321
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in the treatment and management of frontotemporal dementia

ORCID Icon &
Pages 621-639 | Received 14 Apr 2023, Accepted 19 Jun 2023, Published online: 26 Jun 2023

References

  • Vieira RT, Caixeta L, Machado S, et al. Epidemiology of early-onset dementia: a review of the literature. Clin Pract Epidemiol Mental Health. 2013;9(1):88–95. doi: 10.2174/1745017901309010088
  • Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(9):2456–2477. InternetAvailable from. doi: 10.1093/brain/awr179
  • Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology InternetAvailable from. 2011;76(11):1006–1014.http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgidbfrom=pubmed&id=21325651&retmode=ref&cmd=prlinksannotation.
  • Conca F, Esposito V, Giusto G, et al. Characterization of the logopenic variant of primary progressive aphasia: a systematic review and meta-analysis. Ageing Res Rev [InternetAvailable from]. 2022;82:101760. doi: 10.1016/j.arr.2022.101760
  • Borroni B, Benussi A. Recent advances in understanding frontotemporal degeneration. F1000Res. 2019;8:2098. InternetAvailable from: https://f1000research.com/articles/8-1279/v1
  • Benussi A, Alberici A, Samra K, et al. Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimer’s Dementia. 2022;18(7):1408–1423. InternetAvailable from. doi: 10.1002/alz.12485
  • Barker MS, Gottesman RT, Manoochehri M, et al. Proposed research criteria for prodromal behavioural variant frontotemporal dementia. Brain. 2022;145(3):1079–1097. InternetAvailable from. doi: 10.1093/brain/awab365
  • Mackenzie IRA, Neumann M, Bigio EH, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010;119(1):1–4. doi: 10.1007/s00401-009-0612-2
  • Neumann M, Mackenzie IRA. Review: neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. 2019;45(1):19–40. doi: 10.1111/nan.12526
  • Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. J Neurol. 2019;266(8):2075–2086. InternetAvailable from doi: 10.1007/s00415-019-09363-4
  • Benussi A, Premi E, Gazzina S, et al. Progression of behavioral disturbances and neuropsychiatric symptoms in patients with genetic frontotemporal dementia. JAMA Netw Open. 2021;4(1):1–17. InternetAvailable from. doi: 10.1001/jamanetworkopen.2020.30194
  • Benussi A, Libri I, Premi E, et al. Differences and similarities between familial and sporadic frontotemporal dementia: an Italian single‐center cohort study. Alzheimer’s & Dementia: Transl Res Clin Interventions. 2022;8(1):1–10. InternetAvailable from: https://onlinelibrary.wiley.com/doi/10.1002/trc2.12326
  • Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–56. InternetAvailable from. doi: 10.1038/nature19323
  • Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early alzheimer’s disease. N Engl J Med. 2021;384(18):1691–1704. doi: 10.1056/NEJMoa2100708
  • van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early alzheimer’s disease. N Engl J Med. 2023;388:9–21. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/36449413
  • Giunta M, Solje E, Gardoni F, et al. Experimental disease-modifying agents for frontotemporal lobar degeneration. J Exp Pharmacol. 2021;13:359–376. InternetAvailable from: https://www.dovepress.com/experimental-disease-modifying-agents-for-frontotemporal-lobar-degener-peer-reviewed-article-JEP
  • Cummings J, Lee G, Ritter A, et al. Alzheimer’s disease drug development pipeline: 2020. Alzheimer’s & Dementia: Transl Res Clin Interventions. 2020:6;e12050
  • Cummings J, Lee G, Zhong K, et al. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement (N Y). 2021;7:e12179. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34095440
  • Cummings J, Lee G, Nahed P, et al.Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement (N YInternetAvailable from20228e12295http://www.ncbi.nlm.nih.gov/pubmed/35516416
  • Borroni B, Padovani A. Dementia: a new algorithm for molecular diagnostics in FTLD. Nat Rev Neurol. 2013;9:241–242. InternetAvailable from. doi: 10.1038/nrneurol.2013.72
  • Benussi A, Padovani A, Borroni B. Phenotypic heterogeneity of monogenic frontotemporal dementia. Front Aging Neurosci. 2015;7:171. InternetAvailable from. doi: 10.3389/fnagi.2015.00171
  • Moore KM, Nicholas J, Grossman M, et al. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurol. 2020;19(2):145–156. InternetAvailable from. doi: 10.1016/S1474-4422(19)30394-1
  • Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609–622. doi: 10.1016/S1474-4422(13)70090-5
  • Josephs KA, Hodges JR, Snowden JS, et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 2011;122(2):137–153. doi: 10.1007/s00401-011-0839-6
  • Lashley T, Rohrer JD, Mead S, et al. Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol. 2015;41(7):858–881. n/a-n/a. doi: 10.1111/nan.12250
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 1979;314(5796):130–133. 2006. doi: 10.1126/science.1134108
  • Sampathu DM, Neumann M, Kwong LK, et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol. 2006;169(4):1343–1352. doi: 10.2353/ajpath.2006.060438
  • Mackenzie IRA, Baborie A, Pickering-Brown S, et al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol. 2006;112(5):539–549. doi: 10.1007/s00401-006-0138-9
  • Cairns NJ, Bigio EH, Mackenzie IRA, et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol. 2007;114(1):5–22. InternetAvailable from. doi: 10.1007/s00401-007-0237-2
  • Mackenzie IR, Neumann M. Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol. 2017;134(1):79–96. InternetAvailable from. doi: 10.1007/s00401-017-1716-8
  • Rohrer JD, Guerreiro R, Vandrovcova J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology. 2009;73(18):1451–1456. doi: 10.1212/WNL.0b013e3181bf997a
  • Baker M, Mackenzie IR, Pickering-Brown SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442(7105):916–919. doi: 10.1038/nature05016
  • Cruts M, Gijselinck I, van der Zee J, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442(7105):920–924. doi: 10.1038/nature05017
  • Masellis M, Momeni P, Meschino W, et al. Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain. 2006;129(11):3115–3123. doi: 10.1093/brain/awl276
  • le Ber I, Camuzat A, Hannequin D, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008;131(3):732–746. doi: 10.1093/brain/awn012
  • Chen-Plotkin AS, Martinez-Lage M, Sleiman PMA, et al. Genetic and clinical features of progranulin-associated frontotemporal lobar degeneration. Arch Neurol. 2011;68(4):488–497. doi: 10.1001/archneurol.2011.53
  • Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–268. InternetAvailable from. doi: 10.1016/j.neuron.2011.09.010
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–256. InternetAvailable from. doi: 10.1016/j.neuron.2011.09.011
  • Murray ME, DeJesus-Hernandez M, Rutherford NJ, et al. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol. 2011;122(6):673–690. doi: 10.1007/s00401-011-0907-y
  • Hsiung G-Y, DeJesus-Hernandez M, Feldman HH, et al. Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain. 2012;135(3):709–722. InternetAvailable from. doi: 10.1093/brain/awr354
  • Mackenzie IRA, Neumann M, Baborie A, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122(1):111–113. doi: 10.1007/s00401-011-0845-8
  • Mehta SG, Khare M, Ramani R, et al. Genotype-phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. Clin Genet. 2012;83(5):422–431. doi: 10.1111/cge.12000
  • Spina S, Van Laar AD, Murrell JR, et al. Phenotypic variability in three families with valosin-containing protein mutation. Eur J Neurol. 2013;20(2):251–258. InternetAvailable from. doi: 10.1111/j.1468-1331.2012.03831.x
  • de Majo M, Topp SD, Smith BN, et al. ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiol Aging. 2018;71:.e266.1–.e266.10. InternetAvailable from: https://linkinghub.elsevier.com/retrieve/pii/S0197458018302197
  • Koriath CAM, Bocchetta M, Brotherhood E, et al. The clinical, neuroanatomical, and neuropathologic phenotype of TBK1-associated frontotemporal dementia: a longitudinal case report. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2017;6(1):75–81. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/28229125
  • Hirsch-Reinshagen V, Alfaify OA, Hsiung G-Y, et al. Clinicopathologic correlations in a family with a TBK1 mutation presenting as primary progressive aphasia and primary lateral sclerosis. Amyotrophic Lateral Sclerosis And Frontotemporal Degeneration. 2019;20(7–8):568–575. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/31244341
  • Swift IJ, Bocchetta M, Benotmane H, et al. Variable clinical phenotype in TBK1 mutations: case report of a novel mutation causing primary progressive aphasia and review of the literature. Neurobiol Aging. 2021;99:.e100.9–.e100.15. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/32980182
  • Boxer AL, Gold M, Feldman H, et al. New directions in clinical trials for frontotemporal lobar degeneration: methods and outcome measures. Alzheimer’s Dementia. 2020;16(1):131–143. doi: 10.1016/j.jalz.2019.06.4956
  • Forsberg LK, Boeve BF, Boxer AL, et al. P2-314: the Multidomain impairment rating (MRI) scale: initial reliability data on a multidimensional scale designed for ftld spectrum disorders. Alzheimer’s Dementia. 2019;15:707–P708. doi: 10.1016/j.jalz.2019.06.2721
  • Miyagawa T, Brushaber D, Syrjanen J, et al. Utility of the global CDR ® plus NACC FTLD rating and development of scoring rules: data from the ARTFL/LEFFTDS Consortium. Alzheimer’s Dementia. 2020;16(1):106–117. InternetAvailable from. 10.1002/alz.12033
  • Samra K, Macdougall A, Peakman G, et al. Neuropsychiatric symptoms in genetic frontotemporal dementia: developing a new module for Clinical Rating Scales. J Neurol Neurosurg Psychiatry. 2023; 94:357–368. doi: 10.1136/jnnp-2022-330152
  • Samra K, MacDougall AM, Peakman G, et al. Motor symptoms in genetic frontotemporal dementia: developing a new module for clinical rating scales. J Neurol. 2023;270(3):1466–1477. InternetAvailable from. doi: 10.1007/s00415-022-11442-y
  • Nelson A, Russell LL, Peakman G, et al. The CBI-R detects early behavioural impairment in genetic frontotemporal dementia. Ann Clin Transl Neurol. 2022;9(5):644–658. doi: 10.1002/acn3.51544
  • Franklin HD, Russell LL, Peakman G, et al. The Revised Self-Monitoring Scale detects early impairment of social cognition in genetic frontotemporal dementia within the GENFI cohort. Alzheimers Res Ther. 2021;13(1):127. InternetAvailable from. doi: 10.1186/s13195-021-00865-w
  • Peakman G, Russell LL, Convery RS, et al. Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort. J Neurol Neurosurg Psychiatry. 2021;93(2):158–168. doi: 10.1136/jnnp-2021-326868
  • McCarthy J, Borroni B, Sanchez-Valle R, et al. Data-driven staging of genetic frontotemporal dementia using multi-modal MRI. Hum Brain Mapp. 2022;43(6):1821–1835. doi: 10.1002/hbm.25727
  • Bocchetta M, Todd EG, Peakman G, et al. Differential early subcortical involvement in genetic FTD within the GENFI cohort. NeuroImage Clin. 2021;30:102646. doi: 10.1016/j.nicl.2021.102646
  • Bocchetta M, Todd EG, Bouzigues A, et al. Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort. Brain Commun. 2023;5(2):fcad061. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/36970046
  • Planche V, Mansencal B, Manjon JV, et al. Anatomical MRI staging of frontotemporal dementia variants. Alzheimer’s Dementia. 2023. InternetAvailable from https://onlinelibrary.wiley.com/doi/10.1002/alz.12975.
  • Jacova C, Hsiung G-Y, Tawankanjanachot I, et al. Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers. Neurology. 2013;81(15):1322–1331. InternetAvailable from. doi: 10.1212/WNL.0b013e3182a8237e
  • Staffaroni AM, Cobigo Y, Goh S-Y, et al. Individualized atrophy scores predict dementia onset in familial frontotemporal lobar degeneration. Alzheimer’s Dementia. 2020;16(1):37–48. InternetAvailable from. doi: 10.1016/j.jalz.2019.04.007
  • Binney RJ, Pankov A, Marx G, et al. Data-driven regions of interest for longitudinal change in three variants of frontotemporal lobar degeneration. Brain Behav. 2017;7(4):e00675. InternetAvailable from. doi: 10.1002/brb3.675
  • Perry DC, Brown JA, Possin KL, et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain. 2017;140(12):3329–3345. InternetAvailable from. doi: 10.1093/brain/awx254
  • Rohrer JD, Rosen HJ. Neuroimaging in frontotemporal dementia. Int Rev Psychiatry. 2013;25(2):221–229. InternetAvailable from. doi: 10.3109/09540261.2013.778822
  • Ssali T, Anazodo UC, Narciso L, et al. Sensitivity of arterial spin labeling for characterization of longitudinal perfusion changes in frontotemporal dementia and related disorders. NeuroImage Clin [InternetAvailable from]. 2022;35:102853. doi: 10.1016/j.nicl.2021.102853.
  • Premi E, Costa T, Gazzina S, et al. An automated toolbox to predict single subject atrophy in presymptomatic granulin mutation carriers. J Alzheimers Dis. 2022;86(1):205–218. InternetAvailable from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-215447
  • Meeter LH, Kaat LD, Rohrer JD, et al. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol. InternetAvailable from 2017. 19: 109. http://www.nature.com/doifinder/10.1038/nrneurol.2017.75:
  • Borroni B, Benussi A, Premi E, et al. Biological, neuroimaging, and neurophysiological markers in frontotemporal dementia: three faces of the same coin. J Alzheimers Dis. 2018;62(3):1113–1123. InternetAvailable from. doi: 10.3233/JAD-170584
  • Benussi A, Gazzina S, Premi E, et al. Clinical and biomarker changes in presymptomatic genetic frontotemporal dementia. Neurobiol Aging. 2019;76:133–140. InternetAvailable from: https://linkinghub.elsevier.com/retrieve/pii/S0197458019300089
  • Gazzina S, Benussi A, Premi E, et al. Neuroanatomical correlates of transcranial magnetic stimulation in presymptomatic granulin mutation carriers. Brain Topogr. 2018;31(3):488–497. InternetAvailable from. doi: 10.1007/s10548-017-0612-9
  • van der Ende EL, Meeter LH, Poos JM, et al. Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurol. 2019;18(12):1103–1111. InternetAvailable from: https://linkinghub.elsevier.com/retrieve/pii/S1474442219303540
  • Gendron TF, Heckman MG, White LJ, et al. Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders. Cell Rep Med. 2022;3(4):100607. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/35492244
  • Rojas JC, Wang P, Staffaroni AM, et al. Plasma neurofilament light for prediction of disease progression in familial frontotemporal lobar degeneration. Neurology. 2021;96(18):e2296–e2312. InternetAvailable from. doi: 10.1212/WNL.0000000000011848
  • Wilson KM, Katona E, Glaria I, et al. Development of a sensitive trial-ready poly(GP) CSF biomarker assay for C9orf72 -associated frontotemporal dementia and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2022;93(7):761–771. doi: 10.1136/jnnp-2021-328710
  • Der Ende EL V, Bron EE, Poos JM, et al. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain. 2022;145(5):1805–1817. doi: 10.1093/brain/awab382
  • Benussi A, Karikari TK, Ashton N, et al. Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry. 2020;91(9):960–967. InternetAvailable from. doi: 10.1136/jnnp-2020-323487
  • Benussi A, Ashton NJ, Karikari TK, et al. Prodromal frontotemporal dementia: clinical features and predictors of progression. Alzheimers Res Ther. 2021;13(1):188. InternetAvailable from. doi: 10.1186/s13195-021-00932-2
  • Benussi A, Cantoni V, Rivolta J, et al. Classification accuracy of blood-based and neurophysiological markers in the differential diagnosis of Alzheimer’s disease and frontotemporal lobar degeneration. Alzheimers Res Ther. 2022;14(1):155. InternetAvailable from. doi: 10.1186/s13195-022-01094-5
  • Pengo M, Alberici A, Libri I, et al. Sex influences clinical phenotype in frontotemporal dementia. Neurol Sci [InternetAvailable from]. 2022;43:5281–5287. doi: 10.1007/s10072-022-06185-7
  • Oeckl P, Anderl-Straub S, Von Arnim CAF, et al. Serum GFAP differentiates Alzheimer’s disease from frontotemporal dementia and predicts MCI-to-dementia conversion. J Neurol Neurosurg Psychiatry. 2022;93(6):659–667. doi: 10.1136/jnnp-2021-328547
  • Zhu N, Santos-Santos M, Illán-Gala I, et al. Plasma glial fibrillary acidic protein and neurofilament light chain for the diagnostic and prognostic evaluation of frontotemporal dementia. Transl Neurodegener. 2021;10(1):1–12. doi: 10.1186/s40035-021-00275-w
  • Benussi A, Ashton NJ, Karikari TK, et al. Serum Glial fibrillary acidic protein (gfap) is a marker of disease severity in frontotemporal lobar degeneration. J Alzheimers Dis. 2020;77(3):1129–1141. InternetAvailable from. doi: 10.3233/JAD-200608
  • Heller C, Foiani MS, Moore K, et al. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2020;91(3):263–270. InternetAvailable from. doi: 10.1136/jnnp-2019-321954
  • van der Ende EL, Heller C, Sogorb-Esteve A, et al. Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study. J Neuroinflammation. 2022;19:217. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/36064709
  • Benussi A, Dell’era V, Cosseddu M, et al. Transcranial stimulation in frontotemporal dementia: a randomized, double-blind, sham-controlled trial. Alzheimers Dement (N Y). 2020;6(1):e12033. InternetAvailable from. doi: 10.1002/trc2.12033
  • Vucic S, Stanley Chen K-H, Kiernan MC, et al. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol. 2023;150:131–175. InternetAvailable from: https://linkinghub.elsevier.com/retrieve/pii/S1388245723002377
  • Di Lazzaro V, Bella R, Benussi A, et al. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol [InternetAvailable from]. 2021;132:2568–2607. doi: 10.1016/j.clinph.2021.05.035
  • Benussi A, Cantoni V, Borroni B. Horizons in Neuroscience Research. Nova Science Publishers, Vol. 44. (2021). Available from https://novapublishers.com/shop/horizons-in-neuroscience-research-volume-44/
  • Benussi A, Dell’era V, Cantoni V, et al. The impact of TMS on the differential diagnosis and progression of dementia. Brain Stimul [Internet]. Elsevier Ltd; 2019. p. 504. Available from: 10.1016/j.brs.2018.12.652
  • Padovani A, Benussi A, Cotelli MS, et al. Transcranial magnetic stimulation and amyloid markers in mild cognitive impairment: impact on diagnostic confidence and diagnostic accuracy. Alzheimers Res Ther. 2019;11(1):95. InternetAvailable from. doi: 10.1186/s13195-019-0555-3
  • Benussi A, Dell’era V, Cantoni V, et al. Neurophysiological correlates of positive and negative symptoms in frontotemporal dementia. J Alzheimers Dis [ Arighi A, editor]. 2020;73:1133–1142. doi: 10.3233/JAD-190986
  • Benussi A, Dell’era V, Cantoni V, et al. TMS for staging and predicting functional decline in frontotemporal dementia. Brain Stimul. 2020;13(2):386–392. Internet. doi: 10.1016/j.brs.2019.11.009
  • Palese F, Bonomi E, Nuzzo T, et al. Anti-GluA3 antibodies in frontotemporal dementia: effects on glutamatergic neurotransmission and synaptic failure. Neurobiol Aging. 2020;86:143–155. InternetAvailable from. doi: 10.1016/j.neurobiolaging.2019.10.015
  • Benussi A, Grassi M, Palluzzi F, et al. Classification accuracy of TMS for the diagnosis of mild cognitive impairment. Brain Stimul. 2021;14(2):241–249. InternetAvailable from. doi: 10.1016/j.brs.2021.01.004
  • Benussi A, Alberici A, Ferrari C, et al. The impact of transcranial magnetic stimulation on diagnostic confidence in patients with Alzheimer disease. Alzheimers Res Ther. 2018;10(1):94. InternetAvailable from. doi: 10.1186/s13195-018-0423-6
  • Benussi A, Cotelli MS, Cosseddu M, et al. Preliminary results on long-term potentiation-like cortical plasticity and cholinergic dysfunction after miglustat treatment in Niemann-Pick disease type C. JIMD Rep. 2017;36:19–27. InternetAvailable from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=28092091&retmode=ref&cmd=prlinks
  • Tsai RM, Miller Z, Koestler M, et al. Reactions to multiple ascending doses of the microtubule stabilizer tpi-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome. JAMA Neurol. 2020;77(2):215. InternetAvailable from. doi: 10.1001/jamaneurol.2019.3812
  • Morimoto BH, Schmechel D, Hirman J, et al. A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement Geriatr Cogn Disord. 2013;35(5–6):325–339. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/23594991
  • Boxer AL, Lang AE, Grossman M, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 2014;13(7):676–685. doi: 10.1016/S1474-4422(14)70088-2
  • Ivashko-Pachima Y, Maor-Nof M, Gozes I, et al. NAP (davunetide) preferential interaction with dynamic 3-repeat Tau explains differential protection in selected tauopathies. PLoS One. 2019;14(3):e0213666. InternetAvailable from. doi: 10.1371/journal.pone.0213666
  • Dam T, Boxer AL, Golbe LI, et al. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat Med [InternetAvailable from]. 2021;27:1451–1457. doi: 10.1038/s41591-021-01455-x.
  • Koga S, Dickson DW, Wszolek ZK. Neuropathology of progressive supranuclear palsy after treatment with tilavonemab. Lancet Neurol. 2021;20(10):786–787. InternetAvailable from. doi: 10.1016/S1474-4422(21)00283-0
  • Noble W, Planel E, Zehr C, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A. 2005;102(19):6990–6995. InternetAvailable from. doi: 10.1073/pnas.0500466102
  • Hampel H, Ewers M, Bürger K, et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry. 2009;70(6):922–931. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/19573486
  • Sha SJ, Miller ZA, Min S-W, et al. An 8-week, open-label, dose-finding study of nimodipine for the treatment of progranulin insufficiency from GRN gene mutations. Alzheimer’s & Dementia: Transl Res Clin Interventions. 2017;3:507–512. InternetAvailable from: http://linkinghub.elsevier.com/retrieve/pii/S2352873717300483
  • Höglinger GU, Litvan I, Mendonca N, et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 2021;20(3):182–192. InternetAvailable from. doi: 10.1016/S1474-4422(20)30489-0
  • First Round of FTD Therapeutics Fell Short, But Many More Are Up and Running [Internet]. [cited 2023 Mar 30]. Available from: https://www.alzforum.org/news/conference-coverage/first-round-ftd-therapeutics-fell-short-many-more-are-and-running.
  • Li P, Quan W, Zhou YY, et al. Efficacy of memantine on neuropsychiatric symptoms associated with the severity of behavioral variant frontotemporal dementia: a six-month, open-label, self-controlled clinical trial. Exp Ther Med. 2016;12(1):492–498. doi: 10.3892/etm.2016.3284
  • Boxer AL, Knopman DS, Kaufer DI, et al. Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol [InternetAvailable from]. 2013;12:149–156. doi: 10.1016/S1474-4422(12)70320-4.
  • Sarva H, Henchcliffe C. Evidence for the use of pimavanserin in the treatment of Parkinson’s disease psychosis. Ther Adv Neurol Disord. 2016;9(6):462–473. doi: 10.1177/1756285616664300
  • Tariot PN, Cummings JL, Soto-Martin ME, et al. Trial of pimavanserin in dementia-related psychosis. N Engl J Med. 2021;385(4):309–319. doi: 10.1056/NEJMoa2034634
  • Moreno GM, Gandhi R, Lessig SL, et al. Mortality in patients with Parkinson disease psychosis receiving pimavanserin and quetiapine. Neurology. 2018;91(17):797–799. doi: 10.1212/WNL.0000000000006396
  • Cummings J, Ballard C, Tariot P, et al. Pimavanserin: potential treatment for dementia-related psychosis. J Prev Alzheimers Dis. 2018;5:253–258. doi: 10.14283/jpad.2018.29
  • Fremont R, Manoochehri M, Armstrong NM, et al. Tolcapone treatment for cognitive and behavioral symptoms in behavioral variant frontotemporal dementia: a placebo-controlled crossover study. J Alzheimers Dis. 2020;75(4):1391–1403. doi: 10.3233/JAD-191265
  • Hu F, Padukkavidana T, Vægter CB, et al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron. 2010;68(4):654–667. InternetAvailable from. doi: 10.1016/j.neuron.2010.09.034
  • Alector Announces Data from On-going Phase 1b Trial Demonstrating that AL001 Reverses Progranulin Deficiency in Frontotemporal Dementia Patients [Internet]. [cited 2023 Apr 4]. Available from: https://investors.alector.com/news-releases/news-release-details/alector-announces-data-going-phase-1b-trial-demonstrating-al001.
  • AL001 Boosts Progranulin. Does it Slow Frontotemporal Dementia [Internet]. [cited 2023 Apr 4]. Available from: https://www.alzforum.org/news/conference-coverage/al001-boosts-progranulin-does-it-slow-frontotemporal-dementia.
  • Sholler DJ, Huestis MA, Amendolara B, et al. Therapeutic potential and safety considerations for the clinical use of synthetic cannabinoids. Pharmacol Biochem Behav [InternetAvailable from]. 2020;199:173059. doi: 10.1016/j.pbb.2020.173059
  • Khoury R, Rajamanickam J, Grossberg GT. An update on the safety of current therapies for Alzheimer’s disease: focus on rivastigmine. Ther Adv Drug Saf. 2018;9(3):171–178. InternetAvailable from. doi: 10.1177/2042098617750555
  • Warren NM, Piggott MA, Perry EK, et al. Cholinergic systems in progressive supranuclear palsy. Brain. 2005;128(2):239–249. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/15649952
  • Litvan I, Phipps M, Pharr VL, et al. Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology. 2001;57(3):467–473. InternetAvailable from. doi: 10.1212/WNL.57.3.467
  • Oyeka M, Ibilah T, Israel J, et al. Progressive supranuclear palsy: improvement in cognitive-behavioral disturbances and motor-function disabilities following treatment with antidepressants and cholinesterase inhibitors. Cureus. 2021;13:e15641. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/34306851
  • Du H, Zhou X, Feng T, et al. Regulation of lysosomal trafficking of progranulin by sortilin and prosaposin. Brain Commun. 2022;4(1):fcab310. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/35169707
  • Jadhav S, Avila J, Schöll M, et al. A walk through tau therapeutic strategies. Acta Neuropathol Commun. 2019;7(1):22. InternetAvailable from. [cited 2019 Aug 13]. 10.1186/s40478-019-0664-z
  • Logan T, Simon MJ, Rana A, et al. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell. 2021;184(18):4651–4668.e25. doi: 10.1016/j.cell.2021.08.002
  • Song Y, Chen X, Wang LY, et al. Rho kinase inhibitor fasudil protects against β-amyloid-induced hippocampal neurodegeneration in rats. CNS Neurosci Ther. 2013;19(8):603–610. doi: 10.1111/cns.12116
  • Amano M, Kaneko T, Maeda A, et al. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. J Neurochem. 2003;87(3):780–790. doi: 10.1046/j.1471-4159.2003.02054.x
  • Gentry EG, Henderson BW, Arrant AE, et al. Rho kinase inhibition as a therapeutic for progressive supranuclear palsy and corticobasal degeneration. J Neurosci. 2016;36(4):1316–1323. doi: 10.1523/JNEUROSCI.2336-15.2016
  • Zu T, Guo S, Bardhi O, et al. Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. Proc Natl Acad Sci U S A. 2020;117(31):18591–18599. InternetAvailable from. doi: 10.1073/pnas.2005748117
  • Firsov AM, Fomich MA, V BA, et al. Threshold protective effect of deuterated polyunsaturated fatty acids on peroxidation of lipid bilayers. FEBS J. 2019;286(11):2099–2117. doi: 10.1111/febs.14807
  • Zesiewicz T, Heerinckx F, De Jager R, et al. Randomized, clinical trial of RT001: early signals of efficacy in Friedreich’s ataxia. Mov Disord. 2018;33(6):1000–1005. doi: 10.1002/mds.27353
  • Yerton M, Winter A, Kostov A, et al. An expanded access protocol of RT001 in amyotrophic lateral sclerosis—Initial experience with a lipid peroxidation inhibitor. Muscle Nerve. 2022;66(4):421–425. doi: 10.1002/mus.27672
  • Sun W, Samimi H, Gamez M, et al. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci. 2018;21(8):1038–1048. doi: 10.1038/s41593-018-0194-1
  • Guo C, Jeong HH, Hsieh YC, et al. Tau activates transposable elements in alzheimer’s disease. Cell Rep. 2018;23(10):2874–2880. doi: 10.1016/j.celrep.2018.05.004
  • Ramirez P, Zuniga G, Sun W, et al. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog Neurobiol [InternetAvailable from]. 2022;208:102181. doi: 10.1016/j.pneurobio.2021.102181
  • Liu EY, Russ J, Cali CP, et al. Loss of nuclear tdp-43 is associated with decondensation of line retrotransposons. Cell Rep. 2019;27(5):1409–1421.e6. doi: 10.1016/j.celrep.2019.04.003
  • Li W, Jin Y, Prazak L, et al. Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One. 2012;7(9):e44099. InternetAvailable from. doi: 10.1371/journal.pone.0044099
  • LaRocca TJ, Mariani A, Watkins LR, et al. TDP-43 knockdown causes innate immune activation via protein kinase R in astrocytes. Neurobiol Dis [InternetAvailable from]. 2019;132:104514. doi: 10.1016/j.nbd.2019.104514
  • McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol. 2019;137(5):715–730. InternetAvailable from. doi: 10.1007/s00401-018-1933-9
  • Colizzi M, Bortoletto R, Colli C, et al. Therapeutic effect of palmitoylethanolamide in cognitive decline: a systematic review and preliminary meta-analysis of preclinical and clinical evidence. Front Psychiatry [InternetAvailable from]. 2022;13:1038122. doi: 10.3389/fpsyt.2022.1038122.
  • Nabavi SF, Braidy N, Gortzi O, et al. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull [InternetAvailable from]. 2015;119:1–11. doi: 10.1016/j.brainresbull.2015.09.002
  • Assogna M, Casula EP, Borghi I, et al. Effects of palmitoylethanolamide combined with luteoline on frontal lobe functions, high frequency oscillations, and GABAergic transmission in patients with frontotemporal dementia. J Alzheimers Dis. 2020;76(4):1297–1308. doi: 10.3233/JAD-200426
  • Chen JJ, Swope DM, Dashtipour K, et al. Transdermal rotigotine: a clinically innovative dopamine-receptor agonist for the management of Parkinson’s disease. Pharmacotherapy. 2009;29(12):1452–1467. InternetAvailable from. doi: 10.1592/phco.29.12.1452
  • Koch G, Motta C, Bonnì S, et al. Effect of rotigotine vs placebo on cognitive functions among patients with mild to moderate Alzheimer disease. JAMA Netw Open. 2020;3(7):e2010372. InternetAvailable from. doi: 10.1001/jamanetworkopen.2020.10372
  • Martorana A, Di Lorenzo F, Esposito Z, et al. Dopamine D₂-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology. 2013;64:108–113. InternetAvailable from: http://linkinghub.elsevier.com/retrieve/pii/S0028390812003516
  • Novak P, Zilka N, Zilkova M, et al. Aadvac1, an active immunotherapy for alzheimer’s disease and non Alzheimer tauopathies: an overview of preclinical and clinical development. J Prev Alz Dis. 2019;6:1–7. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/30569088
  • Novak P, Kovacech B, Katina S, et al. ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease. Nat Aging [InternetAvailable from]. 2021;1:521–534. doi: 10.1038/s43587-021-00070-2
  • Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16(2):123–134. InternetAvailable from. doi: 10.1016/S1474-4422(16)30331-3
  • Albert M, Mairet-Coello G, Danis C, et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain. 2019;142(6):1736–1750. InternetAvailable from: https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awz100/5481201
  • Courade J-P, Angers R, Mairet-Coello G, et al. Epitope determines efficacy of therapeutic anti-Tau antibodies in a functional assay with human Alzheimer Tau. Acta Neuropathol. 2018;136(5):729–745. InternetAvailable from. doi: 10.1007/s00401-018-1911-2
  • Cotelli M, Manenti R, Paternicò D, et al. Grey matter density predicts the improvement of naming abilities after tDCS intervention in agrammatic variant of primary progressive aphasia. Brain Topogr. 2016;29(5):738–751. doi: 10.1007/s10548-016-0494-2
  • Gervits F, Ash S, Coslett HB, et al. Transcranial direct current stimulation for the treatment of primary progressive aphasia: an open-label pilot study. Brain Lang. 2016;162:35–41. doi: 10.1016/j.bandl.2016.05.007
  • Teichmann M, Lesoil C, Godard J, et al. Direct current stimulation over the anterior temporal areas boosts semantic processing in primary progressive aphasia. Ann Neurol. 2016;80(5):693–707. doi: 10.1002/ana.24766
  • Ficek BN, Wang Z, Zhao Y, et al. The effect of tDCS on functional connectivity in primary progressive aphasia. NeuroImage Clin. 2018;19:703–715. doi: 10.1016/j.nicl.2018.05.023
  • Fenner AS, Webster KT, Ficek BN, et al. Written verb naming improves after tDCS over the left IFG in primary progressive aphasia. Front Psychol. 2019;10:10. doi: 10.3389/fpsyg.2019.01396
  • Tsapkini K, Webster KT, Ficek BN, et al. Electrical brain stimulation in different variants of primary progressive aphasia: a randomized clinical trial. Alzheimer’s & Dementia: Transl Res Clin Interventions. 2018;4:461–472. doi: 10.1016/j.trci.2018.08.002
  • Wang J, Wu D, Chen Y, et al. Effects of transcranial direct current stimulation on language improvement and cortical activation in nonfluent variant primary progressive aphasia. Neurosci Lett. 2013;549:29–33. doi: 10.1016/j.neulet.2013.06.019
  • Cotelli M, Manenti R, Petesi M, et al. Treatment of primary progressive aphasias by transcranial direct current stimulation combined with language training. J Alzheimers Dis. 2014;39(4):799–808. doi: 10.3233/JAD-131427
  • Zhao Y, Ficek B, Webster K, et al. White matter integrity predicts electrical stimulation (tDCS) and language therapy effects in primary progressive aphasia. Neurorehabil Neural Repair. 2021;35(1):44–57. doi: 10.1177/1545968320971741
  • de Aguiar V, Zhao Y, Ficek BN, et al. Cognitive and language performance predicts effects of spelling intervention and tDCS in primary progressive aphasia. Cortex. 2020;124:66–84. doi: 10.1016/j.cortex.2019.11.001
  • de Aguiar V, Zhao Y, Faria A, et al. Brain volumes as predictors of tDCS effects in primary progressive aphasia. Brain Lang [InternetAvailable from]. 2020;200:104707. doi: 10.1016/j.bandl.2019.104707
  • Valero-Cabré A, Sanches C, Godard J, et al. Language boosting by transcranial stimulation in progressive supranuclear palsy. Neurology. 2019;93(6):e537–e547. doi: 10.1212/WNL.0000000000007893
  • Harris AD, Wang Z, Ficek B, et al. Reductions in GABA following a tDCS-language intervention for primary progressive aphasia. Neurobiol Aging. 2019;79:75–82. doi: 10.1016/j.neurobiolaging.2019.03.011
  • Roncero C, Kniefel H, Service E, et al. Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer’s disease and frontotemporal dementia. Alzheimer’s & Dementia: Transl Res Clin Interventions. 2017;3:247–253. InternetAvailable from: http://linkinghub.elsevier.com/retrieve/pii/S2352873717300148
  • McConathey EM, White NC, Gervits F, et al. Baseline performance predicts tDCS-mediated improvements in language symptoms in primary progressive aphasia. Front Hum Neurosci. 2017;11:84. doi: 10.3389/fnhum.2017.00347
  • Hung J, Bauer A, Grossman M, et al. Semantic feature training in combination with transcranial direct current stimulation (tDCS) for progressive anomia. Front Hum Neurosci. 2017;11:390. doi: 10.3389/fnhum.2017.00253
  • Cotelli M, Adenzato M, Cantoni V, et al. Enhancing theory of mind in behavioural variant frontotemporal dementia with transcranial direct current stimulation. Cogn Affect Behav Neurosci. 2018;18(6):1065–1075. InternetAvailable from. doi: 10.3758/s13415-018-0622-4
  • Ferrucci R, Mrakic-Sposta S, Gardini S, et al. Behavioral and neurophysiological effects of transcranial direct current stimulation (tDCS) in fronto-temporal dementia. Front Behav Neurosci. 2018;12:1–11. doi: 10.3389/fnbeh.2018.00235
  • Benussi A, Padovani A, Borroni B, Transcranial magnetic stimulation in alzheimerã¢â?â?s disease and cortical dementias. J Alzheimers Dis Parkinsonism. 2015.53: InternetAvailable from https://www.omicsonline.org/open-access/transcranial-magnetic-stimulation-in-alzheimers-disease-and-corticaldementias-2161-0460-1000197.php?aid=61727.
  • Bereau M, Magnin E, Nicolier M, et al. Left prefrontal repetitive transcranial magnetic stimulation in a logopenic variant of primary progressive aphasia: a case report. Eur Neurol. 2016;76(1–2):12–18. doi: 10.1159/000447399
  • Finocchiaro C, Maimone M, Brighina F, et al. a case study of primary progressive aphasia: improvement on verbs after rTMS treatment. Neurocase. 2006;12(6):317–321. doi: 10.1080/13554790601126203
  • Trebbastoni A, Raccah R, de Lena C, et al. Repetitive deep transcranial magnetic stimulation improves verbal fluency and written language in a patient with primary progressive aphasia-logopenic variant (LPPA). Brain Stimul. 2013;6(4):545–553. doi: 10.1016/j.brs.2012.09.014
  • Antczak J, Kowalska K, Klimkowicz-Mrowiec A, et al. Repetitive transcranial magnetic stimulation for the treatment of cognitive impairment in frontotemporal dementia: an open-label pilot study. Neuropsychiatr Dis Treat. 2018;14:749–755. doi: 10.2147/NDT.S153213
  • Cotelli M, Manenti R, Alberici A, et al. Prefrontal cortex rTMS enhances action naming in progressive non-fluent aphasia. Eur J Neurol. 2012;19(11):1404–1412. InternetAvailable from. doi: 10.1111/j.1468-1331.2012.03699.x
  • Volkmer A, Rogalski E, Henry M, et al. Speech and language therapy approaches to managing primary progressive aphasia. Pract Neurol. 2019;20(2):154–161. doi: 10.1136/practneurol-2018-001921
  • Robinaugh G, Henry ML. Behavioral interventions for primary progressive aphasia. Handb Clin Neurol. 2022;185:221–240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.