384
Views
0
CrossRef citations to date
0
Altmetric
Systematic Review

Spinal cord stimulation for gait disturbances in Parkinson’s disease

ORCID Icon &
Pages 651-659 | Received 16 Apr 2023, Accepted 18 Jun 2023, Published online: 26 Jun 2023

References

  • Marras C, Beck JC, Bower JH, et al. Prevalence of Parkinson’s disease across North America. NPJ Parkinson’s dis. 2018;4(1):21. doi: 10.1038/s41531-018-0058-0
  • Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–1601. doi: 10.1002/mds.26424
  • Perez-Lloret S, Negre-Pages L, Damier P, et al. Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol. 2014;71(7):884–890. doi: 10.1001/jamaneurol.2014.753
  • Lichter DG, Benedict RHB, Hershey LA, Martella, G. Freezing of gait in parkinson’s disease: risk factors, their interactions, and associated nonmotor symptoms. Parkinson’s Disease. 2021;2021:1–12. doi: 10.1155/2021/8857204
  • Zhang WS, Gao C, Tan YY, et al. Prevalence of freezing of gait in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. 2021;268(11):4138–4150. doi: 10.1007/s00415-021-10685-5
  • Lewis SJG, Factor SA, Giladi N, et al. Addressing the challenges of clinical research for freezing of gait in parkinson’s disease. Mov Disord. 2022;37(2):264–267. doi: 10.1002/mds.28837
  • Nonnekes J, Snijders AH, Nutt JG, et al. Freezing of gait: a practical approach to management. Lancet Neurol. 2015;14(7):768–778. doi: 10.1016/S1474-4422(15)00041-1
  • Snijders AH, Takakusaki K, Debu B, et al. Physiology of freezing of gait. Ann Neurol. 2016;80(5):644–659. doi: 10.1002/ana.24778
  • Thenganatt MA, Jankovic J. Parkinson disease subtypes. JAMA Neurol. 2014;71(4):499–504. doi: 10.1001/jamaneurol.2013.6233
  • Bloem BR, Hausdorff JM, Visser JE, et al. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19(8):871–884. doi: 10.1002/mds.20115
  • Coughlin L, Templeton J. Hip fractures in patients with Parkinson’s disease. Clin Orthop Relat Res. 1980;1980(148):192–195. doi: 10.1097/00003086-198005000-00031
  • Moore O, Peretz C, Giladi N. Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait. Mov Disord. 2007;22(15):2192–2195. doi: 10.1002/mds.21659
  • Walton CC, Shine JM, Hall JM, et al. The major impact of freezing of gait on quality of life in Parkinson’s disease. J Neurol. 2015;262(1):108–115. doi: 10.1007/s00415-014-7524-3
  • Espay AJ, Fasano A, van Nuenen BF, et al. “On” state freezing of gait in Parkinson disease: a paradoxical levodopa-induced complication. Neurology. 2012;78(7):454–457. doi: 10.1212/WNL.0b013e3182477ec0
  • Chung KA, Carlson NE, Nutt JG. Short-term paroxetine treatment does not alter the motor response to levodopa in PD. Neurology. 2005;64(10):1797–1798. doi: 10.1212/01.WNL.0000161841.41885.80
  • Cui CK, Lewis SJG. Future therapeutic strategies for freezing of gait in parkinson’s disease. Front Human Neurosci. 2021;15:741918. doi: 10.3389/fnhum.2021.741918
  • Delgado-Alvarado M, Marano M, Santurtun A, et al. Nonpharmacological, nonsurgical treatments for freezing of gait in Parkinson’s disease: a systematic review. Mov Disord. 2020;35(2):204–214. doi: 10.1002/mds.27913
  • Cosentino C, Baccini M, Putzolu M, et al. Effectiveness of physiotherapy on freezing of gait in parkinson’s disease: a systematic review and meta-analyses. Mov Disord. 2020;35(4):523–536. doi: 10.1002/mds.27936
  • Nonnekes J, Ruzicka E, Nieuwboer A, et al. Compensation strategies for gait impairments in Parkinson disease: a review. JAMA Neurol. 2019;76(6):718–725. doi: 10.1001/jamaneurol.2019.0033
  • Adams C, Keep M, Martin K, et al. Acute induction of levodopa-resistant freezing of gait upon subthalamic nucleus electrode implantation. Parkinsonism Related Disord. 2011;17(6):488–490. doi: 10.1016/j.parkreldis.2011.02.014
  • Fleury V, Pollak P, Gere J, et al. Subthalamic stimulation may inhibit the beneficial effects of levodopa on akinesia and gait. Mov Disord. 2016;31(9):1389–1397. doi: 10.1002/mds.26545
  • Van Nuenen BF, Esselink RA, Munneke M, et al. Postoperative gait deterioration after bilateral subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord. 2008;23(16):2404–2406. doi: 10.1002/mds.21986
  • Su ZH, Patel S, Gavine B, et al. Deep brain stimulation and levodopa affect gait variability in Parkinson disease differently. Neuromodulation. 2022;26:382–393. doi: 10.1016/j.neurom.2022.04.035
  • Gavriliuc O, Paschen S, Andrusca A, et al. Prediction of the effect of deep brain stimulation on gait freezing of Parkinson’s disease. Parkinsonism Related Disord. 2021;87:82–86. doi: 10.1016/j.parkreldis.2021.04.006
  • Ricchi V, Zibetti M, Angrisano S, et al. Transient effects of 80 Hz stimulation on gait in STN DBS treated PD patients: a 15 months follow-up study. Brain Stimulation. 2012;5(3):388–392. doi: 10.1016/j.brs.2011.07.001
  • Petrucci MN, Neuville RS, Afzal MF, et al. Neural closed-loop deep brain stimulation for freezing of gait. Brain Stimulation. 2020;13(5):1320–1322. doi: 10.1016/j.brs.2020.06.018
  • Alam M, Schwabe K, Krauss JK. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain. 2011;134(Pt 1):11–23. doi: 10.1093/brain/awq322
  • Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–160. doi: 10.1038/s41582-018-0128-2
  • Thevathasan W, Cole MH, Graepel CL, et al. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain. 2012;135(Pt 5):1446–1454. doi: 10.1093/brain/aws039
  • Thevathasan W, Coyne TJ, Hyam JA, et al. Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery. 2011;69(6):1248–1253. discussion 54. doi: 10.1227/NEU.0b013e31822b6f71
  • Ferraye MU, Debu B, Fraix V, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. 2010;133(Pt 1):205–214. doi: 10.1093/brain/awp229
  • Zrinzo L, Zrinzo L, Hariz M. The peripeduncular nucleus: a novel target for deep brain stimulation? Neuroreport. 2007;18(15):1631–1632. doi: 10.1097/WNR.0b013e3282638603 author reply 2-3.
  • Compton AK, Shah B, Hayek SM. Spinal cord stimulation: a review. Curr Pain Headache Rep. 2012;16(1):35–42. doi: 10.1007/s11916-011-0238-7
  • Sheldon B, Staudt MD, Williams L, et al. Spinal cord stimulation programming: a crash course. Neurosurg Rev. 2021;44(2):709–720. doi: 10.1007/s10143-020-01299-y
  • Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesthesia & Analgesia. 1967;46(4):489–491. doi: 10.1213/00000539-196707000-00025
  • de Souza C P, Hamani C, Oliveira Souza C, et al. Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov Disord. 2017;32(2):278–282. Benefits were observed. doi: 10.1002/mds.26850
  • Samotus O, Parrent A, Jog M. Spinal Cord Stimulation Therapy for Gait Dysfunction in Advanced Parkinson’s Disease Patients. Movement disorders: official journal of the Movement Disorder Society. Mov Disord. 2018;33(5):783–792. Benefits were observed doi: 10.1002/mds.27299
  • Yadav AP, Nicolelis MAL. Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease. Mov Disord. 2017;32(6):820–832. doi: 10.1002/mds.27033
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71
  • Cook AW, Weinstein SP. Chronic dorsal column stimulation in multiple sclerosis. Preliminary Report: New York State Journal Of Medicine. 1973;73(24):2868–2872.
  • Powell MP, Verma N, Sorensen E, et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat Med. 2023;29(3):689–699. doi: 10.1038/s41591-022-02202-6
  • Sayenko DG, Angeli C, Harkema SJ, et al. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J Neurophysiol. 2014;111(5):1088–1099. doi: 10.1152/jn.00489.2013
  • Agari T, Date I. Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson’s disease. Neurol Med Chir (Tokyo). 2012;52(7):470–474. doi: 10.2176/nmc.52.470
  • Soltani F, Lalkhen A. Improvement of parkinsonian symptoms with spinal cord stimulation: consequence or coincidence? J Neurol Neurosurg Psychiatry. 2013;84(11):e2–e. doi: 10.1136/jnnp-2013-306573.165
  • Hassan S, Amer S, Alwaki A, et al. A patient with Parkinson’s disease benefits from spinal cord stimulation. J Clin Neurosci. 2013;20(8):1155–1156. doi: 10.1016/j.jocn.2012.08.018
  • Lai Y, Pan Y, Wang L, et al. Spinal cord stimulation with surgical lead improves pain and gait in parkinson’s disease after a dislocation of percutaneous lead: a case report. Stereotact Funct Neurosurg. 2020;98(2):104–109. doi: 10.1159/000505707
  • Haddas R, Lieberman IH, Ohnmeiss DD, et al. Effect of spinal cord stimulation on balance and gait in failed back surgery syndrome patients. Spine J. 2021;21(9, Supplement):S46. doi: 10.1016/j.spinee.2021.05.120
  • Gong H, Liu Y, Zhu X, et al. Spinal cord stimulation improved freezing of gait and hypokinetic dysarthria of a patient with dopamine-resistant multiple system atrophy-parkinsonian type. Neurol India. 2022;70(2):757–759. doi: 10.4103/0028-3886.344653
  • Rohani M, Kalsi-Ryan S, Lozano AM, et al. Spinal cord stimulation in primary progressive freezing of gait. Mov Disord. 2017;32(9):1336–1337. doi: 10.1002/mds.27103
  • Samotus O, Parrent A, Jog M. Spinal cord stimulation therapy for gait dysfunction in progressive supranuclear palsy patients. J Neurol. 2021;268(3):989–996. doi: 10.1007/s00415-020-10233-7
  • Samotus O, Parrent A, Jog M. Spinal cord stimulation therapy for gait dysfunction in two corticobasal syndrome patients. Can J Neurol Sci. 2021;48(2):278–280. doi: 10.1017/cjn.2020.143
  • Zhou PB, Bao M. Spinal cord stimulation treatment for freezing of gait in Parkinson’s disease: a case report. Brain Stimulation. 2022;15(1):76–77. doi: 10.1016/j.brs.2021.11.011
  • Thevathasan W, Mazzone P, Jha A, et al. Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology. 2010;74(16):1325–1327. doi: 10.1212/WNL.0b013e3181d9ed58
  • de Souza C P, Coelho DB, Campos D, et al. Spinal cord stimulation improves motor function and gait in spastic paraplegia type 4 (SPG4): clinical and neurophysiological evaluation. Parkinsonism Related Disord. 2020;83:1–5. doi: 10.1016/j.parkreldis.2020.12.008
  • Hubsch C, D’Hardemare V, Ben Maacha M, et al. Tonic spinal cord stimulation as therapeutic option in Parkinson disease with axial symptoms: effects on walking and quality of life. Parkinsonism Related Disord. 2019;63:235–237.
  • Prasad S, Aguirre-Padilla DH, Poon YY, et al. Spinal Cord Stimulation for Very Advanced Parkinson’s Disease: a 1-Year Prospective Trial. Mov Disord. 2020;35(6):1082–1083. doi: 10.1002/mds.28065
  • Samotus O, Parrent A, Jog M. Long-term update of the effect of spinal cord stimulation in advanced Parkinson’s disease patients. Brain Stimulation. 2020;13(5):1196–1197. doi: 10.1016/j.brs.2020.06.004
  • Mazzone P, Viselli F, Ferraina S, et al. High cervical spinal cord stimulation: a one year follow-up study on motor and non-motor functions in parkinson’s disease. Brain Sci. 2019;9(4):78. Gait benefits were observed. doi: 10.3390/brainsci9040078
  • Winfree KN, Pretzer-Aboff I, Hilgart D, et al. The effect of step-synchronized vibration on patients with Parkinson’s disease: case studies on subjects with freezing of gait or an implanted deep brain stimulator. IEEE Trans Neural Syst Rehabil Eng. 2013;21(5):806–811. doi: 10.1109/TNSRE.2013.2250308
  • Gallin JI. Principles and Practice of Clinical Research. Academic Press: 2002. doi: 10.1016/B978-012274065-7/50003-4
  • Nieuwboer A, Giladi N. The challenge of evaluating freezing of gait in patients with Parkinson’s disease. Br J Neurosurg. 2008;22(1):S16–8. doi: 10.1080/02688690802448376
  • Snijders AH, Nijkrake MJ, Bakker M, et al. Clinimetrics of freezing of gait. Mov Disord. 2008;23(S2):S468–S74. doi: 10.1002/mds.22144
  • de Lima AL S, Evers LJW, Hahn T, et al. Impact of motor fluctuations on real-life gait in Parkinson’s patients. Gait Posture. 2018;62:388–394. doi: 10.1016/j.gaitpost.2018.03.045
  • Delrobaei M, Memar S, Pieterman M, et al. Towards remote monitoring of Parkinson’s disease tremor using wearable motion capture systems. J Neurol Sci. 2018;384:38–45. doi: 10.1016/j.jns.2017.11.004
  • Pulliam CL, Heldman DA, Brokaw EB, et al. Continuous assessment of levodopa response in parkinson’s disease using wearable motion sensors. IEEE Trans Biomed Eng. 2018;65(1):159–164. doi: 10.1109/TBME.2017.2697764
  • Braybrook M, O’Connor S, Churchward P, et al. An ambulatory tremor score for parkinson’s disease. J Parkinsons Dis. 2016;6(4):723–731. doi: 10.3233/JPD-160898
  • Adams JL, Dinesh K, Snyder CW, et al. A real-world study of wearable sensors in Parkinson’s disease. NPJ Parkinson’s dis. 2021;7(1):106. doi: 10.1038/s41531-021-00248-w
  • Habets JGV, Herff C, Kubben PL, et al. Rapid dynamic naturalistic monitoring of bradykinesia in parkinson’s disease using a wrist-worn accelerometer. Sensors. 2021;21(23):7876. doi: 10.3390/s21237876
  • Maetzler W, Domingos J, Srulijes K, et al. Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord. 2013;28(12):1628–1637. doi: 10.1002/mds.25628
  • Pardoel S, Kofman J, Nantel J, et al. Wearable-sensor-based detection and prediction of freezing of gait in parkinson’s disease: a review. Sens (Basel). 2019;19(23):5141. doi: 10.3390/s19235141
  • Schlachetzki JCM, Barth J, Marxreiter F, et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS One. 2017;12(10):e0183989. doi: 10.1371/journal.pone.0183989
  • Hill EJ, Mangleburg CG, Alfradique-Dunham I, et al. Quantitative mobility measures complement the MDS-UPDRS for characterization of Parkinson’s disease heterogeneity. Parkinsonism Relat Disord. 2021;84:105–111. doi: 10.1016/j.parkreldis.2021.02.006
  • Maetzler W, Mancini M, Liepelt-Scarfone I, et al. Impaired trunk stability in individuals at high risk for Parkinson’s disease. PLoS One. 2012;7(3):e32240. doi: 10.1371/journal.pone.0032240
  • Ozinga SJ, Machado AG, Miller Koop M, et al. Objective assessment of postural stability in Parkinson’s disease using mobile technology. Mov Disord. 2015;30(9):1214–1221. doi: 10.1002/mds.26214
  • Zampieri C, Salarian A, Carlson-Kuhta P, et al. The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81(2):171–176. doi: 10.1136/jnnp.2009.173740
  • Weiss A, Herman T, Plotnik M, et al. Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s disease? Med Eng Phys. 2010;32(2):119–125. doi: 10.1016/j.medengphy.2009.10.015
  • Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009;373(9680):2055–2066. doi: 10.1016/S0140-6736(09)60492-X
  • Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003;991:1–14. doi: 10.1111/j.1749-6632.2003.tb07458.x
  • Foltynie T, Brayne C, Barker RA. The heterogeneity of idiopathic Parkinson’s disease. J Neurol. 2002;249(2):138–145. doi: 10.1007/PL00007856
  • Gao C, Liu J, Tan Y, et al. Freezing of gait in Parkinson’s disease: pathophysiology, risk factors and treatments. Transl Neurodegener. 2020;9(1):12. doi: 10.1186/s40035-020-00191-5
  • Ahmed S, Yearwood T, De Ridder D, et al. Burst and high frequency stimulation: underlying mechanism of action. Expert Rev Med Devices. 2018;15(1):61–70. doi: 10.1080/17434440.2018.1418662
  • Kishima H, Saitoh Y, Oshino S, et al. Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H(2)15O PET study. Neuroimage. 2010;49(3):2564–2569. doi: 10.1016/j.neuroimage.2009.10.054
  • De Ridder D, Vanneste S, Plazier M, et al. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery. 2010;66(5):986–990. doi: 10.1227/01.NEU.0000368153.44883.B3
  • Kiriakopoulos ET, Tasker RR, Nicosia S, et al. Functional magnetic resonance imaging: a potential tool for the evaluation of spinal cord stimulation: technical case report. Neurosurgery. 1997;41(2):501–504. doi: 10.1097/00006123-199708000-00042
  • Schechtmann G, Song Z, Ultenius C, et al. Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy. Pain. 2008;139(1):136–145. doi: 10.1016/j.pain.2008.03.023
  • Song Z, Meyerson BA, Linderoth B. Spinal 5-HT receptors that contribute to the pain-relieving effects of spinal cord stimulation in a rat model of neuropathy. Pain. 2011;152(7):1666–1673. doi: 10.1016/j.pain.2011.03.012
  • Jensen MP, Brownstone RM. Mechanisms of spinal cord stimulation for the treatment of pain: still in the dark after 50 years. Eur J Pain. 2019;23(4):652–659. doi: 10.1002/ejp.1336
  • Weiss D, Schoellmann A, Fox MD, et al. Freezing of gait: understanding the complexity of an enigmatic phenomenon. Brain. 2020;143(1):14–30. doi: 10.1093/brain/awz314
  • Rahimpour S, Gaztanaga W, Yadav AP, et al. Freezing of Gait in Parkinson’s Disease: invasive and Noninvasive Neuromodulation. Neuromodulation. 2021;24(5):829–842. doi: 10.1111/ner.13347
  • Maidan I, Jacob Y, Giladi N, et al. Altered organization of the dorsal attention network is associated with freezing of gait in Parkinson’s disease. Parkinsonism Related Disord. 2019;63:77–82. doi: 10.1016/j.parkreldis.2019.02.036
  • Georgiades MJ, Shine JM, Gilat M, et al. Hitting the brakes: pathological subthalamic nucleus activity in Parkinson’s disease gait freezing. Brain. 2019;142(12):3906–3916. doi: 10.1093/brain/awz325
  • Gulberti A, Wagner JR, Horn MA, et al. Subthalamic and nigral neurons are differentially modulated during parkinsonian gait. Brain. 2023. doi: 10.1093/brain/awad006.
  • Nicolelis MA, Fuentes R, Petersson P, et al. Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology. 2010;75(16):1484. author reply -5. doi: 10.1212/WNL.0b013e3181f46f10
  • de Andrade EM, Ghilardi MG, Cury RG, et al. Spinal cord stimulation for Parkinson’s disease: a systematic review. Neurosurg Rev. 2016;39(1):27–35. discussion. doi: 10.1007/s10143-015-0651-1
  • Fuentes R, Petersson P, Siesser WB, et al. Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science. 2009;323(5921):1578–1582. doi: 10.1126/science.1164901
  • Santana MB, Halje P, Simplicio H, et al. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron. 2014;84(4):716–722. doi: 10.1016/j.neuron.2014.08.061
  • de Geus TJ, Franken G, Joosten EAJ, et al. Spinal cord stimulation paradigms and pain relief: a preclinical systematic review on modulation of the central inflammatory response in neuropathic pain. Neuromodulation. 2023;26(1):25–34. doi: 10.1016/j.neurom.2022.04.049
  • Kuwahara K, Sasaki T, Yasuhara T, et al. Long-term continuous cervical spinal cord stimulation exerts neuroprotective effects in experimental parkinson’s disease. Front Aging Neurosci. 2020;12:164. doi: 10.338.9/fnagi.2020.00164
  • Rezvanian S, Litvan I, Standaert D, et al. Understanding the relationship between freezing of gait and other progressive supranuclear palsy features. Parkinsonism Related Disord. 2020;78:56–60. doi: 10.1016/j.parkreldis.2020.07.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.