2,232
Views
1
CrossRef citations to date
0
Altmetric
Review Article

The possible role of methylglyoxal metabolism in cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2010-2015 | Received 24 Feb 2020, Accepted 18 Aug 2021, Published online: 13 Sep 2021

References

  • Jakubczyk K, Dec K, Kałduńska J, et al. Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski 2020;48:124–7.
  • Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr 1996;16:33–50.
  • Hayyan M, Hashim MA, AlNashef IM. Superoxide ion: generation and chemical implications. Chem Rev 2016;116:3029–85.
  • Verbon EH, Post JA, Boonstra J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 2012;511:1–6.
  • Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 2004;337:1–13.
  • Irani K, Xia Y, Zweier JL, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science (80-) 1997;275:1649–52.
  • Luanpitpong S, Talbott SJ, Rojanasakul Y, et al. Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem 2010;285:38832–40.
  • Yang H, Villani RM, Wang H, et al. The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 2018;37:266.
  • Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010;44:479–96.
  • Mattson MP. Hormesis defined. Ageing Res Rev 2008;7:1–7.
  • Alfarouk KO, Verduzco D, Rauch C, et al. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014;1:777–802.
  • Alfarouk KO, Ahmed SBM, Elliott RL, et al. The pentose phosphate pathway dynamics in cancer and its dependency on intracellular pH. Metab 2020;10:285.
  • Li Z-G. Methylglyoxal. In: plant signaling molecules. Kidlington: Elsevier; 2019. p. 219–33.
  • Bhagavan N, Ha C-E. Carbohydrate metabolism I. In: Essentials of medical biochemistry. 2nd ed. Waltham, MA: Elsevier; 2015. p. 165–85.
  • Hopper DJ, Cooper RA. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett 1971;13:213–6.
  • Huang KX, Rudolph FB, Bennett GN. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1, 2-propanediol. Appl Environ Microbiol 1999;65:3244–7.
  • Hopper DJ, Cooper RA. The purification and properties of Escherichia coli methylglyoxal synthase. Biochem J 1972;128:321–9.
  • Saadat D, Harrison DH. The crystal structure of methylglyoxal synthase from Escherichia coli. Structure 1999;7:309–17.
  • Falahati H, Pazhang M, Zareian S, et al. Transmitting the allosteric signal in methylglyoxal synthase. Protein Eng Des Sel 2013;26:445–52.
  • Marks GT, Harris TK, Massiah MA, et al. Mechanistic implications of methylglyoxal synthase complexed with phosphoglycolohydroxamic acid as observed by X-ray crystallography and NMR spectroscopy. Biochemistry 2001;40:6805–18.
  • McMurray KMJ, Distler MG, Sidhu PS, et al. Glo1 inhibitors for neuropsychiatric and anti-epileptic drug development. Biochem Soc Trans 2014;42:461–7.
  • Miyazawa N, Abe M, Souma T, et al. Methylglyoxal augments intracellular oxidative stress in human aortic endothelial cells. Free Radic Res 2010;44:101–7.
  • Allaman I, Bélanger M, Magistretti PJ. Methylglyoxal, the dark side of glycolysis. Front Neurosci 2015;9:23.
  • Talukdar D, Chaudhuri BS, Ray M, Ray S. Critical evaluation of toxic versus beneficial effects of methylglyoxal. Biochemistry 2009;74:1059–69.
  • Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 1990;269:1–11.
  • Thornalley PJ. The glyoxalase system in health and disease. Mol Aspects Med 1993;14:287–371.
  • Thornalley PJ. Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 2003;31:1343–8.
  • Mannervik B. Molecular enzymology of the glyoxalase system. Drug Metabol Drug Interact 2008;23:13–27.
  • Uotila L, Koivusalo M. Purification and properties of glyoxalase I from sheep liver. Eur J Biochem 1975;52:493–503.
  • Davidson SD, Milanesa DM, Mallouh C, Choudhury MS, et al. A possible regulatory role of glyoxalase I in cell viability of human prostate cancer. Urol Res 2002; May30:116–21.
  • Davidson SD, Cherry JP, Choudhury MS, et al. Glyoxalase I activity in human prostate cancer: a potential marker and importance in chemotherapy. J Urol 1999;161:690–1.
  • Ranganathan S, Walsh ES, Tew KD. Glyoxalase I in detoxification: studies using a glyoxalase I transfectant cell line. Biochem J 1995;309 ( Pt 1):127–31.
  • Rulli A, Carli L, Romani R, et al. Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res Treat 2001;66:67–72.
  • Kreycy N, Gotzian C, Fleming T, et al. Glyoxalase 1 expression is associated with an unfavorable prognosis of oropharyngeal squamous cell carcinoma. BMC Cancer 2017;17:382.
  • Antognelli C, Mezzasoma L, Fettucciari K, et al. Role of glyoxalase I in the proliferation and apoptosis control of human LNCaP and PC3 prostate cancer cells. Prostate 2013;73:121–32.
  • Morgenstern J, Campos Campos M, Nawroth P, Fleming T. The glyoxalase system—new insights into an ancient metabolism. Antioxidants 2020;9:939.
  • Sakamoto H, Mashima T, Kizaki A, et al. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 2000;95:3214–8.
  • Sakamoto H, Mashima T, Sato S, et al. Selective activation of apoptosis program by S-p-bromobenzylglutathione cyclopentyl diester in glyoxalase I-overexpressing human lung cancer cells. Clin Cancer Res 2001;7:2513–8.
  • Thornalley PJ, Edwards LG, Kang Y, et al. Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis. Biochem Pharmacol 1996;51:1365–72.
  • Santel T, Pflug G, Hemdan NYA, et al. Curcumin inhibits glyoxalase 1: a possible link to its anti-inflammatory and anti-tumor activity. PLoS One 2008;3:e3508.
  • Takasawa R, Takahashi S, Saeki K, et al. Structure-activity relationship of human GLO I inhibitory natural flavonoids and their growth inhibitory effects. Bioorg Med Chem 2008;16:3969–75.
  • Chiba T, Ohwada J, Sakamoto H, et al. Design and evaluation of azaindole-substituted N-hydroxypyridones as glyoxalase i inhibitors. Bioorg Med Chem Lett 2012;22:7486–9.
  • Antognelli C, Palumbo I, Aristei C, Talesa VN. Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-κB. Br J Cancer 2014;111:395–406.
  • Miller AG, Smith DG, Bhat M, Nagaraj RH. Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions. J Biol Chem 2006;281:11864–71.
  • Mearini E, Romani R, Mearini L, et al. Differing expression of enzymes of the glyoxalase system in superficial and invasive bladder carcinomas. Eur J Cancer 2002;38:1946–50.
  • Cameron AD, Ridderström M, Olin B, Mannervik B. Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Structure 1999;7:1067–78.
  • Xu Y, Chen X. Glyoxalase II, a detoxifying enzyme of glycolysis byproduct methylglyoxal and a target of p63 and p73, is a pro-survival factor of the p53 family. J Biol Chem 2006;281:26702–13.
  • Antognelli C, Baldracchini F, Talesa VN, et al. Overexpression of glyoxalase system enzymes in human kidney tumor. Cancer J 2006;12:222–8.
  • Chaiswing L, St Clair WH, St Clair DK. Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid Redox Signal 2018;29:1237–72.
  • Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol 2018;14:465–73.
  • Chang T, Wang R, Olson DJH, et al. Modification of Akt1 by methylglyoxal promotes the proliferation of vascular smooth muscle cells. Faseb J 2011;25:1746–57.
  • de Bari L, Scirè A, Minnelli C, et al. Interplay among oxidative stress, methylglyoxal pathway and s-glutathionylation. Antioxidants 2021;10:1–17.
  • Braun JD, Pastene DO, Breedijk A, et al. Methylglyoxal down-regulates the expression of cell cycle associated genes and activates the p53 pathway in human umbilical vein endothelial cells. Sci Rep 2019;9:1152–14.
  • Da Veiga Moreira J, Peres S, Steyaert J-MM, et al. Cell cycle progression is regulated by intertwined redox oscillators. Theor Biol Med Model 2015;12:10.
  • Moreira J da V, Hamraz M, Abolhassani M, et al. The redox status of cancer cells supports mechanisms behind the Warburg effect. Metabolites 2016;6:33.
  • Reiger M, Lassak J, Jung K. Deciphering the role of the type II glyoxalase isoenzyme YcbL (GlxII-2) in Escherichia coli. FEMS Microbiol Lett 2015;362:1–7.
  • Hsu YR, Norton SJ. S-carbobenzoxyglutathione: a competitive inhibitor of mammalian glyoxalase II. J Med Chem 1983;26:1784–5.
  • Al-Shar’i NA, Hassan M, Al-Balas Q, Almaaytah A. Identification of possible glyoxalase II inhibitors as anticancer agents by a customized 3D structure-based pharmacophore model. Jordan J Pharm Sci 2015;8:83–103.
  • Puwanant M, Mo-Suwan L, Patrapinyokul S. Recurrent D-lactic acidosis in a child with short bowel syndrome. Asia Pac J Clin Nutr 2005;14:195–8.
  • Thurn JR, Pierpont GL, Ludvigsen CW, Eckfeldt JH. D-lactate encephalopathy. Am J Med 1985;79:717–21.
  • Flick MJ, Konieczny SF. Identification of putative mammalian D-lactate dehydrogenase enzymes. Biochem Biophys Res Commun 2002;295:910–6.
  • Monroe GR, van Eerde AM, Tessadori F, et al. Identification of human D lactate dehydrogenase deficiency. Nat Commun 2019;10:1477.
  • De Bari L, Atlante A, Guaragnella N, et al. D-lactate transport and metabolism in rat liver mitochondria. Biochem J 2002;365:391–403.
  • Manning Fox JE, Meredith D, Halestrap AP. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 2000;529(Pt 2):285–93.
  • Halestrap AP. Monocarboxylic acid transport. Compr Physiol 2013;3:1611–43.
  • Ullrich KJ, Rumrich G, Klöss S. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. I. Transport kinetics of D-lactate, Na+-dependence, pH-dependence and effect of inhibitors. Pflugers Arch 1982;395:212–9.
  • Zhao Q, Su Y, Wang Z, et al. Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe. BMC Evol Biol 2014;14:86–18.
  • Misra K, Banerjee AB, Ray S, Ray M. Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Biochem J 1995;305(Pt 3):999–1003.
  • Lee JY, Song J, Kwon K, et al. Human DJ-1 and its homologs are novel glyoxalases. Hum Mol Genet 2012;21:3215–25.
  • Subedi KP, Choi D, Kim I, et al. Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol Microbiol 2011;81:926–36.
  • Ariga H, Takahashi-Niki K, Kato I, et al. Neuroprotective function of DJ-1 in Parkinson's disease. Oxid Med Cell Longev 2013;2013:683920.
  • Pohanka M. D-lactic acid as a metabolite: toxicology, diagnosis, and detection. Biomed Res Int 2020;2020:3419034.
  • Yilmaz B, Schibli S, Macpherson AJ, Sokollik C. D-lactic acidosis: successful suppression of D-lactate-producing lactobacillus by probiotics. Pediatrics 2018;142:e20180337.
  • Saikusa T, Rhee HI, Watanabe K, et al. Metabolism of 2-oxoaldehydes in bacteria: Purification and characterization of methylglyoxal reductase from Escherichia coli. Agric Biol Chem 1987;51:1893–9.
  • Schomburg D, Schomburg I, Chang A, editors. Methylglyoxal reductase (NADPH-dependent). In: Class 1·Oxidoreductases Vol S1. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 32–7.
  • Jung E, Kang WS, Jo K, Kim J. Ethyl pyruvate prevents renal damage induced by methylglyoxal-derived advanced glycation end products. J Diabetes Res 2019;2019:4058280.
  • Ward RA, McLeish KR. Methylglyoxal: a stimulus to neutrophil oxygen radical production in chronic renal failure? Nephrol Dial Transplant 2004;19:1702–7.
  • Jensen TM, Vistisen D, Fleming T, et al. Methylglyoxal is associated with changes in kidney function among individuals with screen-detected Type 2 diabetes mellitus. Diabet Med 2016;33:1625–31.
  • Tezuka Y, Nakaya I, Nakayama K, et al. Methylglyoxal as a prognostic factor in patients with chronic kidney disease. Nephrology (Carlton) 2019;24:943–50.
  • Beck J, Turnquist C, Horikawa I, Harris C. Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Carcinogenesis 2020;41:1017–29.
  • Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol 2019;21:94–101.
  • Kim YH, Park TJ. Cellular senescence in cancer. BMB Rep 2019;52:42–6.
  • Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol 2013;75:685–705.
  • Inoue Y, Rhee H, Watanabe K, et al. Metabolism of 2-oxoaldehyde in mold. Purification and characterization of two methylglyoxal reductases from Aspergillus niger. Eur J Biochem 1988;171:213–8.
  • Kang JH, Lee SH, Hong D, et al. Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp Mol Med 2016;48:e272.
  • Dinavahi SS, Bazewicz CG, Gowda R, Robertson GP. Aldehyde dehydrogenase inhibitors for cancer therapeutics. Trends Pharmacol Sci 2019;40:774–89.
  • Wang W, Zheng S, He H, et al. N,N-diethylaminobenzaldehyde targets aldehyde dehydrogenase to eradicate human pancreatic cancer cells . Exp Ther Med 2020;20:662–70.
  • Glatt H, Rost K, Frank H, et al. Detoxification of promutagenic aldehydes derived from methylpyrenes by human aldehyde dehydrogenases ALDH2 and ALDH3A1. Arch Biochem Biophys 2008;477:196–205.
  • Ko J, Kim I, Yoo S, et al. Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases. J Bacteriol 2005;187:5782–9.
  • Vander Jagt DL, Robinson B, Taylor KK, Hunsaker LA. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem 1992;267:4364–9.
  • Cornally D, Mee B, MacDonaill C, et al. Aldo-keto reductase from Helicobacter pylori-role in adaptation to growth at acid pH. Febs J 2008;275:3041–50.
  • Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008;40:553–624.
  • Alfarouk KO, Ibrahim ME, Gatenby RA, Brown JS. Riparian ecosystems in human cancers. Evol Appl 2013;6:46–53.
  • Ji J, Xu MX, Qian TY, et al. The AKR1B1 inhibitor epalrestat suppresses the progression of cervical cancer. Mol Biol Rep 2020;47:6091–103.
  • Zeng C-M, Chang L-L, Ying M-D, et al. Aldo-Keto Reductase AKR1C1-AKR1C4: functions, regulation, and intervention for anti-cancer therapy. Front Pharmacol 2017;8:119.
  • Brozic P, Golob B, Gomboc N, et al. Cinnamic acids as new inhibitors of 17beta-hydroxysteroid dehydrogenase type 5 (AKR1C3). Mol Cell Endocrinol 2006;248:233–5.
  • Gobec S, Brožič P, Rižner TL. Nonsteroidal anti-inflammatory drugs and their analogues as inhibitors of aldo-keto reductase AKR1C3: New lead compounds for the development of anticancer agents. Bioorg Med Chem Lett 2005;15:5170–5.
  • Alfarouk KO, Shayoub MEA, Muddathir AK, et al. Evolution of tumor metabolism might reflect carcinogenesis as a reverse evolution process (dismantling of multicellularity). Cancers (Basel) 2011;3:3002–17.
  • Lloyd MC, Alfarouk KO, Verduzco D, et al. Vascular measurements correlate with estrogen receptor status. BMC Cancer 2014;14:279.
  • Vulesevic B, McNeill B, Giacco F, et al. Methylglyoxal-induced endothelial cell loss and inflammation contribute to the development of diabetic cardiomyopathy. Diabetes 2016;65:1699–713.
  • Tafani M, Sansone L, Limana F, et al. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxid Med Cell Longev 2016;2016:3907147.
  • Chen R, Lai UH, Zhu L, et al. Reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors. Front Cell Dev Biol 2018;6:132.
  • Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol (1985) 2007;102:2379–88.
  • Rathore R, Zheng Y-M, Niu C-F, et al. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 2008;45:1223–31.
  • Meitzler JL, Antony S, Wu Y, et al. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal 2014;20:2873–89.
  • Sedeek M, Nasrallah R, Touyz RM, Hébert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 2013;24:1512–8.
  • Kleniewska P, Piechota A, Skibska B, Gorąca A. The NADPH oxidase family and its inhibitors. Arch Immunol Ther Exp 2012;60:277–94.
  • Sahoo S, Meijles DN, Pagano PJ. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases? Clin Sci (Lond) 2016;130:317–35.
  • Nigro C, Leone A, Raciti GA, et al. Methylglyoxal-glyoxalase 1 balance: the root of vascular damage. Int J Mol Sci 2017;18:188.
  • Mukohda M, Morita T, Okada M, et al. Long-term methylglyoxal treatment causes endothelial dysfunction of rat isolated mesenteric artery. J Vet Med Sci 2013;75:151–7.
  • Nass N, Sel S, Ignatov A, et al. Oxidative stress and glyoxalase i activity mediate dicarbonyl toxicity in MCF-7 mamma carcinoma cells and a tamoxifen resistant derivative. Biochim Biophys Acta – Gen Subj 2016;1860:1272–80.
  • Wen X, Iwata K, Ikuta K, et al. NOX1/NADPH oxidase regulates the expression of multidrug resistance-associated protein 1 and maintains intracellular glutathione levels. Febs J 2019; 86:678–87.