D, Cabañés-Martínez L, et al. The Role of Thalamus Versus Cortex in Epilepsy: evidence from Human Ictal Centromedian Recordings in Patients Assessed for Deep Brain Stimulation. Int J Neural Syst. 2017 Nov;27(7):1750010.
  • Westmijse I, Ossenblok P, Gunning B, et al. Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia. 2009;50(12):2538–2548.
  • Maheshwari A, Noebels JL. Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. Prog Brain Res. 2014;213:223–252.
  • Gloor P, Fariello RG. Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci. 1988 Feb;11(2):63–68.
  • Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet. 2001 May;28(1):49–52.
  • Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci. 2002;3(5):371–382.
  • Polack PO, Guillemain I, Hu E, et al. Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. J Neurosci. [2007 Jun 13];27(24):6590–6599.
  • Noebels J, Avoli M, Rogawski M, et al. Jasper’s basic mechanisms of the epilepsies. 2012.
  • Tenney JR, Fujiwara H, Horn PS, et al. Focal corticothalamic sources during generalized absence seizures: a MEG study. Epilepsy Res. 2013;106(1–2):113–122.
  • Sorokin JM, Williams A, Ganguli S, et al. Thalamic activity patterns unfolding over multiple time scales predict seizure onset in absence epilepsy. bioRxiv. 2020.
  • Steriade M, McCormick D, Sejnowski T. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262(5134):679–685.
  • Paz JT, Bryant AS, Peng K, et al. A new mode of corticothalamic transmission revealed in the Gria4(-/-) model of absence epilepsy. Nat Neurosci. [2011 Aug 21];14(9):1167–1173.
  • David F, Çarçak N, Furdan S, et al. Suppression of hyperpolarization-activated cyclic nucleotide-gated channel function in thalamocortical neurons prevents genetically determined and pharmacologically induced absence seizures. J Neurosci. 2018;38(30):6615–6627.
  • Makinson CD, Tanaka BS, Sorokin JM, et al. Regulation of thalamic and cortical network synchrony by Scn8a. Neuron. 2017;93(5):1165–1179. e6.
  • Tung JK, Berglund K, Gross RE. Optogenetic Approaches for Controlling Seizure Activity. Brain Stimul. 2016 Nov-Dec;9(6):801–810.
  • Paz JT, Davidson TJ, Frechette ES, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci. 2013 Jan;16(1):64–70.
  • Malpass K. Epilepsy: shining a light on seizure control-optogenetic approach shows promise for treatment and prevention of epilepsies. Nat Rev Neurol. 2013 Jan;9(1):1.
  • Mirski MA, Rossell LA, Terry JB, et al. Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res. 1997 Sep;28(2):89–100.
  • Sherdil A, Chabardès S, David O, et al. Coherence between the hippocampus and anterior thalamic nucleus as a tool to improve the effect of neurostimulation in temporal lobe epilepsy: an experimental study. Brain Stimul. 2020;13(6):1678–1686.
  • Hamani C, Ewerton FI, Bonilha SM, et al. Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus. Neurosurgery. 2004 Jan; 54(1):191–195. discussion 195-7
  • Hamani C, Hodaie M, Chiang J, et al. Deep brain stimulation of the anterior nucleus of the thalamus: effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus. Epilepsy Res. 2008 Feb;78(2–3):117–123.
  • Takebayashi S, Hashizume K, Tanaka T, et al. Anti-convulsant effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal limbic seizure in rats. Epilepsy Res. 2007 May;74(2–3):163–170.
  • Takebayashi S, Hashizume K, Tanaka T, et al. The effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal cortical seizure status in rats. Epilepsia. 2007 Feb;48(2):348–358.
  • Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016 Jan 1;115(1):19–38.
  • Dostrovsky JO, Levy R, Wu JP, et al. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol. 2000 Jul;84(1):570–574.
  • Kumar R, Lozano AM, Kim YJ, et al. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology. 1998 Sep;51(3):850–855.
  • Benabid AL, Pollak P, Gao D, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. 1996 Feb;84(2):203–214.
  • Chang WJ, Chang WP, Shyu BC. Suppression of cortical seizures by optic stimulation of the reticular thalamus in PV-mhChR2-YFP BAC transgenic mice. Mol Brain. 2017 Sep 2;10(1):42.
  • Liu J, Lee HJ, Weitz AJ, et al. Frequency-selective control of cortical and subcortical networks by central thalamus. Elife. 2015;4:e09215.
  • Bastos AM, Donoghue JA, Brincat SL, et al. Neural effects of propofol-induced unconsciousness and its reversal using thalamic stimulation. bioRxiv. 2020.
  • Gummadavelli A, Kundishora AJ, Willie JT, et al. Neurostimulation to improve level of consciousness in patients with epilepsy. Neurosurgical Focus FOC. 01 Jun. 2015 2015;38(6):E10.
  • Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908.
  • Mch L, Cook MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia. 2018 Feb;59(2):273–290.
  • Laxpati NG, Kasoff WS, Gross RE. Deep Brain Stimulation for the Treatment of Epilepsy: circuits, Targets, and Trials. Neurotherapeutics. 2014 [2014 july 01];11(3):508–526.
  • Tellez-Zenteno JF, McLachlan RS, Parrent A, et al. Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology. [2006 May 23];66(10):1490–1494.
  • Fisher RS, Uematsu S, Krauss GL, et al. Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia. 1992 Sep-Oct;33(5):841–851.
  • Wright GD, McLellan DL, Brice JG. A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J Neurol Neurosurg Psychiatry. 1984 Aug;47(8):769–774.
  • Salanova V, Witt T, Worth R, et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015;84(10):1017–1025.
  • Morrell MJ. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77(13):1295–1304.
  • Skarpaas TL, Morrell MJ. Intracranial stimulation therapy for epilepsy. Neurotherapeutics. 2009 Apr;6(2):238–243.
  • Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain-responsive neurostimulation for epilepsy (RNS((R)) System). Epilepsy Res. 2019 Jul;153:68–70.
  • Morrell MJ; Group RNSSiES. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011 Sep 27;77(13):1295–1304.
  • Nair DR, Laxer KD, Weber PB, et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology. 2020;95(9):e1244–e1256.
  • Blair RD. Temporal lobe epilepsy semiology. Epilepsy Res Treat. 2012;2012:751510.
  • Sherdil A, Coizet V, Pernet-Gallay K, et al. Implication of Anterior Nucleus of the Thalamus in Mesial Temporal Lobe Seizures. Neuroscience. 2019 [2019 oct 15];418:279–290.
  • Heath RG. Electrical self-stimulation of the brain in man. Am J Psychiatry. 1963;120(6):571–577.
  • Upton AR, Cooper IS, Springman M, et al. Suppression of seizures and psychosis of limbic system origin by chronic stimulation of anterior nucleus of the thalamus. Int J Neurol. 1985;19-20:223–230.
  • Hodaie M, Wennberg RA, Dostrovsky JO, et al. Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia. 2002 Jun;43(6):603–608.
  • Kerrigan JF, Litt B, Fisher RS, et al. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia. 2004 Apr;45(4):346–354.
  • Lim SN, Lee ST, Tsai YT, et al. Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: a long-term follow-up study. Epilepsia. 2007 Feb;48(2):342–347.
  • Osorio I, Overman J, Giftakis J, et al. High frequency thalamic stimulation for inoperable mesial temporal epilepsy. Epilepsia. 2007 Aug;48(8):1561–1571.
  • Elder C, Friedman D, Devinsky O, et al. Responsive neurostimulation targeting the anterior nucleus of the thalamus in 3 patients with treatment‐resistant multifocal epilepsy. Epilepsia Open. 2019;4(1):187–192.
  • Herlopian A, Cash SS, Eskandar EM, et al. Responsive neurostimulation targeting anterior thalamic nucleus in generalized epilepsy. Ann Clin Transl Neurol. 2019 Oct;6(10):2104–2109.
  • Kokoszka MA, Panov F, La Vega-Talbott M, et al. Treatment of medically refractory seizures with responsive neurostimulation: 2 pediatric cases. J Neurosurg Pediatr. 2018 Apr;21(4):421–427.
  • Singhal NS, Numis AL, Lee MB, et al. Responsive neurostimulation for treatment of pediatric drug-resistant epilepsy. Epilepsy Behav Case Rep. 2018;10:21–24.
  • Welch WP, Hect JL, Abel TJ. Case Report: responsive Neurostimulation of the Centromedian Thalamic Nucleus for the Detection and Treatment of Seizures in Pediatric Primary Generalized Epilepsy. Front Neurol. 2021;12:656585.
  • Rosenberg DS, Mauguière F, Catenoix H, et al. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. Cereb Cortex. 2009 Jun;19(6):1462–1473.
  • Filipescu C, Lagarde S, Lambert I, et al. The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia. 2019 Apr;60(4):e25–e30.
  • Arthuis M, Valton L, Régis J, et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain. 2009 Aug;132(Pt 8):2091–2101.
  • Chatzikonstantinou A, Gass A, Forster A, et al. Features of acute DWI abnormalities related to status epilepticus. Epilepsy Res. 2011 Nov;97(1–2):45–51.
  • Capecchi F, Mothersill I, Imbach LL. The medial pulvinar as a subcortical relay in temporal lobe status epilepticus. Seizure. 2020 Oct;81:276–279.
  • Burdette DE, Haykal MA, Jarosiewicz B, et al. Brain-responsive corticothalamic stimulation in the centromedian nucleus for the treatment of regional neocortical epilepsy. Epilepsy Behav. 2020;112:107354.
  • Mullan S, Vailati G, Karasick J, et al. Thalamic lesions for the control of epilepsy. A study of nine cases. Arch Neurol. 1967 Mar;16(3):277–285.
  • Sitnikov AR, Grigoryan YA, Mishnyakova LP. Bilateral stereotactic lesions and chronic stimulation of the anterior thalamic nuclei for treatment of pharmacoresistant epilepsy. Surg Neurol Int. 2018;9:137.
  • Andrade DM, Zumsteg D, Hamani C, et al. Long-term follow-up of patients with thalamic deep brain stimulation for epilepsy. Neurology. [2006 May 23];66(10):1571–1573.
  • Krishna V, King NK, Sammartino F, et al. Anterior Nucleus Deep Brain Stimulation for Refractory Epilepsy: insights Into Patterns of Seizure Control and Efficacious Target. Neurosurgery. 2016 Jun;78(6):802–811.
  • Velasco M, Velasco F, Velasco AL, et al. Acute and chronic electrical stimulation of the centromedian thalamic nucleus: modulation of reticulo-cortical systems and predictor factors for generalized seizure control. Arch Med Res. 2000 May-Jun;31(3):304–315.
  • Velasco F, Velasco M, Ogarrio C, et al. Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary report. Epilepsia. 1987 Jul-Aug;28(4):421–430.
  • Velasco F, Velasco M, Velasco AL, et al. Electrical stimulation of the centromedian thalamic nucleus in control of seizures: long-term studies. Epilepsia. 1995 Jan;36(1):63–71.
  • Valentín A, García Navarrete E, Chelvarajah R, et al. Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies. Epilepsia. 2013 Oct;54(10):1823–1833.
  • Velasco AL, Velasco F, Jimenez F, et al. Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia. 2006 Jul;47(7):1203–1212.
  • Dalic LJ, Warren AEL, Bulluss KJ, et al. DBS of Thalamic Centromedian Nucleus for Lennox-Gastaut Syndrome (ESTEL Trial). Ann Neurol. 2022 Feb;91(2):253–267 .
  • Bagla R, Skidmore CT. Frontal lobe seizures. Neurologist. 2011 May;17(3):125–135.
  • Huang W, Lu G, Zhang Z, et al. Gray-matter volume reduction in the thalamus and frontal lobe in epileptic patients with generalized tonic-clonic seizures. J Neuroradiol. 2011 Dec;38(5):298–303.
  • Law N, Smith ML, Widjaja E. Thalamocortical connections and executive function in pediatric temporal and frontal lobe Epilepsy. AJNR Am J Neuroradiol. 2018 Aug;39(8):1523–1529.
  • Phillips RK, Aghagoli G, Blum AS, et al. Bilateral thalamic responsive neurostimulation for multifocal, bilateral frontotemporal epilepsy: illustrative case. J Neuro: Case Lessons. 2022;3(12).
  • Pizzo F, Roehri N, Giusiano B, et al. The Ictal Signature of Thalamus and Basal Ganglia in Focal Epilepsy: a SEEG Study. Neurology. [2021 Jan 12];96(2):e280–e293.
  • Gummadavelli A, Zaveri HP, Spencer DD, et al. Expanding brain–computer interfaces for controlling epilepsy networks: novel thalamic responsive neurostimulation in refractory epilepsy [hypothesis and theory]. Front Neurosci. 2018 2018-July-31;12:474 .
  • Devinsky O, Spruill T, Thurman D, et al. Recognizing and preventing epilepsy-related mortality: a call for action. Neurology. [2016 Feb 23];86(8):779–786.
  • Blumenfeld H. Epilepsy and the consciousness system: transient vegetative state? Neurol Clin. 2011 Nov;29(4):801–823.
  • Kokkinos V, Sisterson ND, Wozny TA, et al. Association of closed-loop brain stimulation neurophysiological features with seizure control among patients with focal Epilepsy. JAMA Neurol. 2019;76(7):800–808.
  • Scheid BH, Bernabei JM, Khambhati AN, et al. Synchronizability predicts effective responsive neurostimulation for epilepsy prior to treatment. medRxiv. 2021.
  • Klinger N, Mittal S. Deep brain stimulation for seizure control in drug-resistant epilepsy. Neurosurg Focus. 2018 Aug;45(2):E4.
  • Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev. 2015 Jul;54:89–107.
  • Taber KH, Wen C, Khan A, et al. The limbic thalamus. J Neuropsychiatry Clin Neurosci. 2004 Spring;16(2):127–132.
  • Schiff ND, Giacino JT, Kalmar K, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. [2007 Aug 2];448(7153):600–603.
  • Xu J, Galardi MM, Pok B, et al. Thalamic stimulation improves postictal cortical arousal and behavior. J Neurosci. [2020 Sep 16];40(38):7343–7354.
  • Bertram EH, Mangan PS, Zhang D, et al. The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia. 2001 Aug;42(8):967–978.
  • Dolleman-van D, Weel MJ, Witter MP. The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neurosci Biobehav Rev. 2020 Dec;119:422–439.
  • Sloan DM, Zhang D, Bertram EH 3rd. Excitatory amplification through divergent-convergent circuits: the role of the midline thalamus in limbic seizures. Neurobiol Dis. 2011 Aug;43(2):435–445.
  • Romeo A, Issa Roach AT, Toth E, et al. Early ictal recruitment of midline thalamus in mesial temporal lobe epilepsy. Ann Clin Transl Neurol. 2019 Aug;6(8):1552–1558.
  • Pergola G, Danet L, Pitel AL, et al. The regulatory role of the human mediodorsal thalamus. Trends Cogn Sci. 2018 Nov;22(11):1011–1025.
  • Wang Z, Zhang Z, Jiao Q, et al. Impairments of thalamic nuclei in idiopathic generalized epilepsy revealed by a study combining morphological and functional connectivity MRI. PLoS One. 2012;7(7):e39701.
  • Zhang CH, Sha Z, Mundahl J, et al. Thalamocortical relationship in epileptic patients with generalized spike and wave discharges–A multimodal neuroimaging study. Neuroimage Clin. 2015;9:117–127.
  • Nail-Boucherie K, Le-Pham BT, Gobaille S, et al. Evidence for a role of the parafascicular nucleus of the thalamus in the control of epileptic seizures by the superior colliculus. Epilepsia. 2005 Jan;46(1):141–145.
  • Chen B, Xu C, Wang Y, et al. A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nat Commun. [2020 Feb 17];11(1):923.
  • Fisher RS. The new classification of seizures by the international league against epilepsy 2017. Curr Neurol Neurosci Rep. 2017 Jun;17(6):48.
  • Zillgitt AJ, Haykal MA, Chehab A, et al. Centromedian thalamic neuromodulation for the treatment of idiopathic generalized epilepsy. Front Hum Neurosci. 2022;16:907716.
  • Sisterson ND, Kokkinos V, Urban A, et al. Responsive neurostimulation of the thalamus improves seizure control in idiopathic generalised epilepsy: initial case series. J Neurol Neurosurg Psychiatry. 2022 May;93(5):491–498.
  • Mormann F, Andrzejak RG, Elger CE, et al. Seizure prediction: the long and winding road. Brain. 2007;130(2):314–333.
  • Kuhlmann L, Lehnertz K, Richardson MP, et al. Seizure prediction — ready for a new era. Nat Rev Neurol. 2018 [2018 oct 01];14(10):618–630.
  • Sirica D, Hewitt AL, Tarolli CG, et al. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag. 2021 Aug;11(4):315–328.
  • Rowland NC, De Hemptinne C, Swann NC, et al. Task-related activity in sensorimotor cortex in Parkinson’s disease and essential tremor: changes in beta and gamma bands. Front Hum Neurosci. 2015;9:512.
  • Cole SR, van der Meij R, Peterson EJ, et al. Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson’s disease. J Neurosci. [2017 May 3];37(18):4830–4840.
  • Ahn M, Lee S, Lauro PM, et al. Rapid motor fluctuations reveal short-timescale neurophysiological biomarkers of Parkinson’s disease. J Neural Eng. [2020 Aug 27];17(4):046042.
  • Lauro PM, Lee S, Amaya DE, et al. Decoding dynamically shifting states of parkinson’s disease: tremor, bradykinesia, and effective motor control. bioRxiv. 2022.
  • Scherer M, Milosevic L, Guggenberger R, et al. Desynchronization of temporal lobe theta-band activity during effective anterior thalamus deep brain stimulation in epilepsy. NeuroImage. 2020 [2020 sep 01];218:116967.
  • Gadot R, Korst G, Shofty B, et al. Thalamic stereoelectroencephalography in epilepsy surgery: a scoping literature review. J Neurosurg. 2022;11:1–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.