174
Views
0
CrossRef citations to date
0
Altmetric
Review

Safety considerations with new antibacterial approaches for chronic bacterial prostatitis

, , &
Pages 171-182 | Received 05 Apr 2021, Accepted 13 Jul 2021, Published online: 06 Aug 2021

References

  • Krieger JN, Jr NL, Nickel JC. NIH consensus definition and classification of prostatitis. JAMA. 1999;282(3):236–237.
  • Krieger JN, Ross SO, Riley DE. Chronic prostatitis: epidemiology and role of infection. Urology. 2002;60(6 Suppl):8–12.
  • Shoskes DA, Nickel JC, Kattan MW. Phenotypically directed multimodal therapy for chronic prostatitis/chronic pelvic pain syndrome: a prospective study using UPOINT. Urology. 2010;75(6):1249–1253.
  • Turner JA, Ciol MA, Von Korff M, et al. Validity and responsiveness of the national institutes of health chronic prostatitis symptom index. J Urol. 2003;169(2):580–583.
  • Nickel JC. Alpha-blockers for the treatment of prostatitis-like syndromes. Rev Urol. 2006;8(Suppl 4):S26–34.
  • Dalhoff A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis. 2012;976273.
  • Borgmann S, Jakobiak T, Gruber H, et al. Ciprofloxacin treatment of urinary infections results in increased resistance of urinary E. coli to ciprofloxacin and co-trimoxazole. Pol J Microbiol. 2009;58:371–373.
  • Hofstetter A, Friesen A, Bishop-Freudling GB, et al. Co-trimoxazole concentration in the prostatic fluid of patients with subacute and chronic prostatitis. Fortschr Med. 1984;102:244–246.
  • Goto T, Makinose S, Ohi Y, et al. Diffusion of piperacillin, cefotiam, minocycline, amikacin and ofloxacin into the prostate. Int J Urol. 1998;5(3):243–246.
  • Cai T, Gallelli L, Cione E, et al. The use of Lactobacillus casei DG® prevents symptomatic episodes and reduces the antibiotic use in patients affected by chronic bacterial prostatitis: results from a phase IV study. World J Urol. 2021. DOI:10.1007/s00345-020-03580-7. Epub ahead of print.
  • Cai T, Tamanini I, Mattevi D, et al. Fosfomycin trometamol and N-acetyl-L-cysteine as combined oral therapy of difficult-to-treat chronic bacterial prostatitis: results of a pilot study. Int J Antimicrob Agents. 2020;56(1):105935.
  • Cai T, Tiscione D, Gallelli L, et al. Serenoa repens associated with selenium and lycopene extract and bromelain and methylsulfonylmethane extract are able to improve the efficacy of levofloxacin in chronic bacterial prostatitis patients. Arch Ital Urol Androl. 2016;88(3):177–182.
  • Cai T, Mazzoli S, Bechi A, et al. Serenoa repens associated with Urtica dioica (ProstaMEV) and curcumin and quercitin (FlogMEV) extracts are able to improve the efficacy of prulifloxacin in bacterial prostatitis patients: results from a prospective randomised study. Int J Antimicrob Agents. 2009;33(6):549–553.
  • Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M, et al. Phage therapy in prostatitis: recent prospects. Front Microbiol. 2018;9:1434.
  • Johri AV, Johri P, Hoyle N, et al. Case report: chronic bacterial prostatitis treated with phage therapy after multiple failed antibiotic treatments. Front Pharmacol. 2021;12:692614.
  • Letkiewicz S, Miedzybrodzki R, Fortuna W, et al. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis–case report. Folia Microbiol (Praha). 2009;54(5):457–461.
  • Lipsky BA, Byren I, Hoey CT. Treatment of bacterial prostatitis. Clin Infect Dis. 2010;50(12):1641–1652.
  • Xiong S, Liu X, Deng W, et al. Pharmacological interventions for bacterial prostatitis. Front Pharmacol. 2020;11:504.
  • Klein EY, Tseng KK, Pant S, et al. Tracking global trends in the effectiveness of antibiotic therapy using the drug resistance index. BMJ Glob Health. 2019;4(2):e001315.
  • Jabbari Shiadeh SM, Pormohammad A, Hashemi A, et al. Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis. Infect Drug Resist. 2019;12:2713–2725.
  • Jana S, Deb JK. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol. 2006;70(2):140–150.
  • Urological Infection Guidelines. [Internet] Aarnheim, the Netherlands: European Association of Urology. 2020. [cited 2021 Jul 10]. Available from: https://uroweb.org/guideline/urological-infections/#3
  • Etienne M, Chavanet P, Sibert L, et al. Acute bacterial prostatitis: heterogeneity in diagnostic criteria and management. Retrospective multicentric analysis of 371 patients diagnosed with acute prostatitis. BMC Infect Dis. 2008;8(1):12.
  • Magri V, Montanari E, Marras E, et al. Aminoglycoside antibiotics for NIH category II chronic bacterial prostatitis: a single-cohort study with one-year follow-up. Exp Ther Med. 2016;12(4):2585–2593.
  • Hanus PM, Danziger LH. Treatment of chronic bacterial prostatitis. Clin Pharm. 1984;3:49–55. Pfau A. The treatment of chronic bacterial prostatitis. Infection. 1991;19S3: S160-S164.
  • Govaerts PJ, Claes J, Van De Heyning PH, et al. Aminoglycoside-induced ototoxicity. Toxicol Lett. 1990;52(3):227–251.
  • Fischel-Ghodsian N, Prezant TR, Chaltraw WE, et al. Mitochondrial gene mutation is a significant predisposing factor in aminoglycoside ototoxicity. Am J Otolaryngol. 1997;18(3):173–178.
  • Zhao H, Li R, Wang Q, et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet. 2004;74(1):139–152.
  • Tanimoto H, Nishio H, Matsuo M, et al. A novel mitochondrial mutation, 1556 C>T, in a Japanese patient with streptomycin-induced tinnitus. Acta Otolaryngol. 2004;124(3):258–261.
  • Bitner-Glindzicz M, Pembrey M, Duncan A, et al. Prevalence of mitochondrial 1555A→G mutation in European children. N Engl J Med. 2009;360(6):640–642.
  • Vandebona H, Mitchell P, Manwaring N, et al. Prevalence of mitochondrial 1555A→G mutation in adults of European descent. N Engl J Med. 2009;360(6):642–644.
  • Chen G, Wang X, Fu S. Prevalence of A1555G mitochondrial mutation in Chinese newborns and the correlation with neonatal hearing screening. Int J Pediatr Otorhinolaryngol. 2011;75(4):532–534.
  • Yorgason JG, Fayad JN, Kalinec F. Understanding drug ototoxicity: molecular insights for prevention and clinical management. Expert Opin Drug Saf. 2006;5(3):383–399.
  • Lesniak W, Pecoraro VL, Schacht J. Ternary complexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species. Chem Res Toxicol. 2005;18(2):357–364.
  • Conlon BJ, Perry BP, Smith DW. Attenuation of neomycin ototoxicity by iron chelation. Laryngoscope. 1998;108(2):284–287.
  • Sha SH, Qiu JH, Schacht J. Aspirin to prevent gentamicin-induced hearing loss. N Engl J Med. 2006;354(17):1856–1857.
  • Lopez-Novoa JM, Quiros Y, Vicente L, et al. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79(1):33–45.
  • Galløe AM, Graudal N, Christensen HR, et al. Aminoglycosides: single or multiple daily dosing? A meta-analysis on efficacy and safety. Eur J Clin Pharmacol. 1995;48(1):39–43.
  • Ferriols-Lisart R, Alós-Almiñana M. Effectiveness and safety of once-daily aminoglycosides: a meta-analysis. Am J Health Syst Pharm. 1996;53(10):1141–1150.
  • Barza M, Ioannidis JP, Cappelleri JC, et al. Single or multiple daily doses of aminoglycosides: a meta-analysis. BMJ. 1996;312(7027):338–345.
  • Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, et al. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143:225–245.
  • Iannini PB. Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc-interval. Expert Opin Drug Saf. 2002;1(2):121–128.
  • Yang Z, Prinsen JK, Bersell KR, et al. Azithromycin causes a novel proarrhythmic syndrome. Circ Arrhythm Electrophysiol. 2017;10(4):e003560.
  • Stahlmann R, Lode H. Safety considerations of fluoroquinolones in the elderly: an update. Drugs Aging. 2010;27(3):193–209.
  • Stanat SJ, Carlton CG, Crumb WJ Jr, et al. Characterization of the inhibitory effects of erythromycin and clarithromycin on the HERG potassium channel. Mol Cell Biochem. 2003;254(1/2):1–7.
  • Volberg WA, Koci BJ, Su W, et al. Blockade of human cardiac potassium channel human ether-a-go-go-related gene (HERG) by macrolide antibiotics. J Pharmacol Exp Ther. 2002;302(1):320–327.
  • Sears SP, Getz TW, Austin CO, et al. Incidence of sustained ventricular tachycardia in patients with prolonged QTc after the administration of azithromycin: a retrospective study. Drugs - Real World Outcomes. 2016;3(1):99–105.
  • Huang BH, Wu CH, Hsia CP, et al. Azithromycin-induced torsade de pointes. Pacing Clin Electrophysiol. 2007;30(12):1579–1582.
  • Kezerashvili A, Khattak H, Barsky A, et al. Azithromycin as a cause of QT-interval prolongation and torsade de pointes in the absence of other known precipitating factors. J Interv Card Electrophysiol. 2007;18(3):243–246.
  • Ray WA, Murray KT, Hall K, et al. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012;366(20):1881–1890.
  • Kim MH, Berkowitz C, Trohman RG. Polymorphic ventricular tachycardia with a normal QT interval following azithromycin. Pacing Clin Electrophysiol. 2005;28(11):1221–1222.
  • Gorelik E, Masarwa R, Perlman A, et al. Systematic review, meta-analysis, and network meta-analysis of the cardiovascular safety of macrolides. Antimicrob Agents Chemother. 2018;62(6):e00438–18.
  • Saleh M, Gabriels J, Chang D, et al. Effect of chloroquine, hydroxychloroquine, and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection. Circ Arrhythm Electrophysiol. 2020;13(6):e008662.
  • Chorin E, Wadhwani L, Magnani S, et al. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm. 2020;17(9):1425–1433.
  • Choi Y, Lim HS, Chung D, et al. Risk evaluation of Azithromycin-induced QT prolongation in real-world practice. Biomed Res Int. 2018;1574806.
  • Uzun C, Koten M, Adali MK, et al. Reversible ototoxic effect of azithromycin and clarithromycin on transiently evoked otoacoustic emissions in guinea pigs. J Laryngol Otol. 2001;115(8):622–628.
  • Gardiner BJ, Mahony AA, Ellis AG, et al. Is fosfomycin a potential treatment alternative for multidrug-resistant gram-negative prostatitis? Clin Infect Dis. 2014;58(4):e101–5.
  • Abbott IJ, Van Gorp E, van der Meijden A, et al. Oral fosfomycin treatment for enterococcal urinary tract infections in a dynamic in vitro model. Antimicrob Agents Chemother. 2020 21; 64(6):e00342–20.
  • Karaiskos I, Galani L, Sakka V, et al. Oral fosfomycin for the treatment of chronic bacterial prostatitis. J Antimicrob Chemother. 2019;74(5):1430–1437.
  • Zhanel GG, Zhanel MA, Karlowsky JA. Oral Fosfomycin for the treatment of acute and chronic bacterial prostatitis caused by multidrug-resistant Escherichia coli. Can J Infect Dis Med Microbiol. 2018;2018:1404813.
  • Almeida F, Santos Silva A, Silva Pinto A, et al. Chronic prostatitis caused by extended-spectrum β-lactamase-producing Escherichia coli managed using oral fosfomycin-A case report. IDCases. 2019;15:e00493.
  • Los-Arcos I, Pigrau C, Rodríguez-Pardo D, et al. Long-term Fosfomycin-Tromethamine oral therapy for difficult-to-treat chronic bacterial prostatitis. Antimicrob Agents Chemother. 2015;60:1854–1858.
  • Grayson ML, Macesic N, Trevillyan J, et al. Fosfomycin for treatment of prostatitis: new tricks for old dogs. Clin Infect Dis. 2015;61(7):1141–1143.
  • Cunha BA, Gran A, Raza M. Persistent extended-spectrum β-lactamase-positive Escherichia coli chronic prostatitis successfully treated with a combination of fosfomycin and doxycycline. Int J Antimicrob Agents. 2015;45:427–429.
  • Patel SS, Balfour JA, Bryson HM. Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single-dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs. 1997;53(4):637–656.
  • Wenzler E, Ellis-Grosse EJ, Rodvold KA. Pharmacokinetics, safety, and tolerability of single-dose intravenous (ZTI-01) and oral Fosfomycin in healthy volunteers. Antimicrob Agents Chemother. 2017;61(9):e00775–17.
  • Denes E. Prolonged course of Fosfomycin-Trometamol for chronic prostatitis: an unknown good option. Scand J Urol. 2021 Jun 1:1–2. DOI:10.1080/21681805.2021.1933170. Epub ahead of print.
  • Cai T, Mazzoli S, Meacci F, et al. Epidemiological features and resistance pattern in uropathogens isolated from chronic bacterial prostatitis. J Microbiol. 2011;49:448–454.
  • Oyamada Y, Ito H, Inoue M, et al. Topoisomerase mutations and efflux are associated with fluoroquinolone resistance in Enterococcus faecalis. J Med Microbiol. 2006;55:1395–1401.
  • Carroll DE, Marr I, Huang GKL, et al. Staphylococcus aureus Prostatic abscess: a clinical case report and a review of the literature. BMC Infect Dis. 2017 Jul 21;17(1):509.
  • Walker B, Heidel E, Shorman M. Clinical characteristics and outcome of staphylococcus aureus prostate abscess, ten-year experience at a tertiary care center. Open Forum Infect Dis. 2019 Oct 1;6(10):ofz372.
  • Onda H, Wagenlehner FM, Lehn N, et al. In vitro activity of linezolid against Gram-positive uropathogens of hospitalized patients with complicated urinary tract infections. Int J Antimicrob Agents. 2001;18(3):263–266.
  • Dryden MS. Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J Antimicrob Chemother. 2011;66S4:iv7–iv15.
  • Pronk MJ, Pelger RC, Baranski AG, et al. Cure of chronic prostatitis presumably due to Enterococcus spp and gram-negative bacteria. Eur J Clin Microbiol Infect Dis. 2006;25:270–271.
  • Wasserman S, Meintjes G, Maartens G. Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index. Expert Rev Anti Infect Ther. 2016;14:901–915.
  • Narita M, Tsuji BT, Yu VL. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy. 2007;27(8):1189–1197.
  • Metaxas EI, Falagas ME. Update on the safety of linezolid. Expert Opin Drug Saf. 2009;8:485–491.
  • Bressler AM, Zimmer SM, Gilmore JL, et al. Peripheral neuropathy associated with prolonged use of linezolid. Lancet Infect Dis. 2004;4(8):528–531.
  • Santini A, Ronchi D, Garbellini M, et al. Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes. Expert Opin Drug Saf. 2017;16(7):833–843.
  • Garrabou G, Soriano À, Pinós T, et al. Influence of mitochondrial genetics on the mitochondrial toxicity of linezolid in blood cells and skin nerve fibers. Antimicrob Agents Chemother. 2017;61(9):e00542–17.
  • Soriano A, Miró O, Mensa J. Mitochondrial toxicity associated with linezolid. N Engl J Med. 2005;353(21):2305–2306.
  • Javaheri M, Khurana RN, O’hearn TM, et al. Linezolid-induced optic neuropathy: a mitochondrial disorder? Br J Ophthalmol. 2007;91(1):111–115.
  • De Vriese AS, Coster RV, Smet J, et al. Linezolid-induced inhibition of mitochondrial protein synthesis. Clin Infect Dis. 2006;42(8):1111–1117.
  • Palenzuela L, Hahn NM, Nelson RP Jr, et al. Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis? Clin Infect Dis. 2005;40(12):e113–6.
  • Carson J, Cerda J, Chae JH, et al. Severe lactic acidosis associated with linezolid use in a patient with the mitochondrial DNA A2706G polymorphism. Pharmacotherapy. 2007;27(5):771–774.
  • Del Pozo JL, Fernández-Ros N, Sáez E, et al. Linezolid-induced lactic acidosis in two liver transplant patients with the mitochondrial DNA A2706G polymorphism. Antimicrob Agents Chemother. 2014;58(7):4227–4229.
  • Taylor JJ, Wilson JW, Estes LL. Linezolid and serotonergic drug interactions: a retrospective survey. Clin Infect Dis. 2006;43(2):180–187.
  • Lawrence KR, Adra M, Gillman PK. Serotonin toxicity associated with the use of linezolid: a review of postmarketing data. Clin Infect Dis. 2006;42(11):1578–1583.
  • Van Bambeke F, Michot JM, Van Eldere J, et al. Quinolones in 2005: an update. Clin Microbiol Infect. 2005;11:256–280.
  • Wagenlehner FM, Kees F, Weidner W, et al. Concentrations of moxifloxacin in plasma and urine, and penetration into prostatic fluid and ejaculate, following single oral administration of 400 mg to healthy volunteers. Int J Antimicrob Agents. 2008;31(1):21–26.
  • Stein GE, Schooley S. Urinary concentrations and bactericidal activities of newer fluoroquinolones in healthy volunteers. Int J Antimicrob Agents. 2004;24:168–172.
  • van Nieuwkoop C, Visser LG, Groeneveld JH, et al. Chronic bacterial prostatitis and relapsing Enterococcus faecalis bacteraemia successfully treated with moxifloxacin. J Infect. 2008;56:155–156.
  • Pilmis B, Lécuyer H, Lortholary O, et al. Enterococcus faecalis-related prostatitis successfully treated with moxifloxacin. Antimicrob Agents Chemother. 2015;59(11):7156–7157.
  • Magri V, Restelli A, Marras E, et al. A severely symptomatic case of anaerobic chronic bacterial prostatitis successfully resolved with moxifloxacin therapy. Anaerobe. 2010;16(3):206–209.
  • Zünkler BJ, Claassen S, Wos-Maganga M, et al. Effects of fluoroquinolones on HERG channels and on pancreatic β-cell ATP-sensitive K+ channels. Toxicology. 2006;228(2–3):239–248.
  • Kim JG, Sung DJ, Kim HJ, et al. Impaired inactivation of L-type Ca2+ current as a potential mechanism for variable Arrhythmogenic liability of HERG K+ channel blocking drugs. PLoS One. 2016;11(3):e0149198.
  • Mandell L, Tillotson G. Safety of fluoroquinolones: an update. Can J Infect Dis. 2002;13:54–61.
  • Gorelik E, Masarwa R, Perlman A, et al. Fluoroquinolones and cardiovascular risk: a systematic review, meta-analysis and network meta-analysis. Drug Saf. 2019;42(4):529–538.
  • Arabyat RM, Raisch DW, McKoy JM, et al. Fluoroquinolone-associated tendon-rupture: a summary of reports in the food and drug administration’s adverse event reporting system. Expert Opin Drug Saf. 2015;14:1653–1660.
  • Bennett AC, Bennett CL, Witherspoon BJ, et al. An evaluation of reports of ciprofloxacin, levofloxacin, and moxifloxacin-association neuropsychiatric toxicities, long-term disability, and aortic aneurysms/dissections disseminated by the food and drug administration and the European medicines agency. Expert Opin Drug Saf. 2019;18(11):1055–1063.
  • Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics. [Internet]. London, UK: European Medicine Agency; 2018. [cited 2021 Jul 10]. Available from: https://www.ema.europa.eu/en/documents/press-release/disabling-potentially-permanent-side-effects-lead-suspension-restrictions-quinolone-fluoroquinolone_en.pdf
  • FDA warns about increased risk of ruptures or tears in the aorta blood vessel with fluoroquinolone antibiotics in certain patients. [Internet]. Silver Spring, MD, USA: U.S. Food and Drug Administration; 2018. [cited 2021 Jul 10]. Available from: https://www.fda.gov/media/119532/download
  • Bates D, Parkins M, Hellweg R, et al. Tigecycline treatment of urinary tract infection and prostatitis: case report and literature review. Can J Hosp Pharm. 2012;65:209–215.
  • Geerlings SE, van Donselaar-van der Pant KAMI, Keur I. Successful treatment with tigecycline of two patients with complicated urinary tract infections caused by extended-spectrum-ß-lactamase-producing Escherichia coli. J Antimicrob Chemother. 2010;65(9):2048–2049.
  • Drekonja DM, Johnson JR. Tigecycline treatment for urinary tract infections: case report and literature review. J Chemother. 2011;23(3):168–170.
  • Lo Priore E, Livermore DM, Buetti N, et al. Successful treatment of acute prostatitis caused by multidrug-resistant Escherichia coli with tigecycline monotherapy. Open Forum Infect Dis. 2020;7(1):ofz551.
  • Kaewpoowat Q, Ostrosky-Zeichner L. Tigecycline: a critical safety review. Expert Opin Drug Saf. 2015;14(2):335–342.
  • FDA drug safety communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new boxed warning. [Internet]. Silver Spring, MD, USA: U.S. Food and Drug Administration; 2013. [cited 2021 Jul 10]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-increased-risk-death-iv-antibacterial-tygacil-tigecycline
  • McGovern PC, Wible M, El-Tahtawy A, et al. All-cause mortality imbalance in the tigecycline phase 3 and 4 clinical trials. Int J Antimicrob Agents. 2013;41:463–467.
  • Prasad P, Sun J, Danner RL, et al. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis. 2012;54:1699–1709.
  • Cai Y, Wang R, Liang B, et al. Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious disease. Antimicrob Agents Chemother. 2011;55(3):1162–1172.
  • Tygacil EPAR scientific discussion. [Internet]. London, UK: European Medicine Agency; 2006. [cited 2021 Jul 10]. Available from: https://www.ema.europa.eu/en/documents/scientific-discussion/tygacil-epar-scientific-discussion_en.pdf
  • Sacchidanand S, Penn RL, Embil JM, et al. Efficacy and safety of tigecycline monotherapy compared with vancomycin plus aztreonam in patients with complicated skin and skin structure infections: results from a phase 3, randomized, double-blind trial. Int J Infect Dis. 2005;9(5):251–261.
  • Sabanis N, Paschou E, Gavriilaki E, et al. Hypofibrinogenemia induced by tigecycline: a potentially life-threatening coagulation disorder. Infect Dis. 2015;47(10):743–746.
  • Akdağ D, Işıkgöz-Taşbakan M, Pullukcu H, et al. Tigecycline versus INR increase; more than expected? Expert Opin Drug Saf. 2020;19(3):335–337.
  • Javeed I, Kaushik P, Chowdhury M, et al. Community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) prostatic abscess in a diabetic patient. Int J Case Rep Images. 2012;3(2):20–23.
  • Jana T, Machicado JD, Davogustto GE, et al. Methicillin-resistant Staphylococcus aureus prostatic abscess in a liver transplant recipient. Case Rep Transplant. 2014;2014:854824.
  • Lachant DJ, Apostolakos M, Pietropaoli A. Methicillin resistant Staphylococcus aureus prostatic abscess with bacteremia. Case Rep Infect Dis. 2013;2013:613961.
  • Smith JR, Barber KE, Raut A, et al. β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2015;70:1738–1743.
  • Suleyman G, Zervos MJ. Safety and efficacy of commonly used antimicrobial agents in the treatment of enterococcal infections: a review. Expert Opin Drug Saf. 2016;15(2):153–167.
  • Szöke I, Török L, Dósa E, et al. The possible role of anaerobic bacteria in chronic prostatitis. Int J Androl. 1998;21:163–168.
  • Kasten MJ. Clindamycin, metronidazole, and chloramphenicol. Mayo Clin Proc. 1999;74(8):825–833.
  • Charalabopoulos K, Karachalios G, Baltogiannis D, et al. Penetration of antimicrobial agents into the prostate. Chemotherapy. 2003;49(6):269–279.
  • Petersen KU, Jaspersen D. Medication-induced oesophageal disorders. Expert Opin Drug Saf. 2003;2(5):495–507.
  • Jaspersen D. Drug-induced oesophageal disorders: pathogenesis, incidence, prevention and management. Drug Saf. 2000;22(3):237–249.
  • Da Silva JR, Pinho R, Ponte A, et al. Esophagitis dissecans superficialis associated with severe clindamycin toxicity. J Gastrointestin Liver Dis. 2014;23(4):363.
  • Stanić Benić M, Karlović K, Čubranić A, et al. Clindamycin-induced necrotising oesophagitis. Postgrad Med J. 2016;92(1094):741.
  • Baker SD, Horger DC, Keane TE. Community-acquired methicillin-resistant Staphylococcus aureus prostatic abscess. Urology. 2004;64(4):808–810.
  • Pierce JR Jr, Saeed Q, Davis WR. Prostatic abscess due to community-acquired methicillin-resistant Staphylococcus aureus. Am J Med Sci. 2008;335(2):154–156.
  • Bassetti M, Righi E. Safety profiles of old and new antimicrobials for the treatment of MRSA infections. Expert Opin Drug Saf. 2016;15(4):467–481.
  • Van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57(2):734–744.
  • Towards a better managed off-label use of drugs. [Internet]. Brussels, Belgium: Belgian Health Care Knowledge Centre; 2015. [cited 2021 Jul 10]. Available from: https://kce.fgov.be/sites/default/files/atoms/files/KCE_252_Off-label%20drugs_Report.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.