261
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Synthesis and in-vitro Evaluation of Novel Low Molecular Weight Thiocarbamates as Inhibitors of Human Leukocyte Elastase

&
Pages 95-105 | Received 23 Feb 2000, Published online: 02 Jul 2010

References

  • Bieth J. G. Leukocyte Elastase. Handbook of Proteolytic Enzymes, A. J. Barrett, N. D. Rawlings, J. F. Woessner. Academic Press, New York 1998; 1–6, chapter 15
  • Sandhaus A. Elastase plays a central role in neutrophil migration through connective tissue. Pulmonary Emphysema and Proteolysis, J. C. Taylor, C. Mittman. Second International Symposium, Academic Press, New York 1987; 227
  • Powers J. C. Proteolytic enzymes and their active-site inhibitors: role in the treatment of disease. Adv. Chem. 1982; 198: 347–367
  • Adam C., Bieth J. G. Inhibition of neutrophil elastase by the alproteinase inhibitor - immunoglobulin A complex. FEBS Lett 1996; 385: 201–204
  • Thompson R. C., Ohlsson K. Isolation properties and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc. Natl. Acad. Sci. USA 1986; 83: 6692
  • Boudier C., Carvallo D., Bieth J. G., Courtney M. Purification and characterization of human bronchial proteinase inhibitor. Arch. Biochem. Biophys. 1987; 253: 439
  • Fantone J. C., Ward P. A. Mechanisms of lung parenchymal injury. Am. Rev. Resp. Dis. 1984; 130(3)484
  • Amitani R., Wilson R., Rutman A., Read R., Ward C., Burnett D., Stockley R. A., Cole P. J. Effects of human neutrophil elastase and Pseudomonas aeru-ginosaproteinases on human respiratory epithelium. Am. J. Respir. Cell. Mol. Biol. 1991; 4: 26–32
  • Barrett A. J. The possible role of neutrophil proteinases in damage to articular cartilage. Agents Actions 1994; 43: 194–201
  • Janusz M. J., Doherty N. S. Degradation of cartilage matrix proteoglycan by human neutrophils involves both elastase and cathepsin G. J. Immunol. 1991; 146: 3922–3928
  • Bode W., Meyer E., Jr., Powers J. C. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism based-inhibitors. Biochemistry 1989; 28: 1951–1963
  • Viscarello R. B., Stein R. L., Kusner E. J., Holsclaw D., Krell R. D. Purification of human leukocyte elastase and cathepsin G by chromatography on immobilized elastin. Prep. Biochem. 1983; 13(1)57–67
  • Sandberg L. B., Sockel N. T., Leslie J. G. Elastin structure, biosynthesis and relation to disease states. N. Eng. J. Med. 1981; 304(10)566
  • Takahashi H., Nukiwa T., Yoshimura K., Quick C. D., States D. J., Holmes M. D., Whang-Peng J., Knutsen T., Crystal R. G. Structure of the human neutrophil elastase gene. J. Biol. Chem. 1988; 263: 14739–14747
  • Navia M. A., McKeever B. M., Springer J. P., Lin T. Y., Williams H. R., Fluder E. M., Dorn C. P., Hoogsteen K. Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-Å resolution. Proc. Natl. Acad. Sci. USA 1989; 86: 7–11
  • Edwards P. D., Bernstein P. R. Synthetic inhibitors of elastase. Med. Res. Rev. 1994; 14: 127–194
  • Jung H. I., Kim S. I., Ha K. S., Joe C. O., Kang K. W. Isolation and characterization of guamerin, a new human leukocyte elastase inhibitor from Hirudo nippo-nia. J. Biol. Chem. 1995; 270: 13879–13884
  • Thomas R. M., Nauseef W. M., Iyer S. S., Peterson M. W., Stone P. J., Clark R. A. A cytosolic inhibitor of human neutrophil elastase and cathepsin G. J. Leukocyte Biol. 1981; 50: 568–579
  • McRae R., Nakajima K., Travis J., Powers J. C. Studies on reactivity of human leukocyte elastase, cathepsin G and porcine pancreatic elastase toward peptides including sequences related to the reactive site of α1-proteinase inhibitor (α1-antitrypsin). Biochemistry 1980; 19: 3973–3978
  • Tsuji K., Agha B. J., Shinogi M, Digenis G. A. Peptidyl carbamate esters: a new class of specific elastase inhibitors. Biochem. Biophys. Res. Commun. 1984; 12: 571–576
  • Nassar M. N., Agha B. J., Digenis G. A. Effects of structural variations on the rates of enzymatic and nonenzymatic hydrolysis of carbonate and carbamate esters. J. Pharm. Sci. 1992; 81(3)295–298
  • Digenis G. A., Agha B. J., Tsuji K., Kato M., Shinogi M. Peptidyl carbamates incorporating amino acid isosteres as novel elastase inhibitors. J. Med. Chem. 1986; 29: 1468–1476
  • Kato M., Agha B. J., Raheem A., Tsuji K., Banks W. R., Digenis G. A. Peptidyl carbamates as novel elastase inhibitors: structure-activity relationship studies. J. Enz. Inhib. 1993; 7: 105–130
  • Nakajima K., Powers J. C., Ashe B. M., Zimmerman M. Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. J. Biol. Chem. 1979; 254: 4027–4032
  • Finke P. E., Shah S. K., Ashe B. M., Ball R. G., Blacklock T. J., Bonney R. J., Brause K. A., Chandler G. O., Cotton M., Davies P., Dellea P. S., Dorn C. P., Fletcher D. S., O'Grady L. A., Hagmann W. K., Hand K. M., Knight W. B., Maycock A. L., Mumford R. A., Osinga D. G., Sohar P., Thompson K. R., Weston H., Doherty J. B. Inhibition of human leukocyte elastase. 4. Selection of a substituted cephalosporin (L-658,758) as a topical aerosol. J. Med. Chem. 1992; 35(21)3731–3744
  • Hernandez M. A., Powers J. C., Glinski J., Oleksyszyn J., Vijayalakshmi J., Meyer E. F. Effect of the 7-amino substituent on the inhibitory potency of mechanism-based isocoumarin inhibitors for porcine pancreatic and human neutrophil elastases: a 1.85-Å X-ray structure of the complex between porcine pancreatic elastase and 7-[(N-Tosylphenylalanyl)amino]-4-chloro-3-methoxyisocoumarin. J. Med. Chem. 1992; 35(6)1121–1129
  • Bieth J., Spies B., Wermuth C. G. Synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem. Med. 1974; 11: 350–357
  • Shah S. K., Dorn C. P., Finke P. A., Hale J. J., Hagmann W. K., Brause K. A., Chandler G. O., Kissinger A. L., Ashe B. M., Weston H., Knight W. B., Maycock A. L., Dellea P. S., Fletcher D. S., Hand K. M., Mumford R. A., Underwood D. J., Doherty J. B. Orally active β-lactam inhibitors of human leukocyte elastase-1. Activity of 3,3-Diethyl-2-azetidinones. J. Med. Chem. 1992; 35(21)3745–3754
  • Lestienne P., Bieth J. G. Activation of human leukocyte elastase activity by excess substrate, ionic strength and hydrophobic solvents. J. Biol. Chem. 1980; 255: 9289–9294
  • Stein R. L. Catalysis by human leukocyte elastase: substrate structural dependence of rate limiting proteolytic catalysis and operation of the charge relay system. J. Am. Chem. Soc 1983; 105: 5111–5116
  • Brown W. E., Wold F. Alkyl isocyanates as active-site-specific reagents for serine proteases. Reaction properties. Biochemistry 1973; 12(5)828–834
  • Koldobskii G. I., Ostrovskii V. A., Popavskii V. S. The chemistry of tetrazoles (review). Chem. Heterocycl. Compd. (USSR) 1981; 17: 965–988
  • Koldobskii G. I., Ostrovskiii V. A., Gidaspov G. I. Tautomerism and acid-base properties of tetrazoles. Chem. Heterocycl., Compd. (USSR) 1980; 16: 665–674
  • Powers J. C., Harper J. W. Inhibitors of serine proteinases. Proteinase Inhibitors, A. J. Barrett, G. Salvesen. Elsevier Science Publishers, Amsterdam 1986; 55–152
  • Powers J. C., Boone R., Carroll D. L., Gupton B. F., Kam C. M., Nishino N., Sakamoto M., Tuhy P. M. Reaction of azapeptides with human leukocyte elastase and porcine pancreatic elastase. New inhibitors and active site titrants. J. Biol. Chem. 1984; 259(7)4288–4293
  • Ray W. J., Koshland D. E., Jr. A method for characterizing the type and numbers of groups involved in enzyme action. J. Biol. Chem. 1961; 236(7)1973–1979
  • Kitz R., Wilson I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinestarase. J. Biol. Chem. 1962; 237: 3245–3249
  • Boyer P. D. The Enzymes: Kinetics and Mechanism. 3rd Edn. Academic Press, New York 1970; Vol. II
  • Galardy R. E., Kortylewicz Z. P. Alpha-bromo ketone substrate analogues are powerful reversible inhibitors of carboxypeptidase A. Biochemistry 1985; 24: 7607–7612
  • Koshland D. E., Jr. The active site and enzyme action. Advan. Enzymol 1960; 22: 45–97
  • Kossiakoff A. A., Spencer S. A. Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: Neutron structure of trypsin. Biochemistry 1981; 20: 6462–6472
  • Stein R. L., Trainor D. A., Wildorger R. A. Neutrophil Elastase. Annu. Rep. Med. Chem. 1985; 20: 237–246
  • Stein R. L., Elrod J. P., Schowen R. L. Corelative variations in enzyme-derived and substrate-derived structures of catalytic transition states. Implications for the catalytic strategy of acyl-transfer enzymes. J. Am. Chem. Soc. 1983; 105: 2446–2452
  • Jencks W. P. Catalysis in Chemistry and Enzymology. Mc Graw-Hill, New York 1969; 351–399
  • Henderson P. J.F. A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem. J. 1972; 127: 321–333
  • Cha S. Biochemical Pharmacology 1975; 24: 2177–2185
  • Bieth J. G. Elastase: catalytic and biological properties. Regulation of Matrix Accumulation, R. P. Mecham. Academic Press, New York 1986; 217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.