2,402
Views
47
CrossRef citations to date
0
Altmetric
Research Article

Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives

, , , , , , , , , , , , , , & show all
Pages 547-563 | Received 14 Oct 2016, Accepted 01 Dec 2016, Published online: 23 Jan 2017

References

  • Aponte J, Aregawi M, Cibulskis R, et al. World malaria report. World Health Organization. Geneva: WHO Press; 2015.
  • Breman JG. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 2001;64:1–11.
  • Klan SM, Waters AP. Malaria parasite transmission stages: an update. Trends Parasitol 2004;20:575–80.
  • World Health Organization. 2010. Available from: http://www.who.int/drugresistance/en/ [last accessed 10 Jun 2016].
  • World Health Organization. Guidelines for the treatment of malaria. 3rd ed. Geneva: WHO Press; 2015.
  • Yeung S, Socheat D, Moorthy VS, Mills AJ. Artemisinin resistance on the Thai-Cambodian border. Lancet 2009;374:1418–19.
  • Müller O, Sié A, Meissner P, et al. Artemisinin resistance on the Thai-Cambodian border. Lancet 2009;374:1419.
  • Winzeler EA, Manary MJ. Drug resistance genomics of the antimalarial drug artemisinin. Genome Biol 2014;15:544.
  • Fairhurst RM. Understanding artemisinin-resistant malaria: what a difference a year makes. Curr Opin Infect Dis 2015;28:417–25.
  • Tilley L, Straimer J, Gnadig NF, et al. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol 2016;32:682–96.
  • Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014;505:50–5.
  • Biot C, Chibale K. Novel approaches to antimalarial drug discovery. Infect Disord Drug Targets 2006;6:173–204.
  • De D, Krogstad FM, Cogswell FB, Krogstad DJ. Aminoquinolines that circumvent resistance in Plasmodium falciparum in vitro. Am J Trop Med Hyg 1996;55:579–83.
  • Ridley RG, Hfheinz W, Matile H, et al. 4-Aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum. Antimicrob Agents Chemother 1996;40:1846–54.
  • Deshpande S, Kuppast B. 4-Aminoquinolines: an overview of antimalarial chemotherapy. Med Chem 2016;6:1–11.
  • Kumar S, Singh RK, Patial B, et al. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria. J Enzyme Inhib Med Chem 2016;31:173–86.
  • Manohar S, Tripathi M, Rawat DS. 4-aminoquinoline based molecular hybrids as antimalarials: an overview. Curr Top Med Chem 2014;14:1706–33.
  • O'Neill PM, Ward SA, Berry NG, et al. A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr Top Med Chem 2006;6:479–507.
  • Huang A, Ma C. Recent progress in biological activities and synthetic methodologies of pyrroloquinoxalines. Mini Rev Med Chem 2013;13:607–16.
  • Guillon J, Grellier P, Labaied M, et al. Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, bispyrrolo[1,2-a]quinoxalines, bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and bispyrrolo[1,2-a]thieno[3,2-e]pyrazines. J Med Chem 2004;47:1997–2009.
  • Guillon J, Forfar I, Mamani-Matsuda M, et al. Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo[1,2-a]quinoxalines as antileishmanial agents. Bioorg Med Chem 2007;15:194–210.
  • Guillon J, Forfar I, Desplat V, et al. Synthesis of new 4-(E)-alkenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents by Suzuki-Miyaura cross-coupling reactions. J Enzyme Inhib Med Chem 2007;22:541–9.
  • Guillon J, Moreau S, Mouray E, et al. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity. Bioorg Med Chem 2008;16:9133–44.
  • Guillon J, Mouray E, Moreau S, et al. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity-Part II. Eur J Med Chem 2011;46:2310–26.
  • Ronga L, Del Favero M, Cohen A, et al. Design, synthesis and biological evaluation of novel 4-alkapolyenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents-part III. Eur J Med Chem 2014;81:378–93.
  • Desplat V, Geneste A, Begorre M-A, et al. Synthesis of new pyrrolo[1,2-a]quinoxaline derivatives as potential inhibitors of Akt kinase. J Enzyme Inhib Med Chem 2008;23:648–58.
  • Desplat V, Moreau S, Gay A, et al. Synthesis and evaluation of the antiproliferative activity of novel pyrrolo[1,2-a]quinoxaline derivatives, potential inhibitors of Akt kinase. Part II. J Enzyme Inhib Med Chem 2010;25:204–15.
  • Desplat V, Moreau S, Belisle-Fabre S, et al. Synthesis and evaluation of the antiproliferative activity of novel isoindolo[2,1-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives. J Enzyme Inhib Med Chem 2011;26:657–67.
  • Guillon J, Le Borgne M, Rimbault C, et al. Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a]quinoxaline derivatives as inhibitors of the human protein kinase CK2. Eur J Med Chem 2013;65:205–22.
  • Desplat V, Vincenzi M, Lucas R, et al. Synthesis and evaluation of the cytotoxic activity of novel ethyl 4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxaline-carboxylate derivatives in myeloid and lymphoid leukemia cell lines. Eur J Med Chem 2016;113:214–27.
  • Alvar J, Vélez ID, Bern C, the WHO Leishmaniasis Control Team, et al. Leishmaniasis worldwide and global estimates of its incidence. PLos One 2012;7:e35671.
  • WHO Technical report series n°975, Research Priorities for Chagas Disease, Human African Trypanosomiasis and Leishmaniasis, 2012:116.
  • Freitas-Junior LH, Chatelain E, Kim HA, Siqueira-Neto JL. Visceral Leishmaniasis Treatment: what do we have, what do we need and how to deliver it? Int J Parasitol Drugs Drug Resist 2012;2:11–19.
  • Bottius E, Bakhsis N, Scherf A. Plasmodium falciparum telomerase: de novo telomere addition to telomeric and nontelomeric sequences and role in chromosome healing. Mol Cell Biol 1998;18:919–25.
  • Raj DK, Das BR, Dash AP, Supakar PC. Identification of telomerase activity in gametocytes of Plasmodium falciparum. Biochem Biophys Res Commun 2003;309:685–8.
  • De Cian A, Grellier P, Mouray E, et al. Plasmodium telomeric seqsuences: structure, stability and quadruplex targeting by small compounds. ChemBioChem 2008;9:2730–9.
  • Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semi-automated microdilution technique. Antimicrob Agents Chemother 1979;16:710–18.
  • Bennett TN, Paguio M, Gligorijevic B, et al. Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 2004;48:1807–10.
  • Bacon DJ, Latour C, Lucas C, et al. Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrob Agents Chemother 2007;51:1172–8.
  • Kaddouri H, Nakache S, Houzé S, et al. Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from Africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Antimicrob Agents Chemother 2006;50:3343–9.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.
  • Emami SA, Zamanai Taghizadeh Rabe S, Ahi A, Mahmoudi M. Inhibitory activity of eleven Artemisia species from Iran against Leishmania major parasites. Iran J Basic Med Sci 2012;15:807–11.
  • De Cian A, Guittat L, Kaiser M, et al. Fluorescence-based melting assays for studying quadruplex ligands. Methods 2007;42:183–95.