2,501
Views
12
CrossRef citations to date
0
Altmetric
Research Paper

Novel Re(I) tricarbonyl coordination compounds based on 2-pyridyl-1,2,3-triazole derivatives bearing a 4-amino-substituted benzenesulfonamide arm: synthesis, crystal structure, computational studies and inhibitory activity against carbonic anhydrase I, II, and IX isoforms†

ORCID Icon, , , , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 773-782 | Received 22 Jan 2019, Accepted 18 Feb 2019, Published online: 07 Mar 2019

References

  • Chen Y, Liu W, Jin JS. Rhenium(I) tricarbonyl complexes with bispyridine ligands attached to sulfur-rich core: syntheses, structures and properties. J Organomet Chem 2009;694:763–70.
  • Chabolla SA, Machan CW, Yin J, et al. Bio-inspired CO2 reduction by a rhenium tricarbonyl bipyridine-based catalyst appended to amino acids and peptidic platforms: incorporating proton relays and hydrogen-bonding functional groups. Faraday Discuss 2017;198:279–300.
  • (a) Chu WK, Ko CC, Chan KC, et al. A Simple design for strongly emissive sky-blue phosphorescent neutral rhenium complexes: synthesis, photophysics, and electroluminescent devices. Chem Mater 2014;26:2544–50. (b) Velmurugan G, Ramamoorthi BK, Venuvanalingam P. Are Re(I) phenanthroline complexes suitable candidates for OLEDs? Answers from DFT and TD-DFT investigations. Phys Chem Chem Phys 2014;16:21157–71. (c) Li X, Zhang D, Lu G, et al. Synthesis and characterization of novel rhenium (I) complexes with large Stokes shift for applications in organic electroluminescent devices. J Photochem Photobiol A Chem 2012;241:1–7.
  • (a) Patrocinio AOT, Iha NYM. Photoswitches and luminescent rigidity sensors based on fac-[Re(CO)3(Me4phen)(L)]+. Inorg Chem 2008;47:10851–7. (b) Sun SS, Lees AJ. Transition metal based supramolecular systems: synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors. Coord Chem Rev 2002;230:171–92. (c) Bullock S, Hallett AJ, Harding LP, et al. Luminescent rhenium fac-tricarbonyl-containing complexes of androgenic oxo-steroids. Dalton Trans 2012;41:14690–6.
  • (a) Pierri AE, Pallaoro A, Wu G, et al. A luminescent and biocompatible photoCORM. J Am Chem Soc 2012;134:18197–200. (b) Carrington SJ, Chakraborty I, Bernard JML, et al. A theranostic two-tone luminescent photocorm derived from Re(I) and (2-pyridyl)-benzothiazole: trackable CO delivery to malignant cells. Inorg Chem 2016;55:7852–8. (c) Prieto L, Rossier J, Derszniak K, et al. Modified biovectors for the tuneable activation of anti-platelet carbon monoxide release. Chem Commun 2017;53:6840–3. (d) Kianfar E, Schafer C, Lornejad-Schafer MR, et al. New photo-CORMs: deeply-coloured biocompatible rhenium complexes for the controlled release of carbon monoxide. Inorg Chim Acta 2015;435:174–7.
  • (a) Müller C, Schubiger PA, Schibli R. Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nucl Med Biol 2007;34:595–601. (b) Kluba CA, Mindt TL. Click-to-Chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals. Molecules 2013;18:3206–26. (c) Brink A, Helliwell JR. New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents. IUCrJ 2017;4:283–90. (d)Eychenne R, Guizani S, Wang J-H, et al. Rhenium complexes based on an N2O tridentate click scaffold: from synthesis, structural and theoretical characterization to a radiolabelling study. Eur J Inorg Chem 2017; 2017:69–81.
  • Schibli R, Schubiger PA. Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med 2002;29:1529–42.
  • (a) Wright PJ, Muzzioli S, Werrett MV, et al. Synthesis, photophysical and electrochemical investigation of dinuclear tetrazolato-bridged rhenium complexes. Organometallics 2012;31:7566–78. (b) Werrett MV, Huff GS, Muzzioli S, et al. Methylated Re(I) tetrazolato complexes: photophysical properties and light emitting devices. Dalton Trans 2015;44:8379–93.
  • (a) Coleman A, Brennan C, Vos JG, et al. Photophysical properties and applications of Re(I) and Re(I)–Ru(II) carbonyl polypyridyl complexes. Coord Chem Rev 2008;252:2585–95. (b) Lo KKW, Louie MW, Zhang KY. Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes. Coord Chem Rev 2010;254:2603–22.
  • (a) Boulay A, Seridi A, Zedde C, et al. Tricarbonyl Re(I) complexes from functionalised pyridine–triazole derivatives: from mononuclear to unexpected dimeric complexes. Eur J Inorg Chem 2010;2010:5058–62. (b) Wolff M, Munoz L, François A, et al. Tricarbonylrhenium complexes from 2-pyridyl-1,2,3-triazole ligands bearing a 4-substituted phenyl arm: a combined experimental and theoretical study. Dalton Trans 2013;42:7019–31. (c) François A, Auzanneau C, Le Morvan V, et al. A functionalized heterobimetallic 99mTc/Re complex as a potential dual-modality imaging probe: synthesis, photophysical properties, cytotoxicity and cellular imaging investigations. Dalton Trans 2014;43:439–50. (d) Clède S, Lambert F, Sandt C, et al. A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties. Chem Commun 2012;48:7729–31. (e) Bertrand HC, Clède S, Guillot R, et al. Luminescence modulations of rhenium tricarbonyl complexes induced by structural variations. Inorg Chem 2014;53:6204–23. (f) Ching HYV, Wang X, He M, et al. Rhenium complexes based on 2-pyridyl-1,2,3-triazole ligands: a new class of CO2 reduction catalysts. Inorg Chem 2017;56:2966–76. (g) Kim TY, Elliott ABS, Shaffer KJ, et al. Rhenium(I) complexes of readily functionalized bidentate pyridyl-1,2,3-triazole “click” ligands: a systematic synthetic, spectroscopic and computational study. Polyhedron 2013;52:1391–8. (h) Lo WKC, Huff GS, Cubanski JR, et al. Comparison of inverse and regular 2-pyridyl-1,2,3-triazole “click” complexes: structures, stability, electrochemical, and photophysical properties. Inorg Chem 2015;54:1572–87.
  • Obata M, Kitamura A, Mori A, et al. Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes. Dalton Trans 2008;3292–300.
  • (a) Seridi A, Wolff M, Boulay A, et al. Rhenium(I) and technetium(I) complexes of a novel pyridyltriazole-based ligand containing an arylpiperazine pharmacophore: synthesis, crystal structures, computational studies and radiochemistry. Inorg Chem Commun 2011;14:238–42. (b) Kilpin KJ, Gavey EL, McAdam CJ, et al. Palladium(II) Complexes of readily functionalized bidentate 2-pyridyl-1,2,3-triazole “click” ligands: a synthetic, structural, spectroscopic, and computational study. Inorg Chem 2011;50:6334–46.
  • (a) Güzel-Akdemir Ö, Akdemir A, Karal N, et al. Discovery of novel isatin-based sulfonamides with potent and selective inhibition of the tumor-associated carbonic anhydrase isoforms IX and XII. Org Biomol Chem 2015;13:6493–9. (b) Carta F, Ferraroni M, Scozzafava A, et al. Fluorescent sulfonamide carbonic anhydrase inhibitors incorporating 1,2,3-triazole moieties: kinetic and X-ray crystallographic studies. Bioorg Med Chem 2016;24:104–12. (c) Pala N, Micheletto L, Sechi M, et al. Carbonic anhydrase inhibition with benzenesulfonamides and tetrafluorobenzenesulfonamides obtained via click chemistry. ACS Med Chem Lett 2014;5:927–30. (d) Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112:4421–68. (e) Winum JY, Supuran CT. Recent advances in the discovery of zinc-binding motifs for the development of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2015;30:321–4.
  • (a) Akurathi V, Dubois L, Lieuwes NG, et al. Synthesis and biological evaluation of a 99mTc-labelled sulfonamide conjugate for in vivo visualization of carbonic anhydrase IX expression in tumor hypoxia. Nucl Med Biol 2010;37:557–64. (b) Lu G, Hillier SM, Maresca KP, et al. Synthesis and SAR of novel Re/99mTc-labeled benzenesulfonamide carbonic anhydrase IX inhibitors for molecular imaging of tumor hypoxia. J Med Chem 2013;56:510–20. (c) Can D, Spingler B, Schmutz P, et al. (Cp-R)M(CO)3 (M = Re or 99mTc) Arylsulfonamide, arylsulfamide, and arylsulfamate conjugates for selective targeting of human carbonic anhydrase IX. Angew Chem Int Ed 2012;51:3354–7. (d) Nakai M, Pan J, Lin KS, et al. Evaluation of 99mTc-sulfonamide and sulfocoumarin derivatives for imaging carbonic anhydrase IX expression. Inorg Biochem 2018;185:63–70. (e) Huentupil Y, Peña L, Novoa N, et al. New sulfonamides containing organometallicacylhydrazones: synthesis, characterisation and biological evaluation as inhibitors of human carbonic anhydrases. J Enzyme Inhib Med Chem 2019;34:451–8.
  • Chambers JM, Hill PA, Aaron JA, et al. Cryptophane Xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. J Am Chem Soc 2009;131:563–9.
  • Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 2015;71:3–8.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision A.1. Wallingford CT: Gaussian, Inc.; 2009.
  • Dennington IIR, Keith T, Milliam J, GaussView version 4.1.2. Shawnee Mission, KS: Semichem Inc.; 2007.
  • (a) Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988;37:785–9. (b) Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993;98:5648–52.
  • Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 1985;82:299–310.
  • Glendening ED, Badenhoop JK, Reed AE, et al. NBO 6.0. Theoretical chemistry institute. Madison: University of Wisconsin; 2013.
  • (a) Casida ME, Jamorski C, Casida KC, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 1998;108:4439. (b) Stratmann RE, Scuseria GE, Frisch MJ. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 1998;109:8218. (c) Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 1996;256:454–64.
  • (a) Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 1997;107:3032. (b) Cossi M, Barone V, Mennucci B, et al. Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 1998;286:253–60. (c) Mennucci B, Tomasi J. Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 1997;106:5151. (d) Cossi M, Scalmani G, Rega N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 2002;117:43.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.
  • Sharma A, Tiwari M, Supuran CT. Novel coumarins and benzocoumarins acting as isoform-selective inhibitors against the tumor-associated carbonic anhydrase IX. J Enzyme Inhib Med Chem 2014;29:292–6.
  • Durdagi S, Scozzafava G, Vullo D, et al. Inhibition of mammalian carbonic anhydrases I-XIV with grayanotoxin III: solution and in silico studies. J Enzyme Inhib Med Chem 2014;29:469–75.
  • Alterio V, Hilvo M, Di Fiore A, et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci USA 2009;106:16233–8.
  • La Regina G, Coluccia A, Famiglini V, et al. Discovery of 1,1'-biphenyl-4-sulfonamides as a new class of potent and selective carbonic anhydrase XIV inhibitors. J Med Chem 2015;58:8564–72.
  • Suntrup L, Klenk S, Klein J, et al. Gauging donor/acceptor properties and redox stability of chelating click-derived triazoles and triazolylidenes: a case study with rhenium(I) complexes. Inorg Chem 2017;56:5771–83.
  • (a) Schweinfurth D, Pattacini R, Strobel S, et al. New 1,2,3-triazole ligands through click reactions and their palladium and platinum complexes. Dalton Trans 2009;9291–7. (b) Crowley JD, Bandeen PH, Hanton LR. A one pot multi-component CuAAC “click” approach to bidentate and tridentate pyridyl-1,2,3-triazole ligands: synthesis, X-ray structures and copper(II) and silver(I) complexes. Polyhedron 2010;29:70–83. (c) Crowley JD, Bandeen PH. A multicomponent CuAAC “click” approach to a library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: new building blocks for the generation of metallosupramolecular architectures. Dalton Trans 2010;39:612–23.
  • Kilpin KJ, Crowley JD. Palladium(II) and platinum(II) complexes of bidentate 2-pyridyl-1,2,3-triazole “click” ligands: synthesis, properties and X-ray structures. Polyhedron 2010;29:3111–17.
  • Scattergood PA, Sinopoli A, Elliott PIP. Photophysics and photochemistry of 1,2,3-triazole-based complexes. Coord Chem Rev 2017;350:136–54.