1,520
Views
2
CrossRef citations to date
0
Altmetric
Brief Reports

Anti-breast cancer sinomenine derivatives via mechanisms of apoptosis induction and metastasis reduction

, , , , , , & show all
Pages 1870-1883 | Received 28 Mar 2022, Accepted 26 Jun 2022, Published online: 08 Jul 2022

References

  • International Agency for Research on Cancer, Global Cancer Observatory. Available from: https://gco.iarc.fr/today/home.
  • Wang H, Naghavi M, Allen C, Barber RM. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 2016;388:145.
  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87–105.
  • Rebecca LS, Kimberly DM, Fuchs HE, Ahmedin J. Cancer statistics, 2022. CA Cancer J Clin 2022;65:87–108.
  • Anders CK, Carey LA. Biology, metastatic patterns and treatment of patients with triple-negative breast cancer. Clin Breast Cancer 2009;9:S73–S81.
  • Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med 2015;12:106–16.
  • Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000;406:747–52.
  • Brown M, Tsodikov A, Bauer KR, et al. The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: the California Cancer Registry, 1999–2004. Cancer 2008;112:737–47.
  • Hudis CA. Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med 2007;357:39–51.
  • Zardavas D, Pugliano L, Piccart M. Personalized therapy for breast cancer: a dream or a reality? Future Oncol 2013;9:1105–19.
  • Toss A, Cristofanilli M. Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res 2015;17:60–70.
  • Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007;13:4429–34.
  • Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011;121:2750–67.
  • Waks AG, Winer EP. Breast cancer treatment: a review. 2019;321:288–300.
  • Duffy MJ, McGowan PM, Crown J. Targeted therapy for triple-negative breast cancer: where are we? Int J Cancer 2012;131:2471–7.
  • Nandini D, Jennifer A, Pradip D. Therapeutic strategies for metastatic triple-negative breast cancers: from negative to positive. Pharmaceuticals 2021;14:455–72.
  • O'Shaughnessy J, Osborne C, Pippen JE, et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 2011;364:205–14.
  • Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007;357:2666–76.
  • Moreno-Aspitia A, Morton RF, Hillman DW, et al. Phase II trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or Taxanes: north central cancer treatment group and mayo clinic trial N0336. J Clin Oncol 2009;27:11–5.
  • Tutt A, Robson M, Garber JE, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010;376:235–44.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020;83:770–803.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016;79:629–61.
  • Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotech Adv 2015;33:1582–614.
  • Harvey AL, Edrada-Ebel RA, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nature Rev Drug Discov 2015;14:111–29.
  • Birgit W, Andrei M, Šmejkal K, et al. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules 2016;21:807.
  • Tintore M, Vidal-Jordana A, Sastre-Garriga J. Treatment of multiple sclerosis-success from bench to bedside. Nat Rev Neurol 2019;15:53–8.
  • Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev 2009;109:3012–43.
  • Schläger S, Dräger B. Exploiting plant alkaloids. Curr Opin Biotech 2016;37:155–64.
  • Qiu S, Sun H, Zhang AH, et al. Natural alkaloids: basic aspects, biological roles, and future perspectives. Chin J Nat Medicines 2014;12:401–6.
  • Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev 2009;29:767–820.
  • O’Connor SE. Comprehensive natural products II. Chem Biol 2010;1:977–1007.
  • Ishiwari N. An alkaloid of sinomenine diversifolius. Chugai Iji Shimpo 1920;959:1–20.
  • Yamasaki H. Pharmacology of sinomenine, an anti-rheumatic alkaloid from sinomenium acutum. Acta Med Okayama 1976;30:1–20.
  • Xu M, Liu L, Qi C, et al. Sinomenine versus NSAIDs for the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Planta Med 2008;74:1423–9.
  • Gao T, Hao J, Wiesenfeld-Hallin Z, et al. Analgesic effect of sinomenine in rodents after inflammation and nerve injury. Eur J Pharmacol 2013;721:5–11.
  • Gao T, Shi T, Wang DQ, et al. Repeated sinomenine administration alleviates chronic neuropathic painlike behaviours in rodents without producing tolerance. Scand J Pain 2014;5:249–55.
  • Gao T, Shi T, Wiesenfeld-Hallin Z, et al. Sinomenine alleviates mechanical hypersensitivity in mice with experimentally induced rheumatoid arthritis. Scand J Pain 2015;7:9–14.
  • Gao T, Shi T, Wiesenfeld-Hallin Z, et al. Sinomenine facilitates the efficacy of gabapentin or ligustrazine hydrochloride in animal models of neuropathic pain. Eur J Pharmacol 2019;854:101–8.
  • Kok TW, Yue P, Mak NK, et al. The anti-angiogenic effect of sinomenine. Angiogenesis 2005;8:3–12.
  • Bo G, Yu W, Yang YJ, et al. Sinomenine exerts anticonvulsant profile and neuroprotective activity in pentylenetetrazole kindled rats: involvement of inhibition of NLRP1 inflammasome. J Neuroinflam 2018;15:152.
  • Zhang L, Zhang W, Zheng B, et al. Sinomenine attenuates traumatic spinal cord injury by suppressing oxidative stress and inflammation via Nrf2 pathway. Neurochem Res 2019;44:763–75.
  • Yong W, Fang Y, Huang W, et al. Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. J Ethnopharmacol 2005; 98:37–43.
  • He X, Wang J, Guo Z, et al. Requirement for ERK activation in sinomenine-induced apoptosis of macrophages. Immunol Lett 2005;98:91–6.
  • Wang Q, Li XK. Immunosuppressive and anti-inflammatory activities of sinomenine. Int Immunopharmacol 2011;11:373–6.
  • Zhang D, Dong Y, Zhao Y, et al. Sinomenine hydrochloride sensitizes cervical cancer cells to ionizing radiation by impairing DNA damage response. Oncol Rep 2018;40:2886–95.
  • Jiang T, Zhou L, Zhang W, et al. Effects of sinomenine on proliferation and apoptosis in human lung cancer cell line NCI-H460 in vitro. Mol Med Rep 2010; 3:51–6.
  • Morris M, Platell C. Surgical volume influences survival in patients undergoing resections for stage ii colon cancers. ANZ J Surg 2007;77:902–6.
  • Lu XL, Jin Z, Chen YL, et al. Sinomenine hydrochloride inhibits human hepatocellular carcinoma cell growth in vitro and in vivo: involvement of cell cycle arrest and apoptosis induction. Int J Oncol 2013;42:229–38.
  • Li X, Li P, Liu C, et al. Sinomenine hydrochloride inhibits breast cancer metastasis by attenuating inflammation-related epithelial-mesenchymal transition and cancer stemness. Oncotarget 2017;8:13560–74.
  • Xie T, Ren HY, Lin HQ, et al. Sinomenine prevents metastasis of human osteosarcoma cells via Sphase arrest and suppression of tumor-related neovascularization and osteolysis through the CXCR4-STAT3 pathway. Int J Oncol 2016;48:2098–112.
  • Hou L, Jiang J, Liu B, et al. Association between smoking and deaths due to colorectal malignant carcinoma: a national population-based case-control study in China. Br J Cancer 2014;110:1351–8.
  • Liao F, Yang Z, Lu X, et al. Sinomenine sensitizes gastric cancer cells to 5-fluorouracil in vitro and in vivo. Oncol Lett 2013;6:1604–10.
  • Lv YF, Li CS, Li S, et al. Sinomenine inhibits proliferation of SGC-7901 gastric adenocarcinoma cells via suppression of cyclooxygenase-2 expression. Oncolog Lett 2011;2:741–5.
  • Zhang YS, Han JY, Iqbal O, et al. Research advances and prospects on mechanism of sinomenin on histamine release and the binding to histamine receptors. Int J Mol Sci 2018;20:70.
  • Mocellin S. Nitric oxide: cancer target or anticancer agent? Curr Cancer Drug Tar 2009;9:23.
  • Jin RC, Loscalzo J. Vascular nitric oxide: formation and function. J Blood Med 2010;2010:147–62.
  • Esplugues JV. NO as a signalling molecule in the nervous system. Br J Pharmacol 2002;135:1079–95.
  • Wallace JL. Nitric oxide as a regulator of inflammatory processes. Mem Inst Oswaldo Cruz 2005;100:5–9.
  • Hirst D, Robson T. Targeting nitric oxide for cancer therapy. J Pharm Pharmacol 2007;59:3–13.
  • Pervin S, Singh R, Chaudhuri G. Nitric oxide, Nω-hydroxy-l-arginine and breast cancer. Nitric Oxide 2008;19:103–6.
  • Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;84:9265–9.
  • Sattler R, Xiong Z, Lu W, et al. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 1999;284:1845–8.
  • Cho DH, Nakamura T, Fang J, et al. S-Nitrosylation of Drp1 mediates β-Amyloid-related mitochondrial fission and neuronal injury. Science 2009;324:102–5.
  • Wei XQ, Charles IG, Smith A, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995; 375:408–11.
  • Gladwin MT, Lancaster JR, Freeman BA, et al. Nitric oxide's reactions with hemoglobin: a view through the SNO-storm. Nat Med 2003;9:496–500.
  • Song Q, Tan S, Zhuang X, et al. Nitric oxide releasing d-α-Tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin. Mol Pharm 2014;11:4118–29.
  • Han C, Huang ZJ, Zheng CW, et al. Novel hybrids of (Phenylsulfonyl)furoxan and anilinopyrimidine as potent and selective epidermal growth factor receptor inhibitors for intervention of non-small-cell lung cancer. J Med Chem 2013;56:4738–48.
  • Ai Y, Kang F, Huang Z, et al. Synthesis of CDDO–amino acid–nitric oxide donor trihybrids as potential antitumor agents against both drug-sensitive and drug-resistant colon cancer. J Med Chem 2015;58:2452–64.
  • Liu MM, Chen XY, Huang YQ, et al. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents. J Med Chem 2014;57:9343–56.
  • Carpenter AW, Schoenfisch MH. Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev 2012;41:3742–52.
  • Wang PG, Xian M, Tang X, et al. Nitric oxide donors: chemical activities and biological applications. Chem Rev 2002;102:1091–134.
  • Nortcliffe A, Botting NP, Hagan DO. Novel amino acids: synthesis of furoxan and sydnonimine containing amino acids and peptides aspotential nitric oxide releasing motifs. Org Biomol Chem 2013;11:4657–71.
  • Chen L, Zhang Y, Kong X, et al. Design, synthesis, and antihepatocellular carcinoma activity of nitric oxide releasing derivatives of oleanolic acid. J Med Chem 2008;51:4834–8.