2,846
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Design, synthesis, and biological evaluation of new thieno[2,3-d] pyrimidine derivatives as targeted therapy for PI3K with molecular modelling study

, &
Pages 315-332 | Received 22 Jun 2021, Accepted 21 Nov 2021, Published online: 26 Dec 2021

References

  • Siegel RL, Miller KD, Jemal A. Cancer facts & figures 2018, CA. Cancer J Clin 2018;68:7–30.
  • Avendaño López C, Menendez JC. General aspects of cancer chemotherapy. In: Medicinal chemistry of anticancer drugs. Amsterdam, The Netherlands: Elsevier; 2015;1–22.
  • Ibrahim AS. Cancer: the growing monster in Egypt. J Cancer Prev Curr Res 2016;6:6–7.
  • Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. Hallmarks of cancer: the CRISPR generation. Eur J Cancer 2018;93:10–8.
  • Siddiqui IA, Sanna V, Ahmad N, et al. Resveratrol nanoformulation for cancer prevention and therapy. Ann NY Sci Acad 2015;1348:20–31.
  • Scheeff ED, Bourne PE. Structural evolution of the protein kinase – like superfamily. PLoS Comput Biol 2005;1:e49.
  • Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov 2018;17:353–76.
  • Lipid Kinase-enzyme. Available from: http://www.sinobiological.com/lipid-kinase-enzyme.html (Last accessed 24 Dec 2018).
  • Han MW, Ryu IS, Lee JC, et al. Phosphorylation of PI3K regulatory subunit p85 contributes to resistance against PI3K inhibitors in radioresistant head and neck cancer. Oral Oncol 2018;78:56–63.
  • Marone R, Cmiljanovic V, Giese B, Wymann MP. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 2008;1784:159–85.
  • Workman P, Clarke PA, Raynaud FI, Van Montfort RLM. Drugging the PI3 Kinome: from chemical tools to drugs in the Clinic. Cancer Res. 2010;3:2146–58.
  • Dey N, De P, Leyland-Jones B. PI3K-AKT-mTOR inhibitors in breast cancers: from tumor cell signaling to clinical trials. Pharmacol Ther 2017;175:91–106.
  • Kong DX, Yamori T. ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor identified using the JFCR39 drug discovery system. Acta Pharmacol Sin 2010;31:1189–97.
  • Bauer TM, Patel MR, Infante JR. Targeting PI3 kinase in cancer. Pharmacol Ther 2015;146:53–60.
  • McNamara CR, Degterev A. Small-molecule inhibitors of the PI3K signaling network. Future Med Chem 2011;3:549–65.
  • Elmenier FM, Lasheen DS, Abouzid KAM. Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Euro J Med Chem 2019;183:111718.
  • Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015;15:7–24.
  • Vadas O, Burke JE. Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS). Biochem Soc Trans 2015;43:773–86.
  • AliqopaTM (copanlisib) | Official Site for Healthcare Professionals. Available from: https://www.hcp.aliqopa-us.com/ (Last accessed 03 Oct 2019).
  • FDA approves Novartis’ PI3K inhibitor for breast cancer. Available from: http://www.pharmtech.com›fda-approves-novartis-pi3k-inhibitor-breast-cancer (Last accessed 30 May 2019).
  • Wei M, Zhang X, Wang X, et al. SAR study of 5-alkynyl substituted quinazolin-4(3H)-ones as phosphoinositide 3-kinase delta (PI3Kδ) inhibitors. Eur J Med Chem 2017;125:1156–71.
  • Göckeritz E, Kerwien S, Baumann M, et al. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells. Int J Cancer 2015;137:2234–42.
  • Balakrishnan K, Peluso M, Fu M, et al. The phosphoinositide-3-kinase (PI3K) -delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL. Leukemia 2015;29:1811–22.
  • PI3K Delta Gamma Inhibitor | Verastem Oncology. Available from: https://www.verastem.com/pipeline/duvelisib-pi3k-delta-pi3k-gamma-inhibitor/ (Last accessed 18 Jan 2019).
  • COPIKTRA TM (duvelisib) | Patients | Official Website. Available from: https://www.copiktra.com/ (Last accessed 18 Jan 2019).
  • Flinn IW, O’Brien S, Kahl B, et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood 2018;131:877–87.
  • Miller MS, Thompson PE, Gabelli SB. Structural determinants of isoform selectivity in PIK inhibitors. Biomolecules 2019;9:82.
  • Zhao Y, Zhang X, Chen Y, et al. Crystal structures of PI3Kα complexed with PI103 and Its derivatives: new directions for inhibitors design. ACS Med Chem Lett 2014;5:138–42.
  • Li J-J, Corey EJ. Name reactions in heterocyclic chemistry. Hoboken, NJ: Wiley; 2004:183–217.
  • Al-Mousawi S, Moustafa MS, Elnagdi MH. Studies with enamines: functionally substituted enamines as aldehyde equivalents in Gewald reactions. Arkivoc 2007;2008:17–25.
  • Bacon ER, Daum SJ. Synthesis of 7-ethyl-4,7-dihydro-4-oxo-2-(4-pyridinyl)thieno[2,3- b]pyridine-5-carboxylic acid. J Heterocycl Chem 1991;28:1953–5.
  • Puterova Z, Krutošíková A, Végh D. Gewald reaction: synthesis, properties and applications of substituted 2-aminothiophenes. Arkivoc 2010;2010:209–46.
  • Gouda A, Berghot MA, Abd El-Ghani GE, Elattar KM. Chemistry of 2-aminothiophene-3-carboxamide and related compounds. Turk J Chem 2011;35:815–37.
  • Bogolubsky AV, Ryabukhin SV, Plaskon AS, et al. Dry HCl in parallel synthesis of fused pyrimidin-4-ones. J Comb Chem 2008;10:858–62.
  • Amawi H, Karthikeyan C, Pathak R, et al. Thienopyrimidine derivatives exert their anticancer efficacy via apoptosis induction, oxidative stress and mitotic catastrophe. Eur J Med Chem 2017;138:1053–65.
  • Ragheb, EAB. Synthesis of thieno-pyrimidine derivatives as cytotoxic agents [Master’s Thesis]. Cairo, Egypt: Cairo University; 2010.
  • Abdel-Megid M, Elmahdy KM, Elkazak AM, et al. Chemistry of thienopyrimidines and their biological applications. J Pharm Appl Chem 2016;2:103–27.
  • Kassab AE, Gedawy EM. Synthesis and anticancer activity of novel 2-pyridyl hexahyrocyclooctathieno[2,3-d]pyrimidine derivatives. Eur J Med Chem 2013;63:224–30.
  • Katritzky AR. Advances in heterocyclic chemistry. Amsterdam, The Netherlands: Elsevier Science; 1996:403.
  • Kar RK, Suryadevara P, Roushan R, et al. Quantifying the structural requirements for designing newer flt3 inhibitors. Med Chem 2012;8:913–27.
  • Varvounis G, Giannopoulos T. Synthesis, chemistry, and biological properties of thienopyrimidines. Adv Heterocycl Chem 1996;66:193–283.
  • Samala G, Devi PB, Saxena S, et al. Anti-tubercular activities of 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine analogues endowed with high activity toward non-replicative Mycobacterium tuberculosis. Bioorg Med Chem 2016;24:5556–64.
  • Bassetto M, Leyssen P, Neyts J, et al. Computer-aided identification, synthesis and evaluation of substituted thienopyrimidines as novel inhibitors of HCV replication. Eur J Med Chem 2016;123:31–47.
  • Arnott EA, Chan LC, Cox BG, et al. POCl3 chlorination of 4-quinazolones. J Org Chem 2011;76:1653–61.
  • Leggio A, Belsito EL, De Luca G, et al. RSC advances one-pot synthesis of amides from carboxylic acids activated using thionyl chloride †. RSC Adv 2016;6:34468–75.
  • Suzuki T, Khan MNA, Sawada H, et al. Hidehiko Nakagawa, and Naoki Miyata, design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors. J Med Chem 2012;55:5760–73.
  • Ono N. The nitro group in organic synthesis. Vol. 9. Hoboken, NJ: John Wiley & Sons; 2003:170–175.
  • Kumar PS, Sunil J, Gurrala S, Bathini R. Antimicrobial screening of some novel Tetramethylene thiophene derivatives synthesized using various aryl acid chlorides Antimicrobial screening of some novel Tetramethylene thiophene derivatives synthesized using various aryl acid chlorides. J Pharm Res 2011;4:2–5.
  • Sarangapani M, Sridhar D, Arjun M, Adharvana Chari M. Synthesis of some novel 2-substituted-N-aryl-benzoxazole-5-carboxamides using cobalt dipyridine dichloride as a catalyst. J Heterocycl Chem 2008;45:1187–90.
  • Lunagariya NA, Gohil VM, Kushwah V, et al. Design, synthesis and biological evaluation of 1,3,6-trisubstituted β-carboline derivatives for cytotoxic and anti-leishmanial potential. Bioorg Med Chem Lett 2015;26:789–794.
  • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006;6:813–23.
  • She Q-B, Chandarlapaty S, Ye Q, et al. Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to akt signaling. PLoS One 2008;3:e3065.
  • Graupera M, Guillermet-Guibert J, Foukas LC, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 2008;453:662–6.
  • Schneck H, Blassl C, Meier-Stiegen F, et al. Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol Oncol 2013;7:976–86.
  • Vora SR, Juric D, Kim N, et al. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 2014;26:136–49.
  • Chikh A, Ferro R, Abbott JJ, et al. Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression. Oncotarget 2016;7:18325–45.
  • Ebi H, Costa C, Faber AC, et al. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc Natl Acad Sci USA 2013;110:21124–9.
  • Adel M, Serya RAT, Lasheen DS, Abouzid KAM. Identification of new pyrrolo[2,3-d]pyrimidines as potent VEGFR-2 tyrosine kinase inhibitors: design, synthesis, biological evaluation and molecular modeling. Bioorg Chem 2018;81:612–29.
  • Cheeseright T, Mackey M, Rose S, Vinter A. Molecular field extrema as descriptors of biological activity: definition and validation. J Chem Inf Model 2006;46:665–76.,
  • Wu G, Robertson DH, Iii CLB, Vieth M. Detailed analysis of grid-based molecular docking: a case study of CDOCKER — a CHARMm-based MD docking algorithm. J Comput Chem 2003;24:1549–62.
  • Brooks BR, Brooks CL, Mackerell AD, et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009;30:1545–614.
  • Dzhavakhishvili SG, Gorobets NY, Musatov VI, et al. Three possible products from the reactions of Gewald’s amide with aromatic aldehydes. J Heterocycl Chem 2008;45:573–7.
  • Li JJ. Schotten-Baumann reaction. In: Name reaction: a collection of details reaction mechanism. Berlin, Germany: Springer; 2003:362.