5,052
Views
52
CrossRef citations to date
0
Altmetric
Short Communication

Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site

, , , , &
Pages 139-144 | Received 17 Aug 2019, Accepted 29 Oct 2019, Published online: 14 Nov 2019

References

  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004;4:253–65.
  • Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9:790–803.
  • Kaur R, Kaur G, Gill RK, et al. Recent developments in tubulin polymerization inhibitors: an overview. Eur J Med Chem 2014;87:89–124.
  • Li Q, Sham HL. Discovery and development of antimitotic agents that inhibit tubulin polymerisation for the treatment of cancer. Expert Opin Ther Pat 2002;12:1663–702.
  • Shi Q, Chen K, Morris-Natschke SL, Lee KH. Recent progress in the development of tubulin inhibitors as antimitotic antitumor agents. Curr Pharm Des 1998;4:219–48.
  • Jordan A, Hadfield JA, Lawrence NJ, McGown AT. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 1998;18:259–96.
  • Bukhari SNA, Jasamai M, Jantan I. Synthesis and biological evaluation of chalcone derivatives (mini review). Mini Rev Med Chem 2012;12:1394–403.
  • Gomes MN, Muratov EN, Pereira M, et al. Chalcone derivatives: promising starting points for drug design. Molecules 2017;22:1210.
  • Zhuang CL, Zhang W, Sheng CQ, et al. Chalcone: a privileged structure in medicinal chemistry. Chem Rev 2017;117:7762–810.
  • Mirzaei H, Emami S. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: synthesis and biological activity. Eur J Med Chem 2016;121:610–39.
  • Mahapatra DM, Bharti SK, Asati V. Anti-cancer chalcones: structural and molecular target perspectives. Eur J Med Chem 2015;98:69–114.
  • Sharma R, Kumar R, Kodwani R, et al. A review on mechanisms of anti tumor activity of chalcones. Anticancer Agents Med Chem 2015;16:200–11.
  • Loa J, Chow P, Zhang K. Studies of structure-activity relationship on plant polyphenol-induced suppression of human liver cancer cells. Cancer Chemother Pharmacol 2009;63:1007–16.
  • Lee JM, Lee MS, Koh D, et al. A new synthetic 2′-hydroxy-2,4,6-trimethoxy-5′,6′-naphthochalcone induces g2/m cell cycle arrest and apoptosis by disrupting the microtubular network of human colon cancer cells. Cancer Lett 2014;354:348–54.
  • Pouget C, Lauthier F, Simon A, et al. Flavonoids: structural requirements for antiproliferative activity on breast cancer cells. Bioorg Med Chem Lett 2001;11:3095–7.
  • Shin SY, Kim JH, Yoon H, et al. Novel antimitotic activity of 2-hydroxy-4-methoxy-2′,3′-benzochalcone (hymnpro) through the inhibition of tubulin polymerization. J Agric Food Chem 2013;61:12588–97.
  • Singh P, Raj R, Kumar V, et al. 1,2,3-triazole tethered beta-lactam-chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur J Med Chem 2012;47:594–600.
  • Li L, Jiang SB, Li XX, et al. Recent advances in trimethoxyphenyl (tmp) based tubulin inhibitors targeting the colchicine binding site. Eur J Med Chem 2018;151:482–94.
  • Lindamulage IK, Vu HY, Karthikeyan C, et al. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and mrp1 function. Sci Rep 2017;7:10298.
  • Konieczny MT, Bulakowska A, Pirska D, et al. Influence of s-oxidation on cytotoxic activity of oxathiole-fused chalcones. Chem Biol Drug Des 2016;88:519–33.
  • Konieczny MT, Bulakowska A, Polak J, et al. Structural factors affecting cytotoxic activity of (e)-1-(benzo d 1,3 oxathiol-6-yl)-3-phenylprop-2-en-1-one derivatives. Chem Biol Drug Des 2014;84:86–91.
  • Tu HY, Huang AM, Hour TC, et al. Synthesis and biological evaluation of 2′,5′-dimethoxychalcone derivatives as microtubule-targeted anticancer agents. Bioorg Med Chem 2010;18:2089–98.
  • Konieczny MT, Buɬakowska A, Pirska D, et al. Structural factors affecting affinity of cytotoxic oxathiole-fused chalcones toward tubulin. Eur J Med Chem 2015;89:733–42.
  • Ji YT, Liu YN, Liu ZP. Tubulin colchicine binding site inhibitors as vascular disrupting agents in clinical developments. Curr Med Chem 2015;22:1348–60.
  • Zhou ZZ, Shi XD, Feng HF, et al. Discovery of 9h-purins as potential tubulin polymerization inhibitors: synthesis, biological evaluation and structure activity relationships. Eur J Med Chem 2017;138:1126–34.
  • Wang G, Li C, He L, et al. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg Med Chem 2014;22:2060–79.
  • Ettari R, Pallio G, Pizzino G, et al. Non-covalent immunoproteasome inhibitors induce cell cycle arrest in multiple myeloma mm.1r cells. J Enzyme Inhib Med Chem 2019;34:1307–13.
  • Trott O, Olson AJ. Software news and update autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61.