1,166
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

The structural basis for the selectivity of sulfonamido dicarbaboranes toward cancer-associated carbonic anhydrase IX

ORCID Icon, , ORCID Icon, , , , , , , ORCID Icon & ORCID Icon show all
Pages 1800-1810 | Received 22 May 2020, Accepted 21 Aug 2020, Published online: 23 Sep 2020

References

  • Supuran CT. Carbonic anhydrases as drug targets. Current Pharm Des 2008;14:601–2.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.
  • Pastorekova S, Parkkila S, Parkkila AK, et al. Carbonic anhydrase IX, MN/CA IX: Analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 1997;112:398–408.
  • Mahon BP, Pinard MA, McKenna R. Targeting carbonic anhydrase IX activity and expression. Molecules 2015;20:2323–48.
  • Warburg O. On respiratory impairment in cancer cells. Science 1956;124:269–70.
  • Moulder JE, Rockwell S. Tumor hypoxia: Its impact on cancer therapy. Cancer Metastasis Rev 1987;5:313–41.
  • Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266–76.
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77.
  • Peskin BS, Carter MJ. Chronic cellular hypoxia as the prime cause of cancer: What is the de-oxygenating role of adulterated and improper ratios of polyunsaturated fatty acids when incorporated into cell membranes? Med Hypotheses 2008;70:298–304.
  • Sadri N, Zhang PJ. Hypoxia-inducible factors: Mediators of cancer progression; prognostic and therapeutic targets in soft tissue sarcomas. Cancers (Basel) 2013;5:320–33.
  • Lou YM, McDonald PC, Oloumi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 2011;71:3364–76.
  • Ward C, Meehan J, Mullen P, Supuran C, et al. Evaluation of carbonic anhydrase IX as a therapeutic target for inhibition of breast cancer invasion and metastasis using a series of in vitro breast cancer models. Oncotarget 2015;6:24856–70.
  • Parks SK, Cormerais Y, Pouyssegur J. Hypoxia and cellular metabolism in tumour pathophysiology. J Physiol (Lond) 2017;595:2439–50.
  • De Simone G, Alterio V, Supuran CT. Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. Exp Opin Drug Discov 2013;8:793–810.
  • Pinard MA, Mahon B, McKenna R. Probing the surface of human carbonic anhydrase for clues towards the design of isoform specific inhibitors. Biomed Res Int 2015;2015:453543.
  • Aggarwal M, McKenna R. Update on carbonic anhydrase inhibitors: a patent review (2008 - 2011). Expert Opin Ther Pat 2012;22:903–15.
  • Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhibit Med Chem 2012;27:759–72.
  • Lomelino CL, Supuran CT, McKenna R. Non-classical inhibition of carbonic anhydrase. Int J Mol Sci 2016;17:1150.
  • Hou Z, Lin B, Bao Y, et al. Dual-tail approach to discovery of novel carbonic anhydrase IX inhibitors by simultaneously matching the hydrophobic and hydrophilic halves of the active site. Eur J Med Chem 2017;132:1–10.
  • Yang J, Koruza K, Fisher Z, et al. Improved molecular recognition of carbonic anhydrase IX by polypeptide conjugation to acetazolamide. Bioorg Med Chem 2017;25:5838–48.
  • Brynda J, Mader P, Šícha V, et al. Carborane-based carbonic anhydrase inhibitors. Angew Chem Int Ed Engl 2013;52:13760–3.
  • Grüner B, Brynda J, Das V, et al. Metallacarborane sulfamides: unconventional, specific, and highly selective inhibitors of carbonic anhydrase IX. J Med Chem 2019;62:9560–75.
  • Grimes RN. Carboranes. 2nd ed. London- Amsterdam- Burlington- San Diego- Oxford: Academic Press Publications (Elsevier, Inc.); 2011.
  • Lesnikowski ZJ. Challenges and opportunities for the application of boron clusters in drug design. J Med Chem 2016;59:7738–58.
  • Grimes RN. Boron clusters come of age. J Chem Educ 2004;81:657–72.
  • Valliant JF, Guenther KJ, King AS, et al. The medicinal chemistry of carboranes. Coordination Chem Rev 2002;232:173–230.
  • Lesnikowski ZJ. Boron units as pharmacophores - new applications and opportunities of boron cluster chemistry. Collection Czech Chem Commun 2007;72:1646–58.
  • Sivaev IB, Bregadze VI. Polyhedral boranes for medical applications: current status and perspectives. Eur J Inorg Chem 2009;2009:1433–50.
  • Satapathy R, Dash BP, Maguire JA, Hosmane NS. New developments in the medicinal chemistry of carboranes. Collection Czech Chem Commun 2010;75:995–1022.
  • Issa F, Kassiou M, Rendina M. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem Rev 2011;111:5701–22.
  • Scholz M, Hey-Hawkins E. Carbaboranes as pharmacophores: properties, synthesis, and application strategies. Chem Rev 2011;111:7035–62.
  • Frank R, Ahrens VM, Boehnke S, et al. Charge-compensated metallacarborane building blocks for conjugation with peptides. Chembiochem 2016;17:308–17.
  • Bregadze VI, Glazun SA. Metal containing carboranes with antitumor activity. Russ Chem Bull Intl Ed 2007;56:643–59.
  • Sibrian-Vazquez M, Hao E, Jensen TJ, Vicente MGH. Enhanced cellular uptake with a cobaltacarborane-porphyrin-HIV-1 Tat 48-60 conjugate. Bioconjug Chem 2006;17:928–34.
  • Dvořanová J, Kugler M, Holub J, et al. Sulfonamido carboranes as highly selective inhibitors of cancer specific carbonic anhydrase IX. Eur J Med Chem 2020;200:112460. [Accepted 11 May 2020].
  • Pace RJ, Williams J, Williams R4. Boron hydride derivatives. Part VII. The characterisation of some decaborane derivatives of the type, b10h12,2m. J Chem Soc (Resumed) 1961;2196–204.
  • Pinard MA, Boone CD, Rife BD, et al. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases. Bioorg Med Chem 2013;21:7210–5.
  • Pospíšilová K, Knedlík T, Šácha P, et al. Inhibitor–polymer conjugates as a versatile tool for detection and visualization of cancer-associated carbonic anhydrase isoforms. ACS Omega 2019;4:6746–56.
  • Khalifah RG. Carbon dioxide hydration activity of carbonic anhydrase.1. Stop-flow kinetic studies on native human isoenzyme-b and isoenzyme-c. J Biol Chem 1971;246:2561–73.
  • Morrisson JWM, Williams JF. The kinetics of reversible tight-binding inhibition. Methods Enzymol 1979;63:437–67.
  • Williams JW, Morrison JF. The kinetics of reversible tight-binding inhibition. In: Purich DE, ed. Methods in enzymology. Amsterdam, Netherlands: Elsevier; 1979;63: 437−67.
  • Yung-Chi C, Prusoff WH. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 1973;22:3099–108.
  • Innocenti A, Scozzafava A, Parkkila S, et al. Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Bioorgan Med Chem Lett 2008;18:2267–71.
  • Hilvo M, Baranauskiene L, Salzano AM, et al. Biochemical characterization of ca IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 2008;283:27799–809.
  • Mueller U, Förster R, Hellmig M, et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. Eur Phys J Plus 2015;130:141.
  • Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr 2010;66:125–32.
  • Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol Crystallogr 2010;66:133–44.
  • Mader P, Brynda J, Gitto R, et al. Structural basis for the interaction between carbonic anhydrase and 1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamides. J Med Chem 2011;54:2522–6.
  • Ahlrichs R, Bär M, Häser M, et al. Electronic structure calculations on workstation computers: the program system Turbomole. Chem Phys Lett 1989;162:165–9.
  • Jurecka P, Cerny J, Hobza P, Salahub DR. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J Comput Chem 2007;28:555–69.
  • Vagin AA, Murshudov GN, Strokopytov BV. Blanc: the program suite for protein crystallography. J Appl Crystallogr 1998;31:98–102.
  • Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004;60:2126–32.
  • Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997;53:240–55.
  • Chen VB, Arendall WB, 3rd, Headd JJ, et al. Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010;66:12–21.
  • Schrodinger LLC. (New York, USA) The Pymol molecular graphics system, version 1.8. In: The Pymol molecular graphics system, version 1.8; November; 2015.
  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011;67:235–42.
  • Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007;372:774–97.
  • Mujumdar P, Teruya K, Tonissen KF, et al. An unusual natural product primary sulfonamide: synthesis, carbonic anhydrase inhibition, and protein X-ray structures of psammaplin c. J Med Chem 2016;59:5462–70.
  • Eriksson AE, Kylsten PM, Jones TA, Liljas A. Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: a pentacoordinated binding of the SCN- ion to the zinc at high pH. Proteins: Struct Funct Bioinform 1988;4:283–93.
  • Mahon BP, Lomelino CL, Ladwig J, et al. Mapping selective inhibition of the cancer-related carbonic anhydrase IX using structure-activity relationships of glucosyl-based sulfamates. J Med Chem 2015;58:6630–8.
  • Bhatt A, Mahon BP, Cruzeiro VWD, et al. Structure-activity relationships of benzenesulfonamide-based inhibitors towards carbonic anhydrase isoform specificity. ChemBioChem 2017;18:213–22.