1,994
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis, in vitro screening and molecular docking of isoquinolinium-5-carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 478-488 | Received 01 Jul 2019, Accepted 24 Dec 2019, Published online: 07 Jan 2020

References

  • Starke K. Presynaptic receptors. Annu Rev Pharmacol Toxicol 1981;21:7–30.
  • Dolezal R, Korabecny J, Malinak D, et al. Ligand-based 3D QSAR analysis of reactivation potency of mono-and bis-pyridinium aldoximes toward VX-inhibited rat acetylcholinesterase. J Mol Graph 2015;56:113–29.
  • Moshiri M, Darchini-Maragheh E, Balali-Mood M. Advances in toxicology and medical treatment of chemical warfare nerve agents. Daru 2012;20:81.
  • Musilek K, Dolezal M, Gunn‐Moore F, et al. Design, evaluation and structure—Activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med Res Rev 2011;31:548–75.
  • Watson A, Opresko D, Young RA, et al. Organophosphate nerve agents. Handbook of toxicology of chemical warfare agents. 2nd ed. London: Handbook of Toxicology of Chemical Warfare Agents; 2009.
  • Žunec S, Radić B, Kuča K, et al. Comparative determination of the efficacy of bispyridinium oximes in paraoxon poisoning/Usporedno određivanje učinkovitosti bispiridinijevih oksima pri trovanju paraoksonom. Arh Hig Rada Toksikol 2015;66:129–34.
  • Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol Clin Toxicol 2002;40:803–16.
  • Gorecki L, Korabecny J, Musilek K, et al. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch Toxicol 2016;90:2831–59.
  • Sharma R, Gupta B, Singh N, et al. Development and structural modifications of cholinesterase reactivators against chemical warfare agents in last decade: a review. Mini-Rev Med Chem 2015;15:58–72.
  • Kassa J, Misik J, Karasova JZ. A comparison of the potency of a novel bispyridinium oxime K203 and currently available oximes (obidoxime, HI‐6) to counteract the acute neurotoxicity of sarin in rats. Basic Clin Pharmacol Toxicol 2012;111:333–8.
  • Musilova L, Kuca K, Jung Y-S, et al. In vitro oxime-assisted reactivation of paraoxon-inhibited human acetylcholinesterase and butyrylcholinesterase. Clin Toxicol 2009;47:545–50.
  • Gorecki L, Andrys R, Schmidt M, et al. Cysteine-targeted insecticides against A. gambiae acetyl-cholinesterase are neither selective nor reversible inhibitors. ACS Med Chem Lett in press. doi: 10.1021/acsmedchemlett.9b00477
  • Ellman GL, Courtney KD, Jr, Andres V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.
  • Worek F, Thiermann H, Szinicz L, et al. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem Pharmacol 2004;68:2237–48.
  • Worek F, Wille T, Aurbek N, et al. Reactivation of organophosphate-inhibited human, Cynomolgus monkey, swine and guinea pig acetylcholinesterase by MMB-4: a modified kinetic approach. Toxicol Appl Pharmacol 2010;249:231–7.
  • Worek F, von der Wellen J, Musilek K, et al. Reactivation kinetics of a homologous series of bispyridinium bis-oximes with nerve agent-inhibited human acetylcholinesterase. Arch Toxicol 2012;86:1379–86.
  • Musilek K, Komloova M, Holas O, et al. Preparation and in vitro screening of symmetrical bis-isoquinolinium cholinesterase inhibitors bearing various connecting linkage–implications for early Myasthenia gravis treatment. Eur J Med Chem 2011;46:811–8.
  • Zorbaz T, Malinak D, Maraković N, et al. Pyridinium oximes with ortho-positioned chlorine moiety exhibit improved physicochemical properties and efficient reactivation of human acetylcholinesterase inhibited by several nerve agents. J Med Chem 2018;61:10753–66.
  • Chennamaneni SR, Vobalaboina V, Garlapati A. Quaternary salts of 4, 3′ and 4, 4′ bis-pyridinium monooximes: synthesis and biological activity. Bioorg Med Chem Lett 2005;15:3076–80.
  • Sussman JL, Harel M, Frolow F, et al. Atomic-structure of acetylcholinesterase from torpedo-californica – A prototypic acetylcholine-binding protein. Science 1991;253:872–9.
  • Bajda M, Więckowska A, Hebda M, et al. Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 2013;14:5608–32.
  • Bajgar J, Fusek J, Kuca K, et al. Treatment of organophosphate intoxication using cholinesterase reactivators: facts and fiction. Mini-Rev Med Chem 2007;7:461–6.
  • Kovarik Z, Katalinić M, Šinko G, et al. Pseudo-catalytic scavenging: searching for a suitable reactivator of phosphorylated butyrylcholinesterase. Chem-Biol Interact 2010;187:167–71.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61.
  • Allgardsson A, Berg L, Akfur C, et al. Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6. Proc Natl Acad Sci USA 2016;113:5514–9.
  • Gorecki L, Soukup O, Kucera T, et al. Oxime K203: a drug candidate for the treatment of tabun intoxication. Arch Toxicol 2019;93:673–91.
  • Zhang YK, Kua J, McCammon JA. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J Am Chem Soc 2002;124:10572–7.
  • Driant T, Nachon F, Ollivier C, et al. On the influence of the protonation states of active site residues on AChE reactivation: a QM/MM approach. ChemBioChem 2017;18:666–75.
  • Giacoppo JOS, Franca TCC, Kuca K, et al. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J Biomol Struct Dyn 2015;33:2048–58.