565
Views
2
CrossRef citations to date
0
Altmetric
Review

A review of potential neuropathological changes associated with ketamine

, , , , , , & show all
Pages 813-831 | Received 22 Nov 2021, Accepted 26 Apr 2022, Published online: 08 May 2022

References

  • Bromet E, Andrade LH, Hwang I, et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011;9(1). DOI:10.1186/1741-7015-9-90.
  • Burcusa SL, Iacono WG. Risk for recurrence in depression. Clin Psychol Rev. 2007;27(8):959–985.
  • Judd LL. The clinical course of unipolar major depressive disorders. Arch Gen Psychiatry. 1997;54(11):989–991.
  • Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34(1):119–138.
  • Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence. 2012;6:369–388.
  • Jaffe DH, Rive B, Denee TR. The humanistic and economic burden of treatment-resistant depression in Europe: a cross-sectional study. BMC Psychiatry. 2019;19(1):247.
  • McIntyre RS, Filteau M-J, Martin L, et al. Treatment-resistant depression: definitions, review of the evidence, and algorithmic approach. J Affect Disord. 2014;156:1–7.
  • Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–354.
  • McIntyre RS, Carvalho IP, Lui LMW, et al. The effect of intravenous, intranasal, and oral ketamine in mood disorders: a meta-analysis. J Affect Disord. 2020;276:576–584.
  • Rodrigues NB, McIntyre RS, Lipsitz O, et al. Changes in symptoms of anhedonia in adults with major depressive or bipolar disorder receiving IV ketamine: results from the Canadian rapid treatment center of excellence. J Affect Disord. 2020;276:570–575.
  • Sałat K, Siwek A, Starowicz G, et al. Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: role of activity at NMDA receptor. Neuropharmacology. 2015;99:301–307.
  • Yilmaz A, Schulz D, Aksoy A, et al. Prolonged effect of an anesthetic dose of ketamine on behavioral despair. Pharmacol Biochem Behav. 2002;71(1–2):341–344.
  • Zarate CA, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–864.
  • RS M, Cha DS, Soczynska JK, et al. Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depress Anxiety. 2013;30(6):515–527.
  • Zhang MWB, Ho RCM. Controversies of the effect of ketamine on cognition. Front Psychiatry. 2016;7(1). DOI:10.3389/fpsyt.2016.00047
  • McIntyre RS, Rosenblat JD, Rodrigues NB, et al.The effect of intravenous ketamine on cognitive functions in adults with treatment-resistant major depressive or bipolar disorders: results from the Canadian rapid treatment center of excellence (CRTCE). Psychiatry Res. 2021;302:3.
  • H G, Gill B, Rodrigues NB, et al. The effects of ketamine on cognition in treatment-resistant depression: a systematic review and priority avenues for future research. Neurosci Biobehav Rev. 2021;120:78–85.
  • Allen HL, Iversen LL, Olney JW, et al. Phencycidine, dizocilpine, and cerebrocortical neurons. Science. 1990;247(221):221.
  • Ellison G, Switzer RC. Dissimilar patterns of degeneration in brain following four different addictive stimulants. Neuroreport. 1993;5(1):17–20.
  • Fix AS, Horn JW, Wightman KA, et al. Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): a light and electron microscopic evaluation of the rat retrosplenial cortex. Exp Neurol. 1993;123(2):204–215.
  • Fix AS, Wozniak DF, Truex LL, et al. Quantitative analysis of factors influencing neuronal necrosis induced by MK-801 in the rat posterior cingulate/retrosplenial cortex. Brain Res. 696, 194–204 (1995).
  • Jevtović-Todorović V, Todorovć SM, Mennerick S, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med. 1998;4(4):460–463.
  • Wozniak DF, Dikranian K, Ishimaru MJ, et al. Disseminated corticolimbic neuronal degeneration induced in rat brain by MK-801: potential relevance to Alzheimer’s disease. Neurobiol Dis. 1998;5(5):305–322.
  • Ferguson BR, Gao WJ. Pv interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circuits. 2018;12. DOI:10.3389/fncir.2018.00037
  • Kawaguchi Y, Kubota Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex. 1997;7(6):476–486.
  • Murray AJ, Woloszynowska-Fraser MU, Ansel-Bollepalli L, et al. Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility. Sci Rep. 2015;5(1):16778.
  • Behrens MM, Ali SS, Dao DN, et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science. 2007;318(80):1645–1647.
  • Morrow BA, Elsworth JD, Roth RH. Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axo-axonic projections in the prefrontal cortex. Psychopharmacology (Berl). 2007;192(2):283–290.
  • Behrens MM, Ali SS, Dugan LL. Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci. 2008;28(51):13957–13966.
  • Gonzalez-Burgos G, Lewis DA. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull. 2008;34(5):944–961.
  • Gerhard DM, Pothula S, Liu R, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Invest. 2020;130(3):1336–1349.
  • Donegan JJ, Lodge DJ. Hippocampal perineuronal nets are required for the sustained antidepressant effect of ketamine. Int J Neuropsychopharmacol. 2017;20(4):354–358.
  • Gerhard DM, Pothula S, Liu R-J, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Invest. 2020;130(3):1336–1349.
  • Eidenmuller J, Fath T, Hellwig A, et al. Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins. Biochemistry. 2000;39(43):13166–13175.
  • Jin HY, Hu Z, Dong M, et al. Ketamine induces tau hyperphosphorylation at serine 404 in the hippocampus of neonatal rats. Neural Regen Res. 2013;8(17):1590–1596.
  • Wen G, Yao H, Li Y, et al. Regulation of tau protein on the antidepressant effects of ketamine in the chronic unpredictable mild stress model. Front Psychiatry. 2019;10. DOI:10.3389/fpsyt.2019.00287.
  • Hector A, McAnulty C, Piche-Lemieux ME, et al. Tau hyperphosphorylation induced by the anesthetic agent ketamine/xylazine involved the calmodulin‐dependent protein kinase II. FASEB J. 2020;34(2):2968–2977.
  • Olney JW, Labruyere J, Wang G, et al. NMDA antagonist neurotoxicity: mechanism and prevention. Science. 1991;254(80):1515–1518.
  • Coyle JT, Schwarcz R. The discovery and characterization of targeted perikaryal-specific brain lesions with excitotoxins. Front Neurosci. 2020;14:927.
  • Geraci F, Turturici G, Sconzo G. Hsp70 and its molecular role in nervous system diseases. Biochem Res Int. 2011;2011. DOI:10.1155/2011/618127
  • Li PA, Liu GJ, He QP, et al. Production of hydroxyl free radical by brain tissues in hyperglycemic rats subjected to transient forebrain ischemia. Free Radic Biol Med. 1999;27(9–10):1033–1040.
  • Ma D, Wilhelm S, Maze M. Neuroprotective and neurotoxic properties of the ‘inert’ gas, xenon. Br J Anaesth. 2002;89(5):739–746.
  • Newcomer JW, Farber NB, Olney JW. NMDA receptor function, memory, and brain aging. Dialog Clin Neurosci. 2000;2(3):219–232.
  • Olney JW, Farber NB, Wozniak DF, et al. Environmental agents that have the potential to trigger massive apoptotic neurodegeneration in the developing brain. Environ Health Perspect. 2000;108:383–388.
  • Switzer RC, Lowry-Franssen C, Benkovic SA. Recommended neuroanatomical sampling practices for comprehensive brain evaluation in nonclinical safety studies. Toxicol Pathol. 2011;39(1):73–84.
  • Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain;137 12–32 (2014).
  • Vogt BA, Laureys S. Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog Brain Res;150 205–217 (2005).
  • Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science. 1989;244(80):1360–1362.
  • Ng LHL, Huang Y, Han L, et al. Ketamine and selective activation of parvalbumin interneurons inhibit stress-induced dendritic spine elimination. Transl Psychiatry. 2018;8(1). DOI:10.1038/s41398-018-0321-5.
  • Yang C, Shirayama Y, Zhang JC, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5(9):e632–e632.
  • Zhou ZQ, Zhang G, Li X, et al. Loss of phenotype of parvalbumin interneurons in rat prefrontal cortex is involved in antidepressant- and propsychotic-like behaviors following acute and repeated ketamine administration. Mol Neurobiol. 2015;51(2):808–819.
  • Honeycutt JA, Chrobak JJ. Parvalbumin loss following chronic sub-anesthetic NMDA antagonist treatment is age-dependent in the hippocampus: implications for modeling NMDA hypofunction. Neuroscience. 2018;393:73–82.
  • Zhang Y, Behrens MM, Lisman JE. Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. J Neurophysiol. 2008;100(2):959–965.
  • Jeevakumar V, Kroener S. Ketamine administration during the second postnatal week alters synaptic properties of fast-spiking interneurons in the medial prefrontal cortex of adult mice. Cereb Cortex. 2016;26(3):1117–1129.
  • Keilhoff G, Becker A, Grecksch G, et al. Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience. 2004;126(3):591–598.
  • Koh MT, Shao Y, Sherwood A, et al. Impaired hippocampal-dependent memory and reduced parvalbumin-positive interneurons in a ketamine mouse model of schizophrenia. Schizophr Res. 2016;171(1–3):187–194.
  • Kokkinou M, Irvine EE, Bonsall DR, et al. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol Psychiatry. 2020;26(6):2562–2576.
  • Matuszko G, Curreli S, Kaushik R, et al. Extracellular matrix alterations in the ketamine model of schizophrenia. Neuroscience. 2017;350:13–22.
  • Pérez MÁ, Morales C, Santander O, et al. Ketamine-treatment during late adolescence impairs inhibitory synaptic transmission in the prefrontal cortex and working memory in adult rats. Front Cell Neurosci. 2019;13. DOI:10.3389/fncel.2019.00372.
  • Sabbagh JJ, Murtishaw AS, Bolton MM, et al. Chronic ketamine produces altered distribution of parvalbumin-positive cells in the hippocampus of adult rats. Neurosci Lett. 2013;550:69–74.
  • Schobel SA, Chaudhury N, Khan U, et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron. 2013;78:81–93.
  • Li Y, Ding R, Ren X, et al. Long-term ketamine administration causes Tau protein phosphorylation and Tau protein-dependent AMPA receptor reduction in the hippocampus of mice. Toxicol Lett. 2019;315:107–115.
  • Yeung LY, Wai MSM, Fan M, et al. Hyperphosphorylated tau in the brains of mice and monkeys with long-term administration of ketamine. Toxicol Lett. 2010;193(2):189–193.
  • Carlson PJ, Diazgranados N, Nugent AC, et al. Neural correlates of rapid antidepressant response to ketamine in treatment-resistant unipolar depression: a preliminary positron emission tomography study. Biol Psychiatry. 2013;73(12):1213–1221.
  • Fox GE, Li M, Zhao F, et al. Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state. PLoS One. 2017;12(10):e0187198.
  • Jevtovic-Todorovic V, Benshoff N, Olney JW. Ketamine potentiates cerebrocortical damage induced by the common anaesthetic agent nitrous oxide in adult rats. BrJ Pharmacol. 2000;130(7):1692–1698.
  • Jevtovic-Todorovic V, Carter LB. The anesthetics nitrous oxide and ketamine are more neurotoxic to old than to young rat brain. Neurobiol Aging. 2005;26(6):947–956.
  • Nagata A, Nakao SI, Nishizawa N, et al. Xenon inhibits but N2O enhances ketamine-induced c-Fos expression in the rat posterior cingulate and retrosplenial cortices. Anesth. Analg. 92, 362–368 (2001).
  • Nakao S, Miyamoto E, Masuzawa M, et al. Ketamine-induced c-Fos expression in the mouse posterior cingulate and retrosplenial cortices is mediated not only via NMDA receptors but also via sigma receptors. Brain Res. 926, 191–196 (2002).
  • Tian Z, Dong C, Fujita A, et al. Expression of heat shock protein HSP-70 in the retrosplenial cortex of rat brain after administration of (R,S)-ketamine and (S)-ketamine, but not (R)-ketamine. Pharmacol Biochem Behav. 2018;172:17–21.
  • Zou X, Patterson TA, Divine RL, et al. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. Int J Dev Neurosci. 2009;27(7):727–731.
  • Zuo DY Wu YL, Yao WX, et al. Effect of MK-801 and ketamine on hydroxyl radical generation in the posterior cingulate and retrosplenial cortex of free-moving mice, as determined by in vivo microdialysis. Pharmacol Biochem Behav. 2007;86:1–7.
  • Wang C, Zheng D, Xu J, et al. Brain damages in ketamine addicts as revealed by magnetic resonance imaging. Front Neuroanat. 2013;7. DOI:10.3389/fnana.2013.00023.
  • Lodge DJ, Behrens MM, Grace AA. A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci. 2009;29(8):2344–2354.
  • Morgan CJA, Riccelli M, Maitland CH, et al. Long-term effects of ketamine: evidence for a persisting impairment of source memory in recreational users. Drug Alcohol Depend. 2004;75(3):301–308.
  • Giesers NK, Wirths O. Loss of hippocampal calretinin and parvalbumin interneurons in the 5XFAD mouse model of Alzheimer’s disease. ASN Neuro. 2020;12:175909142092535.
  • Verret L, Mann E, Hang G, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012;149(3):708–721.
  • Herrmann CS, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol. 2005;116(12):2719–2733.
  • Murphy MP, Levine H, Lovell MA. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis. 2010;19(1):311–323.
  • Rolls ET. The cingulate cortex and limbic systems for action, emotion, and memory. Brain Structure and Function. In: Handbook of clinical neurology. Vol. 166. Elsevier B.V.; 2019. p. 23–37.
  • Leech R, Smallwood J, Vogt BA. The posterior cingulate cortex: insights from structure and function. in Handbook of clinical neurology. 166 73–85 ( Elsevier B.V., 2019).
  • Väisänen J, Ihalainen J, Tanila H, et al. Effects of NMDA-receptor antagonist treatment on c-fos expression in rat brain areas implicated in schizophrenia. Cell Mol Neurobiol. 2004;24(6):769–780.
  • Dragunow M, Faull R. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods. 1989;29(3):261–265.
  • Hustveit O, Maurset A, Øye I. Interaction of the chiral forms of Ketamine with opioid, phencyclidine, σ and muscarinic receptors. Pharmacol Toxicol. 1995;77(6):355–359.
  • Taylor KS, Seminowicz DA, Davis KD. Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp. 2009;30(9):2731–2745.
  • Li J, Xu C, Cao X, et al. Abnormal activation of the occipital lobes during emotion picture processing in major depressive disorder patients. Neural Regen Res. 2013;8(18):1693.
  • Mao N, Che K, Chu T, et al. Aberrant resting-state brain function in adolescent depression. Front Psychol. 2020;11:1784.
  • Müller VI, Cieslik EC, Laird AR, et al. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization. Front Hum Neurosci. 2013; 268.
  • Sliz D, Hayley S. Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research. Front Hum Neurosci. 2012;6. DOI:10.3389/fnhum.2012.00323
  • Lee SW, Choi J, Lee J-S, et al. Altered function of ventrolateral prefrontal cortex in adolescents with peer verbal abuse history. Psychiatry Investig. 2017;14(4):441–451.
  • Grimm S, Beck J, Schuepbach D, et al. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol Psychiatry. 2008;63(4):369–376.
  • Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–815.
  • Burton AC, Nakamura K, Roesch MR. From ventral-medial to dorsal-lateral striatum: neural correlates of reward-guided decision-making. Neurobiol Learn Mem. 2015;117:51–59.
  • Crespo-Facorro B, Kim -J-J, Andreasen NC, et al. Human frontal cortex: an MRI-based parcellation method. Neuroimage. 1999;10(5):500–519.
  • Dieterich M, Brandt T. The parietal lobe and the vestibular system.In Vallar G, Coslett HB, editors. Handbook of clinical Neurology. Vol. 151. : Elsevier B.V.; 2018. p. 119–140.
  • Loprinzi PD. The effects of physical exercise on parahippocampal function. Physiol Int. 2019;106(2):114–127.
  • Ngeles Fernández-Gil M, Palacios-Bote R, Leo-Barahona M, et al. Anatomy of the brainstem: a gaze into the stem of life. Semin Ultrasound, CT MRI. 2010;31(3):196–219.
  • Van Ackeren MJ, Barbero FM, Mattioni S, et al. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech. Elife. 2018;7. DOI: 10.7554/eLife.31640
  • McEvoy LK, Fennema-Notestine C, Roddey JC, et al. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology. 2009;251(1):195–205.
  • Rabinovici GD, Seeley WW, Kim EJ, et al., Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen. 22(6): 474–488. 2008.
  • Zwick LS, Patrick DJ, Knupp LC, et al. Ketamine/Xylazine anesthesia–related corneal lesions in rats with surgically implanted venous catheters utilized in nonclinical intravenous studies. Toxicol Pathol. 2020. DOI:10.1177/0192623320960705
  • Réus GZ, Titus SE, Abelaira HM, et al. Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci. 2016;158:121–129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.