1,457
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Synthesis, cytotoxicities, and carbonic anhydrase inhibition potential of 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones

, ORCID Icon, , , , & ORCID Icon show all
Pages 1722-1729 | Received 17 Aug 2019, Accepted 13 Sep 2019, Published online: 02 Oct 2019

References

  • Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144:1941–1953.
  • Raghavendra NM, Pingili D, Kadasi S, et al. Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem 2018;143:1277–300.
  • Ashby J. Potential carcinogenicity of alkylating agents. Chem Brit 1978;14:595.
  • Gul HI, Cizmecioglu M, Zencir S, et al. Cytotoxic activity of 4′-hydroxychalcone derivatives against Jurkat cells and their effects on mammalian DNA topoisomerase I. J Enzyme Inhib Med Chem 2009;24:804–7.
  • Erciyas E, Erkaleli HI, Cosar G. Antimicrobial evaluation of some styryl ketone derivatives and related thiol adducts. J Pharm Sci 1994;83:545–8.
  • Dimmock JR, Kumar P, Allen TM, et al. Synthesis and cytotoxic evaluation of some carbohydrazones and thiocarbohydrazones of various unsaturated ketones and related Mannich bases. Pharmazie 1997;52:182–6.
  • Das U, Sharma RK, Dimmock JR. 1,5-diaryl-3-oxo-1,4-pentadienes: a case for antineoplastics with multiple targets. Curr Med Chem 2009;16:2001–20.
  • Stern H. Sulfhydryl groups and cell division. Science 1956;124:1292–3.
  • Dimmock JR, Raghavan SK, Bigam GE. Evaluation of Mannich bases of 2-arylidene-1,3-diketones versus murine P388 leukemia. Eur J Med Chem 1988; 23:111–7.
  • Dimmock JR, Sidhu KK, Chen M, et al. Evaluation of some Mannich bases of cycloalkanones and related compounds for cytotoxic activity. Eur J Med Chem 1993;28:313–22.
  • Pati HN, Das U, Sakagami H, et al. 1,3-diaryl-2-propenones and 2-benzylidene-1,3-indandiones: a quest for compounds displaying greater toxicity to neoplasms than normal cells. Archiv Der Pharmazie 2010;343:535–41.
  • Orlikova B, Tasdemir D, Golais F, et al. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr 2011;6:125–47.
  • Takahashi T, Takasuka N, Iigo M, et al. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci 2004;95:448–53.
  • Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 2007;42:125–37.
  • Fiore C, Eisenhut M, Ragazzi E, et al. A history of the therapeutic use of liquorice in Europe. J Ethnopharmacol 2005;99:317–24.
  • Kocyigit UM, Budak Y, Gürdere MB, et al. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch Physiol Biochem 2018;124:61–8.
  • Ghosh A, Mandal S, Banerji A, et al. A new chalcone from Pongamia pinnata and its antioxidant properties. Nat Prod Commun 2009;4:209–10.
  • Gul HI, Yamali C, Gunesacar G, et al. Cytotoxicity, apoptosis, and QSAR studies of phenothiazine derived methoxylated chalcones as anticancer drug candidates. Med Chem Res 2018;27:2366–78.
  • Yadav VR, Prasad S, Sung B, Aggarwal BB. The role of chalcones in suppression of NF-κB-mediated inflammation and cancer. Int Immunopharmacol 2011;11:295–309.
  • Kim HG, Oh HJ, Ko JH, et al. Lanceoleins A-G, hydroxychalcones, from the flowers of Coreopsis lanceolata and their chemopreventive effects against human colon cancer cells. Bioorg Chem 2019;85:274–81.
  • Gul HI, Yamali C, Bulbuller M, et al. Anticancer effects of new dibenzenesulfonamides by inducing apoptosis and autophagy pathways and their carbonic anhydrase inhibitory effects on hCA I, hCA II, hCA IX, hCA XII isoenzymes. Bioorg Chem 2018;78:290–7.
  • Yamali C, Tugrak M, Gul HI, et al. The inhibitory effects of phenolic Mannich bases on carbonic anhydrase I and II isoenzymes. J Enzyme Inhib Med Chem 2016;31:1678–81.
  • Yerdelen KO, Gul HI. Synthesis and anticholinesterase activity of fumaramide derivatives. Med Chem Res 2013;22:4920–9.
  • Murty MSR, Ram KR, Rao RV, et al. Synthesis and preliminary evaluation of 2-substituted-1,3-benzoxazole and 3-(3-substituted)propyl-,3-benzoxazol-2(3H)-one derivatives as potent anticancer agents. Med Chem Res 2011;20:576–86.
  • Chiarotto I, Feroci M, Orsini M, et al. Electrogenerated N-heterocyclic carbenes: N-functionalization of benzoxazolones. Tetrahedron 2009;65:3704–10.
  • Deng B, Cullen MD, Zhou ZG, et al. Synthesis and anti-HIV activity of new alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTIs) incorporating benzoxazolone and benzisoxazole rings. Bioorg Med Chem 2006;14:2366–74.
  • Ivanova Y, Momekov G, Petrov O, et al. Cytotoxic Mannich bases of 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones. Eur J Med Chem 2007;42:1382–7.
  • Kumar D, Jacob MR, Reynolds MB, Kerwin SM. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg Med Chem 2002;10:3997–4004.
  • Unlu S, Onkol T, Dundar Y, et al. Synthesis and analgesic and anti-inflammatory activity of some new (6-acyl-2-benzoxazolinone and 6-acyl-2-benzothiazolinone derivatives with acetic acid and propanoic acid residues. Arch Pharm 2003;336:353–60.
  • Koksal M, Gokhan N, Kupell E, et al. Synthesis, analgesic and antiinflammatory properties of certain 5-/6-acyl-3-(4-substituted-1-piperazinylmethyl)-2-benzoxazolinones derivatives. Archiv Der Pharmazie 2005;338:117–25.
  • Koksal M, Gokhan N, Erdogan H, et al. Synthesis of 3-(4-substituted benzoylmethyl)-2-benzoxazolinones and screening antimicrobial activities. Farmaco 2002;57:535–8.
  • Orhan H, Doğruer DS, Cakir B, et al. The in vitro effects of new non-steroidal antiinflammatory compounds on antioxidant system of human erythrocytes. Exp Toxicol Pathol 1999;51:397–402.
  • Ivanova Y, Momekov G, Petrov O. Synthesis of novel substituted 1,3-diarylpropenone derivatives and their in vitro cytotoxic activity. Lett Drug Design Discov 2009;6:353–7.
  • Ivanova YB, Momekov GT, Petrov OI. New heterocyclic chalcones. Part 6. Synthesis and cytotoxic activities of 5-or 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones. Heterocycl Commun 2013;19:23–8.
  • Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Exp Opin Ther Patents 2018;28:709–12.
  • Supuran CT, Carbonic anhydrase inhibitor—no donor hybrids and their pharmacological applications. In: Morbidelli L, Bonavida B, eds. Therapeutic application of nitric oxide in cancer and inflammatory sisorders. Cambridge, MA: Academic Press; 2019. pp. 229–242.
  • Thacker PS, Shaikh P, Angeli A, et al. Synthesis and biological evaluation of novel 8-substituted quinoline-2-carboxamides as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019;34:1172–7.
  • Supuran CT. Carbonic anhydrases and metabolism. Metabolites 2018;8:25.
  • Supuran CT. Carbonic anhydrase activators. Future Med Chem 2018;10:561–73.
  • Nocentini A, Supuran CT. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: a patent review (2008–2018). Exp Opin Ther Patents 2018;28:729–40.
  • Yamali C, Gul HI, Sakagami H, Supuran CT. Synthesis and bioactivities of halogen bearing phenolic chalcones and their corresponding bis Mannich bases. J Enzyme Inhib Med Chem 2016;31:125–31.
  • Yamali C, Gul HI, Ece A, et al. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem Biol Drug Design 2018;91:854–66.
  • Gencer N, Bilen C, Demir D, et al. In vitro inhibition effect of some chalcones on erythrocyte carbonic anhydrase I and II. Artif Cell Nanomed Biotechnol 2013;41:384–8.
  • Stellenboom N. Comparison of the inhibitory potential towards carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase of chalcone and chalcone epoxide. J Biochem Mol Toxicol 2019;33:e22240.
  • Tutar U, Koçyiğit ÜM, Gezegen H. Evaluation of antimicrobial, antibiofilm and carbonic anhydrase inhibition profiles of 1, 3‐bis‐chalcone derivatives. J Biochem Mol Toxicol 2019;33:e22281.
  • Burmaoglu S, Yilmaz AO, Polat MF, et al. Synthesis of novel tris-chalcones and determination of their inhibition profiles against some metabolic enzymes. Arch Physiol Biochem 2019;1–9. DOI: 10.1080/13813455.2019.1623265.
  • Kantoh K, Ono M, Nakamura Y, et al. Hormetic and anti-radiation effects of tropolone-related compounds. In Vivo 2010;24:843–51.
  • Tugrak M, Yamali C, Sakagami H, Gul HI. Synthesis of mono Mannich bases of 2-(4-hydroxybenzylidene)-2, 3-dihydroinden-1-one and evaluation of their cytotoxicities. J Enzyme Inhib Med Chem 2016;31:818–23.
  • Unluer E, Gul HI, Demirtas A, et al. Synthesis and bioactivity studies of 1-aryl-3-(2-hydroxyethylthio)-1-propanones. J Enzyme Inhib Med Chem 2016;31:105–9.
  • Sakagami H, Uesawa Y, Masuda Y, et al. Quantitative structure-cytotoxicity relationship of newly synthesized piperic acid esters. Anticancer Res 2017;37:6161–8.
  • Gul HI, Tugrak M, Sakagami H. Synthesis of some acrylophenones with N-methylpiperazine and evaluation of their cytotoxicities. J Enzyme Inhib Med Chem 2016;31:147–51.
  • Gul HI, Tugrak M, Sakagami H, et al. Synthesis and bioactivity studies on new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides. J Enzyme Inhib Med Chem 2016;31:1619–24.
  • Gul HI, Mete E, Eren SE, et al. Designing, synthesis and bioactivities of 4-[3-(4-hydroxyphenyl)-5-aryl-4,5-dihydro-pyrazol-1-yl]benzenesulfonamides. J Enzyme Inhib Med Chem 2017;32:169–75.
  • Yamali C, Ozgun DO, Gul HI, et al. Synthesis and structure elucidation of 1-(2,5/3,5-difluorophenyl)-3-(2,3/2,4/2,5/3,4-dimethoxyphenyl)-2-propen-1-ones as anticancer agents. Med Chem Res 2017;26:2015–23.
  • Gul HI, Yamali C, Yesilyurt F, et al. Microwave-assisted synthesis and bioevaluation of new sulfonamides. J Enzyme Inhib Med Chem 2017;32:369–74.
  • Ozgun DO, Yamali C, Gul HI, et al. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J Enzyme Inhib Med Chem 2016;31:1498–501.
  • Burmaoglu S, Yilmaz AO, Taslimi P, et al. Synthesis and biological evaluation of phloroglucinol derivatives possessing α‐glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Arch Pharm 2018;351:1700314.
  • Timur I, Kocyigit UM, Dastan T, et al. In vitro cytotoxic and in vivo antitumoral activities of some aminomethyl derivatives of 2, 4‐dihydro‐3H‐1, 2, 4‐triazole‐3‐thiones – Evaluation of their acetylcholinesterase and carbonic anhydrase enzymes inhibition profiles. J Biochem Mol Toxicol 2019;33:e22239.
  • Gul HI, Tugrak M, Gul M, et al. New phenolic Mannich bases with piperazines and their bioactivities. Bioorg Chem 2019;90:103057.
  • Gul HI, Mete E, Taslimi P, et al. Synthesis, carbonic anhydrase I and II inhibition studies of the 1, 3, 5-trisubstituted-pyrazolines. J Enzyme Inhib Med Chem 2017;32:189–92.
  • Hansch C, Leo A. Substituent constants for correlation analysis in chemistry and biology. Hoboken, NJ: Wiley; 1979.