1,250
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Design, synthesis, and evaluation of novel N'-substituted-1-(4-chlorobenzyl)-1H-indol-3-carbohydrazides as antitumor agents

, , ORCID Icon, , , , , , , ORCID Icon, , & ORCID Icon show all
Pages 1854-1865 | Received 01 Jun 2020, Accepted 21 Aug 2020, Published online: 28 Sep 2020

References

  • Khazaei S, Rezaeian S, Soheylizad M, et al. Global incidence and mortality rates of stomach cancer and the human development index: an ecological study. Asian Pac J Cancer Prev 2016;17:1701–4.
  • Storey S. Targeting apoptosis: selected anticancer strategies. Nat Rev Drug Discov 2008;7:971–2.
  • Nguyen-Hai N, Keykavous P. Current targets for anticancer drug discovery. Curr Drug Targets 2003;4:159–79.
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495–516.
  • Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 2001;276:7320–6.
  • Krepela E, Procházka J, Liu X, et al. Increased expression of Apaf-1 and procaspase-3 and the functionality of intrinsic apoptosis apparatus in non-small cell lung carcinoma. Biol Chem 2004;385:153–68.
  • Fink D, Schlagbauer-Wadl H, Selzer E, et al. Elevated procaspase levels in human melanoma. Melanoma Res 2001;11:385–93.
  • Persad R, Liu C, Wu T-T, et al. Overexpression of caspase-3 in hepatocellular carcinomas. Mod Pathol 2004;17:861–7.
  • O’Donovan N, Crown J, Stunell H, et al. Caspase 3 in breast cancer. Clin Cancer Res 2003;9:738.
  • Izban KF, Wrone-Smith T, Hsi ED, et al. Characterization of the interleukin-1beta-converting enzyme/Ced-3-family protease, caspase-3/CPP32, in Hodgkin’s disease: lack of caspase-3 expression in nodular lymphocyte predominance Hodgkin’s disease. Am J Pathol 1999;154:1439–47.
  • Putt KS, Chen GW, Pearson JM, et al. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat Chem Biol 2006;2:543–50.
  • Patrick H, Murli M, Natasha K. Targeting caspases in cancer therapeutics. Biol Chem 2013;394:831–43.
  • Howard SR, Paul JH. Derivatives of procaspase-activating compound 1 (PAC-1) and their anticancer activities. Curr Med Chem 2016;23:201–41.
  • Huan LC, Phuong CV, Truc LC, et al. (E)-N′-Arylidene-2-(4-oxoquinazolin-4(3H)-yl) acetohydrazides: synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. J Enzyme Inhib Med Chem 2019;34:465–78.
  • Huan LC, Truc LC, Phuong CV, et al. N′-[(E)-arylidene]-2-(2,3-dihydro-3-oxo-4H-1,4-benzoxazin-4-yl)-acetohydrazides: synthesis and evaluation of caspase activation activity and cytotoxicity. Chem Biodivers 2018;15:e1800322.
  • Huan LC, Tran P-T, Phuong CV, et al. Novel 3,4-dihydro-4-oxoquinazoline-based acetohydrazides: design, synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. Bioorg Chem 2019;92:103202.
  • Huan LC, Anh DT, Truong BX, et al. New acetohydrazides incorporating 2-oxoindoline and 4-oxoquinazoline: synthesis and evaluation of cytotoxicity and caspase activation activity. Chem Biodivers 2020;17:e1900670.
  • Hsu DC, Roth HS, West DC, et al. Parallel synthesis and biological evaluation of 837 analogues of procaspase-activating compound 1 (PAC-1). ACS Comb Sci 2012;14:44–50.
  • Guo W, Wu S, Liu J, Fang B. Identification of a small molecule with synthetic lethality for K-Ras and protein kinase C Iota. Cancer Res 2008;68:7403–8.
  • Guo W, Wu S, Wang L, et al. Antitumor activity of a novel oncrasin analogue is mediated by JNK activation and STAT3 inhibition. PLoS One 2011;6:e28487.
  • Wu S, Wang L, Guo W, et al. Analogues and derivatives of oncrasin-1, a novel inhibitor of the C-terminal domain of RNA polymerase II and their antitumor activities. J Med Chem 2011;54:2668–79.
  • Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI 1990;82:1107–12.
  • Nam NH, Huong TL, Dung DTM, et al. Synthesis, bioevaluation and docking study of 5-substitutedphenyl-1,3,4-thiadiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. J Enzyme Inhib Med Chem 2014;29:611–8.
  • Nam NH, Pitts RL, Sun S, et al. Design of tetrapeptide ligands as inhibitors of the Src SH2 domain. Bioorg Med Chem 2004;12:779–87.
  • Nam NH, Hong DH, You YJ, et al. Synthesis and cytotoxicity of 2,5-dihydroxychalcones and related compounds. Arch Pharm Res 2004;27:581–8.
  • Min BS, Kim JH, Na MK, et al. Furo-1,2-naphthoquinones from Crataegus pinnatifida with ICAM-1 expression inhibition activity. Planta Med 2004;70:1166–9.
  • Wu L, Smythe AM, Stinson SF, et al. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res 1992;52:3029–34.
  • Molecular Operating Environment (MOE). 2009.10. Montreal, Canada: Chemical Computing Group ULC; 2009.
  • Velázquez-Delgado EM, Hardy JA. Zinc-mediated allosteric inhibition of caspase-6. J Biol Chem 2012;287:36000–11.
  • Peterson QP, Goode DR, West DC, et al. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J Mol Biol 2009;388:144–58.
  • Patel V, Balakrishnan K, Keating MJ, et al. Expression of executioner procaspases and their activation by a procaspase-activating compound in chronic lymphocytic leukemia cells. Blood 2015;125:1126–36.
  • Wang F, Liu Y, Wang L, et al. Targeting procaspase-3 with WF-208, a novel PAC-1 derivative, causes selective cancer cell apoptosis. J Cell Mol Med 2015;19:1916–28.