2,039
Views
21
CrossRef citations to date
0
Altmetric
Research Paper

Coumarins from Magydaris pastinacea as inhibitors of the tumour-associated carbonic anhydrases IX and XII: isolation, biological studies and in silico evaluation

, ORCID Icon, ORCID Icon, , ORCID Icon, , , , , , ORCID Icon, ORCID Icon & show all
Pages 539-548 | Received 12 Dec 2019, Accepted 04 Jan 2020, Published online: 17 Jan 2020

References

  • Kashman Y, Gustafson KR, Fuller RW, et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 1992;35:2735–43.
  • Sugino A, Higgins NP, Brown PO, et al. Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Proc Natl Acad Sci USA 1978;75:4838–42.
  • Kostova I. Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem Anticancer Agents 2005;5:25–46.
  • Pinto D, Silva A. Anticancer natural coumarins as lead compounds for the discovery of new drugs. Curr Top Med Chem 2017;17:3190–8.
  • Timson DJ. Dicoumarol: a drug which hits at least two very different targets in vitamin K metabolism. Curr Drug Targets 2017;18:500–10.
  • Kostova I. Synthetic and natural coumarins as antioxidants. Mini-Rev Med Chem 2006;6:365–74.
  • Kirsch G, Abdelwahab AB, Chaimbault P. Natural and synthetic coumarins with effects on inflammation. Molecules 2016;21:e1322.
  • (a) Maresca A, Temperini C, Vu H, et al. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc 2009;131:3057–62. (b) Maresca A, Temperini C, Pochet L, et al. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem 2010;53:335–44. (c) Temperini C, Innocenti A, Scozzafava A, et al. The coumarin-binding site in carbonic anhydrase accommodates structurally diverse inhibitors: the antiepileptic lacosamide as an example. J Med Chem 2010;53:850–4. (d) Touisni N, Maresca A, McDonald PC, et al. Glycosylcoumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J Med Chem 2011;54:8271–7.
  • Supuran CT, Alterio V, Di Fiore A, et al. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med Res Rev 2018;38:1799–836.
  • Supuran CT, Altamimi ASA, Carta F. Carbonic anhydrase inhibition and the management of glaucoma: a literature and patent review 2013–2019. Exp Opin Ther Patents 2019;29:781–92.
  • Thiry A, Dogné JM, Supuran CT, et al. Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem 2007;7:855–64.
  • De Simone G, Supuran CT. Antiobesity carbonic anhydrase inhibitors. Curr Topics Med Chem 2007;7:879–84.
  • Masini E, Carta F, Scozzafava A, et al. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Exp Opin Ther Patents 2013;23:705–16.
  • Aggarwal M, Kondeti B, McKenna R. Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: a patent review. Exp Opin Ther Patents 2013;23:717–24.
  • Lou Y, McDonald PC, Oloumi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 2011;71:3364–76.
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77.
  • Davis RA, Vullo D, Maresca A, et al. Natural product coumarins that inhibit human carbonic anhydrases. Bioorg Med Chem 2013;21:1539–43.
  • De Luca L, Mancuso F, Ferro S, et al. Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases. Eur J Med Chem 2018;143:276–82.
  • Ruiu S, Anzani A, Orrù A, et al. Methoxyflavones from Stachys glutinosa with binding affinity to opioid receptors: in silico, in vitro, and in vivo studies. J Nat Prod 2015;78:69–76.
  • Fois B, Bianco G, Sonar VP, et al. Phenylpropenoids from Bupleurum fruticosum as anti-human rhinovirus species A selective capsid binders. J Nat Prod 2017;80:2799–806.
  • Cerri R, Pintore G, Dessi G, et al. Isolation, characterization and pharmacological activity of Magydaris pastinacea (Lam) Paol. glucosides. Farmaco 1995; 50:841–8.
  • Rosselli S, Maggio A, Bellone G, et al. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med 2007;73:116–20.
  • Autore G, Marzocco S, Formisano C, et al. Cytotoxic activity and composition of petroleum ether extract from Magydaris tomentosa (Desf.) W. D. J. Koch (Apiaceae). Molecules 2015;20:1571–8.
  • Elgamal MHA, Shalaby NMN, Duddeck H, et al. Coumarins and coumarin glucosides from the fruits of Ammi majus. Phytochemistry 1993; 34:819–23.
  • Mohamadi F, Richards NG, Guida WC, et al. MacroModel-an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 1990;11:440–67.
  • Halgren TA. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 1996;17:520–52.
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000;33:889–97.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucl Acids Res 2000;28:235–42.
  • Leitans J, Kazaks A, Balode A, et al. Efficient expression and crystallization system of cancer-associated carbonic anhydrase isoform IX. J Med Chem 2015;58:9004–9.
  • Jorgensen WL. OPLS force fields. In: von Rague Schleyer P, ed. Encyclopedia of computational chemistry. Vol 3. Wiley: Chichester; 1998:1986–1989.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. J Biol Chem 1971;246:2561–73.
  • (a) Bua S, Bozdag M, Del Prete S, et al. Mono- and di-thiocarbamate inhibition studies of the δ-carbonic anhydrase TweCAδ from the marine diatom Thalassiosira weissflogii. J Enzyme Inhib Med Chem 2018;33:707–13. (b) Ferraroni M, Gaspari R, Scozzafava A, et al. Dioxygen, an unexpected carbonic anhydrase ligand. J Enzyme Inhib Med Chem 2018;33:999–1005. (c) El-Gazzar MG, Nafie NH, Nocentini A, et al. Carbonic anhydrase inhibition with a series of novel benzenesulfonamide-triazole conjugates. J Enzyme Inhib Med Chem 2018;33:1565–74. (d) Akocak S, Lolak N, Bua S, Supuran CT. Discovery of novel 1,3-diaryltriazene sulfonamides as carbonic anhydrase I, II, VII, and IX inhibitors. J Enzyme Inhib Med Chem 2018; 33:1575–80.
  • (a) Nocentini A, Bonardi A, Gratteri P, et al. Steroids interfere with human carbonic anhydrase activity by using alternative binding mechanisms. J Enzyme Inhib Med Chem 2018;33:1453–9. (b) Nocentini A, Trallori E, Singh S, et al. 4-Hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII showing hypoxia-enhanced antiproliferative profiles. J Med Chem 2018;61:10860–74. (c) Oztürk Sarikaya SB, Topal F, Sentürk M, et al. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg Med Chem Lett 2011;21:4259–62.
  • (a) Awadallah FM, Bua S, Mahmoud WR, et al. Inhibition studies on a panel of human carbonic anhydrases with N1-substituted secondary sulfonamides incorporating thiazolinone or imidazolone-indole tails. J Enzyme Inhib Med Chem 2018;33:629–38. (b) Supuran CT, Clare BW. Carbonic anhydrase inhibitors. Part 57. Quantum chemical QSAR of a group of 1,3,4-thiadiazole and 1,3,4-thiadiazoline disulfonamides with carbonic anhydrase inhibitory properties. Eur J Med Chem 1999;34:41–50. (c) Supuran CT, Ilies MA, Scozzafava A. Carbonic anhydrase inhibitors. Part 29. Interaction of isozymes I, II and IV with benzolamide-like derivatives. Eur J Med Chem 1998;33:739–52. (d) Sentürk M, Gülçin I, Daştan A, et al. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg Med Chem 2009;17:3207–11.
  • Rosa A, Atzeri A, Nieddu M, et al. New insights into the antioxidant activity and cytotoxicity of arzanol and effect of methylation on its biological properties. Chem Phys Lipids 2017;205:55–64.
  • Snatzke G. Circulardichroismus-X: modifizierung der octantenregel für α,β-ungesättigte ketone: cisoide enone, dienone und arylketone. Tetrahedron 1965;21:439–48.
  • Lin S, Zhang Y, Liu M, et al. Abietane and C20-norabietane diterpenes from the stem bark of Fraxinus sieboldiana and their biological activities. J Nat Prod 2010;73:1914–21.
  • Atta-Ur-Rahman Sultana N, Khan MR, et al. Triterpene and coumarins from Skimmia laureola. Nat Prod Lett 2002;16:305–13.
  • Boyd DR, Sharma ND, Loke PL, et al. Absolute configuration assignment and enantiopurity determination of chiral alkaloids and coumarins derived from O- and C-prenyl epoxides. Chem Commun 2002;21:3070–1.
  • Trani MC, Carbonetti A, Delle Monache G, et al. Dihydrochalcones and coumarins of Esenbeckia grandiflora subsp. brevipetiolata. Fitoterapia 2004;75:99–102.
  • Kikuchi T, Yokoi T, Umemoto K, et al. Constituents of Scaevola frutescens (Miller) Krause. Yakugaku Zasshi 1974;94:1616–9.
  • Yoo SW, Kim JS, Kang SS, et al. Constituents of the fruits and leaves of Euodia daniellii. Arch Pharm Res 2002;25:824–30.
  • Bergendorff O, Dekermendjian K, Nielsen M, et al. Furanocoumarins with affinity to brain benzodiazepine receptors in vitro. Phytochemistry 1997;44:1121–4.
  • Abou-Elzahab MM, Adam W, Saha-Möller CR. Synthesis of furocoumarin-type potential intercalative alkylating and oxidizing agents of DNA through dimethyldioxirane epoxidation of imperatorin and its derivatives. Liebigs Annalen der Chemie 1992;1992:731–3.
  • Thongthoom T, Songsiang U, Phaosiri C, Yenjai C. Biological activity of chemical constituents from Clausena harmandiana. Arch Pharm Res 2010;33:675–80.
  • Yan R, Shen J, Liu X, et al. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography. J Sep Sci 2018;41:2092–101.
  • Lv X, Xin X-L, Deng S, et al. Biotransformation of osthole by Mucor spinosus. Process Biochem 2012;47:2542–6.
  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhibit Med Chem 2016;31:345–60.
  • Melis C, Distinto S, Bianco G, et al. Targeting tumor associated carbonic anhydrases IX and XII: highly isozyme selective coumarin and psoralen inhibitors. ACS Med Chem Lett 2018;9:725–9.
  • Rashidi M, Ahmadzadeh A, Ziai SA, et al. Evaluating cytotoxic effect of nanoliposomes encapsulated with umbelliprenin on 4T1 cell line. In Vitro Cell Dev Biol-Anim 2017;53:7–11.
  • Hasan M, Genovese S, Fiorito S, et al. Oxyprenylated phenylpropanoids bind to MT1 melatonin receptors and inhibit breast cancer cell proliferation and migration. J Nat Prod 2017;80:3324–9.
  • Rashidi M, Khalilnezhad A, Amani D, et al. Umbelliprenin shows antitumor, antiangiogenesis, antimetastatic, anti-inflammatory, and immunostimulatory activities in 4T1 tumor-bearing Balb/c mice. J Cell Physiol 2018;233:8908–18.
  • Zhang L, Sun X, Si J, et al. Umbelliprenin isolated from Ferula sinkiangensis inhibits tumor growth and migration through the disturbance of Wnt signaling pathway in gastric cancer. PloSOne 2019;14:e0207169.
  • Farooq S, Shakeel U, Rehman Dangroo NA, et al. Isolation, cytotoxicity evaluation and HPLC-quantification of the chemical constituents from Prangos pabularia. PlosOne 2014; 9:e108713.
  • Hitotsuyanagi Y, Kojima H, lkuta Yukio H, et al. Identification and structure-activity relationship studies of osthol, a cytotoxic principle from Cnidium monnieri. Bioorgan Med Chem Lett 1996;6:1791–4.