116
Views
0
CrossRef citations to date
0
Altmetric
Drug Profile

Evaluating avalglucosidase alfa for the management of late-onset Pompe disease

ORCID Icon
Pages 259-266 | Received 20 Nov 2023, Accepted 15 Jan 2024, Published online: 23 Jan 2024

References

  • Angelini C, Engel AG. Comparative study of acid maltase deficiency biochemical differences between infantile, childhood, or adult types. Arch Neurol. 1972;26:344–349. doi: 10.1001/archneur.1972.00490100074007
  • Angelini C, Engel AG. Subcellular distribution of acid and neutral alpha-glucosidases in normal, acid maltase deficient, and myophosphorylase deficient human skeletal muscle. Arch Biochem Biophys. 1973;156:350–355.
  • Hirschhorn R, Reuser AJ. Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In: Scriver C, Ba S Valle W, editors. The metabolic and molecular bases of inherited disease. 8th ed. (NY): McGraw-Hill; 2001. p. 3389–3420.
  • van der Ploeg AT, Reuser AJ. Pompe’s disease. Lancet. 2008;372:1342–1353. doi: 10.1016/S0140-6736(08)61555-X
  • Angelini C, Engel AG, Titus JL. Adult acid maltase deficiency: abnormalities in fibroblasts cultured from patients. N Engl J Med. 1972;287(19):948–951. doi: 10.1056/NEJM197211092871902
  • Kishnani PS, Hwu WL, Mandel H, et al. A retrospective, multinational, multicenter study on the natural history of infantile-onset pompe disease. J Pediatr. 2006;148:671–676. doi: 10.1016/j.jpeds.2005.11.033
  • Hagemans MLC, Winkel LP, Hop WC, et al. Disease severity in children and adults with pompe disease is related to age and disease duration. Neurology. 2005;64:2139–2214. doi: 10.1212/01.WNL.0000165979.46537.56
  • Mellies U, Stehling F, Dohna-Schwake C, et al. Respiratory failure in pompe disease: treatment with noninvasive ventilation. Neurology. 2005;64(8):1465–1467. doi: 10.1212/01.WNL.0000158682.85052.C0
  • Hagemans ML, Hop WJ, Van Doorn PA, et al. The course of disability and respiratory function in untreated late-onset Pompe disease. Neurology. 2006;66(4):581–583. doi: 10.1212/01.wnl.0000198776.53007.2c
  • Angelini C, Semplicini C, Ravaglia S, et al. Observational clinical study in juvenile-adult glycogenosis type 2 patients undergoing enzyme replacement therapy for up to 4 years. J Neurol. 2012;259(5):952–958. doi: 10.1007/s00415-011-6293-5
  • Hagemans MLC, Janssens ACJW, Winkel LPF, et al. Late-onset pompe disease primarily affects the quality of life in physical health domains. Neurology. 2004;63:1688–1692. doi: 10.1212/01.WNL.0000142597.69707.78
  • Güngör D, Kruijshaar ME, Plug I, et al. Quality of life and participation in the daily life of adults with Pompe disease receiving enzyme replacement therapy: 10 years of international follow-up. J Inherit Metab Dis. 2016;39(2):253–260. doi: 10.1007/s10545-015-9889-6
  • Angelini C, Burlina A, Blau N. Ferreira CR. Clinical and biochemical footprints of inherited metabolic disorders: X. Metabolic Myopathies Mol Genet Metab. 2022 Sep;137(1–2):213–222. Epub 2022 Sep 18.PMID: 36155185 Review. doi: 10.1016/j.ymgme.2022.09.004
  • Musumeci O, Thieme A, Claeys KG, et al. Homozygosity for the common GAA gene splice site mutation c.-32–13T>G in pompe disease is associated with the classical adult phenotypical spectrum. Neuromuscular Disorders. 2015;25(9):719–724. doi: 10.1016/j.nmd.2015.07.002
  • Musumeci O, la Marca G, Spada M, et al. LOPED study: looking for an early diagnosis in a late-onset Pompe disease high-risk population. J Neurol Neurosurg Psychiatry. 2016;87(1):5–11. doi: 10.1136/jnnp-2014-310164
  • Angelini C, Savarese M, Fanin M, et al. Next-generation sequencing detection of late-onset pompe disease. Muscle&nerve. 2016;53(6):981–983. doi: 10.1002/mus.25042
  • Nascimbeni AC, Fanin M, Tasca E, et al. Molecular pathology and enzyme processing in various phenotypes of acid maltase deficiency. Neurology. 2008;70(8):617–626. doi: 10.1212/01.wnl.0000299892.81127.8e
  • Hug G, Schubert WK. Lysosomes in type II glycogenosis. Changes during the administration of an extract from Aspergillus niger. J Cell Bio. 1967;35:C1–6. doi: 10.1083/jcb.35.1.C1
  • Kornfeld S. Structure and function of the mannose 6-phosphate/insulin-like growth factor II receptors. Ann Rev Biochem. 1992;61:307–330. doi: 10.1146/annurev.bi.61.070192.001515
  • Neufeld EF. Enzyme replacement therapy – a brief history chapter 10. In: Mehta A, Beck M Sunder-Plassmann G, editors Fabry disease: perspectives from years of FOS. Oxford: Oxford Pharma- Genesis; 2006.
  • Rossi M, Parenti G, Della Casa R, et al. Long-term enzyme replacement therapy for Pompe disease with recombinant human alpha-glucosidase derived from Chinese hamster ovary cells. J Child Neurol. 2007;22(5):565–573. doi: 10.1177/0883073807302598
  • van den Hout H, Reuser AJ, Vulto AG, et al. Recombinant human alpha-glucosidase from rabbit milk in pompe patients. Lancet. 2000;356:397–398. doi: 10.1016/S0140-6736(00)02533-2
  • Kishnani PS, Corzo D, Nicolino M, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 2007;68:99–109. doi: 10.1212/01.wnl.0000251268.41188.04
  • Kishnani PS, Nicolino M, Voit T, et al. Results from a phase II trial of Chinese hamster ovary cell-derived recombinant human acid a-glucosidase in infantile-onset Pompe disease. J Pediatr. 2006;149:89–97. doi: 10.1016/j.jpeds.2006.02.035
  • Van der Ploeg AT. Where do we stand in enzyme replacement therapy in Pompe’s disease? Neuromuscular Disorders. 2010;20(12):773–774. doi: 10.1016/j.nmd.2010.09.011
  • Zampieri S, Buratti E, Dominissini S, et al. Splicing mutations in glycogen-storage disease type II: evaluation of the full spectrum of mutations and their relation to patient’s phenotypes. Eur J Hum Genet. 2011;19:422–431. doi: 10.1038/ejhg.2010.188
  • De Filippi P, Saeidi K, Ravaglia S, et al. Genotype-phenotype correlation in pompe disease, a step forward. Orphanet J Rare Diseases. 2014;9(1):102. doi: 10.1186/s13023-014-0102-z
  • Nascimbeni AC, Fanin M, Masiero E, et al. Impaired autophagy contributes to muscle atrophy in glycogen storage disease type II patients. Autophagy. 2012;8(11):1697–1700. doi: 10.4161/auto.21691
  • Drost MR, Hesselink RP, Oomens CW, et al. Effects of noncontractile inclusions on the mechanical performance of skeletal muscle. J Biomech. 2005;38:1035–1043. doi: 10.1016/j.jbiomech.2004.05.040
  • Raben N, Takikita S, Pittis MG, et al. Deconstructing pompe disease by analyzing single muscle fibers: to see a world in a grain of sand. Autophagy. 2007;3:546–552. doi: 10.4161/auto.4591
  • Thurberg BL, Lynch Maloney C, Vaccaro C, et al. Characterization of pre-and post-treatment pathology after enzyme replacement therapy for pompe disease. Lab Invest. 2006;86:1208–1220. doi: 10.1038/labinvest.3700484
  • Raben N, Ralston E, Chien YH, et al. Differences in the predominance of lysosomal and autophagic pathologies between infants and adults with pompe disease: implications for therapy. Mol Genet Metab. 2010;101(4):324–331. doi: 10.1016/j.ymgme.2010.08.001
  • der Ploeg ATV, Clemens P, Corzo D, et al. A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med. 2010;362(15):1396–1406. doi: 10.1056/NEJMoa0909859
  • Strothotte S, Strigi-Pill N, Grunert B, et al. Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial. J Neurol. 2010;257:91–97. doi: 10.1007/s00415-009-5275-3
  • van der Ploeg A, Carlier PG, Carlier R-Y, et al. Prospective exploratory muscle biopsy, imaging, and functional assessment in patients with late-onset Pompe disease treated with alglucosidase alfa: the EMBASSY study. Mol Genet Metab. 2016;119(1–2):115–123. doi: 10.1016/j.ymgme.2016.05.013
  • Bembi B, Pisa FE, Confalonieri M, et al. Long-term observational, non-randomized study of enzyme replacement therapy in late-onset glycogenosis type II. J Inherit Metab Dis. 2010;33(6):727–735. doi: 10.1007/s10545-010-9201-8
  • Regnery C, Kornblum C, Hanisch F, et al. 36 months observational clinical study of 38 adult Pompe disease patients under alglucosidase alpha enzyme replacement therapy. J Inherit Metab Dis. 2012;35(5):837–845. doi: 10.1007/s10545-012-9451-8
  • Stepien KM, Hendriksz CJ, Roberts M, et al. Observational clinical study of 22 adult-onset Pompe disease patients undergoing enzyme replacement therapy over 5 years. Mol Genet Metab. 2016;117(4):413–418. doi: 10.1016/j.ymgme.2016.01.013
  • Kuperus E, Kruijshaar ME, Wens SCA, et al. Long-term benefit of enzyme replacement therapy in pompe disease: a 5-year prospective study. Neurology. 2017;89:2365–2373. doi: 10.1212/WNL.0000000000004711
  • Ripolone M, Violano R, Ronchi D, et al. Effects of short-to-long-term enzyme replacement therapy (ERT) on skeletal muscle tissue in late-onset Pompe disease(LOPD). Neuropathol Appl Neurobiol. 2017;44:449–462.
  • Angelini C, Semplicini C, Ravaglia S, et al. New motor outcome function measures in the evaluation of late-onset Pompe disease before and after enzyme replacement therapy. Muscle Nerve. 2012;45(6):831–834. doi: 10.1002/mus.23340
  • Van der Ploeg AT, Kruijshaar ME, Toscano A, et al. European consensus for starting and stopping enzyme replacement therapy in adult patients with pompe disease: a 10-year experience. Euro J Of Neurology. 2017;24(6):768–e31. doi: 10.1111/ene.13285
  • Filosto M, Piccinelli SC, Ravaglia S, et al. Assessing the role of anti-rh-GAA in modulating response to ERT in a late-onset Pompe disease cohort from the Italian GSDII study group. Adv Ther. 2019;36:1177–1189. doi: 10.1007/s12325-019-00926-5
  • Schoser B, Stewart A, Kanters S, et al. Survival and long-term outcome in late-onset Pompe disease following alglucosidase alfa treatment: a systematic review and meta-analysis. J Neurol. 2017;264(4):621–630. doi: 10.1007/s00415-016-8219-8
  • Pena LDM, Barohn RJ, Byrne BJ, et al. Safety, tolerability, pharmacokinetic pharmacodynamics, and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naïve and alglucosidase alfa-treated patients with late-onset pompe disease: a phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscular Disorders. 2019;29:167–186. doi: 10.1016/j.nmd.2018.12.004
  • Dimachkie MM, Barohn RJ, Byrne B, et al. NEO1 and NEO-EXT studies: long-term safety and exploratory efficacy of repeat avalglucosidase alfa dosing for 5.5 years in late-onset pompe disease patients. Mol Genet Metab. 2020;129:S49. doi: 10.1016/j.ymgme.2019.11.107
  • Dimachkie MM, Barohn RJ, Byrne B, et al. Long-term safety and efficacy of avalglucosidase alfa inPatients with late-onset pompe disease neurology. Neurology. 2022;99:e536–e548. doi: 10.1212/WNL.0000000000200746
  • Diaz-Manera J, Kishnani PS, Kushlaf H, et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease(COMET): a phase 3, randomized, multicentre trial. Lancet Neurol. 2021;20:1012–1026.
  • Kishnani P, Diaz Manera J, Toscano A, et al. Efficacy and safety of Avalglucosidase Alfa in patients with late-onset pompe disease after 97 weeks: a phase 3 randomized clinical trial JAMA neurol. 2023 Jun 1;80(6):558–567. doi: 10.1001/jamaneurol.2023.0552
  • Li RJ, Ma L, Drozda K, et al. Model—informed approach supporting approval of nexviazyme (avalglucosidase alfa—ngpt) in pediatric patients with late-onset pompe disease. AAPS J. 2023;25:16. CrossRef. doi: 10.1208/s12248-023-00784-8
  • Kishnani PS, Kronn D, Brassier A, et al. Safety and efficacy of avalglucosidase alfa in individuals with infantile-onset Pompe disease enrolled in phase 2, open-label mini-COMET study: the 6-month primary analysis report. Genet Med. 2022;25:100328. doi: 10.1016/j.gim.2022.10.010
  • Lessard LER, Tard C, Salort-Campana E, et al. Hypersensitivity infusion-associated reactions induced by enzyme replacement therapy in a cohort of patients with late-onset pompe disease: an experience from the French pompe Registry. Mol Gene Metabol. Epub 2023 May 19;139(3):107611. doi: 10.1016/j.ymgme.2023.107611
  • Ditters IAM, van Kooten HA, van der Beek NAM, et al. Home based infusion of alglucosidase alfa can safely be implemented in adults with late-onset pompe disease: lessons learned from 18,380 infusions. Bio Drugs. 2023;37:685–698. doi: 10.1007/s40259-023-00609-2
  • de Vries JM, Kuperus E, Hoogeveen-Westerveld M, et al. Pompe disease in adulthood: effects of antibody formation on enzyme replacement therapy. Genet Med. 2017;19:90. doi: 10.1038/gim.2016.70
  • Parenti G, Zuppaldi A, Pittis MG, et al. Pharmacological enhancement of mutated -glucosidase activity in fibroblasts from patients with pompe disease. Mol Ther. 2007;15:508–514. doi: 10.1038/sj.mt.6300074
  • Flanagan JJ, Rossi B, Tang K, et al. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Hum Mutat. 2009;30(12):1683–1692. doi: 10.1002/humu.21121
  • Parenti G, Fecarotta S, la Marca G, et al. A chaperone enhances blood -glucosidase activity in pompe disease patients treated with enzyme replacement therapy. Mol Ther. 2014;22:2004–2012. doi: 10.1038/mt.2014.138
  • Kishnani P, Tarnopolsky M, Roberts M, et al. Duvoglustat HCl increases systemic and tissue exposure to active acid alfa-glucosidase in pompe patients co-administered with alglucosidase alfa. Mol Ther. 2017;25:1199–1208. doi: 10.1016/j.ymthe.2017.02.017
  • Schoser B, Roberts M, Byrne BJ, et al. Safety and efficacy of cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo in late-onset Pompe disease (PROPEL): An international, randomized, double-blind, parallel-group, phase 3 trial. Lancet Neurol ++international trial of ERT+chaperone. 2021;20:1027–1037. doi: 10.1016/S1474-4422(21)00331-8
  • Amicus therapeutics. Amicus therapeutics announces European Commission approval for Pombiliti™ in patients with late-onset Pompe disease [media release]. [cited 2023 Mar 27]. Available from: https://ir.amicusrx.com/news-releases/news-release-details/amicus-therapeutics-announces-european-commission-approval-1
  • Ravaglia S, Carlucci A, Danesino C. Prognostic factors for late-onset Pompe disease with enzyme replacement therapy: the two sides of low BMI. Mol Genet Metab. 2010;100(4):388. doi: 10.1016/j.ymgme.2010.04.005
  • Orlikowski D, Pellegrini N, Prigent H, et al. Recombinant human acid alpha-glucosidase (rhGAA) in adult patients with severe respiratory failure due to pompe disease. Neuromuscular Disorders. 2011;21(7):477–482. doi: 10.1016/j.nmd.2011.04.001
  • Drost MR, Schaart G, van Dijk P, et al. Both type 1 and type 2a muscle fibers can respond to enzyme therapy in pompe disease. Muscle Nerve. 2008;37(2):251–255. doi: 10.1002/mus.20896
  • Angelini C, Pegoraro E, Zambito-Marsala S, et al. Adult acid maltase deficiency: an open trial with albuterol and branched-chain amino acids. Basic Appl Myol. 2004;14(2):71–78.
  • Slonim AE, Bulone L, Goldberg T, et al. Modification of the natural history of adult-onset acid maltase deficiency by nutrition and exercise therapy. Muscle&nerve. 2007;35:70–77. doi: 10.1002/mus.20665
  • Angelini C. Exercise, nutrition, and enzyme replacement therapy are efficacious in adult Pompe patients: Report from EPOC Consortium. Eur J Transl Myol. 2021;31:9798. ++ use of exercise and diet is beneficial in ERT treated LOPD. doi: 10.4081/ejtm.2021.9798
  • Nexviazyme [4890-A SGM]. Cambridge MA: Genzyme Corporation.; 2021. p. 2. [Accessed 2022 Dec]. https://www.shpnc.org/
  • Sechi A, Zuccarelli L, Grassi B, et al. Exercise training alone or in combination with a high-protein diet in patients with late-onset Pompe disease: results of a cross-over study. Orphanet J Rare Dis. 2020;15:143. doi: 10.1186/s13023-020-01416-6
  • Gragnaniello V, Pijnappel PWWM, Burlina AP, et al. Newborn screening for pompe disease in Italy: long-term results and future challenges.Mol Genet Metab Rep. Mol Gene Metabol Rep. 2022 Oct 22 eCollection 2022 +a long term screening newborn program;33: 100929. doi: 10.1016/j.ymgmr.2022.100929

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.