3,018
Views
3
CrossRef citations to date
0
Altmetric
Review

Bioactivity and mechanisms of flavonoids in decreasing insulin resistance

, , , , &
Article: 2199168 | Received 27 Jan 2023, Accepted 30 Mar 2023, Published online: 10 Apr 2023

References

  • Hao J, Han LF, Zhang Y, Wang T. Docking studies on potential mechanisms for decreasing insulin resistance by the Tangzhiqing Herbal Formula. Evid Based Complement Alternat Med. 2020;2020:1057648–1057658.
  • Laakso M. Is insulin resistance a feature of or a primary risk factor for cardiovascular disease? Curr Diab Rep. 2015;15(12):105–113.
  • Khalid M, Alkaabi J, Khan MAB, Adem A. Insulin signal transduction perturbations in insulin resistance. Int J Mol Sci. 2021;22(16):8590–8606.
  • Mastrototaro L, Roden M. Insulin resistance and insulin sensitizing agents. Metabolism. 2021;125:154892.
  • Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang G-M, Choi HY, Cho S-G. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci. 2016;17(4):569–600.
  • Wier BVD, Koek GH, Bast A, Haenen GR. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit Rev Food Sci Nutr. 2017;57(4):834–855.
  • Babu PVA, Liu DM, Gilbert ER. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem. 2013;24(11):1777–1789.
  • Ren N, Kim E, Li B, Pan H, Tong T, Yang CS, Tu Y. Flavonoids alleviating insulin resistance through inhibition of inflammatory signaling. J Agric Food Chem. 2019;67(19):5361–5373.
  • Mena P, Dominguez-Perles R, Girones-Vilaplana A, Baenas N, Garcia-Viguera C, Villano D. Flavan-3-Ols, anthocyanins, and inflammation. IUBMB Life. 2014;66(11):745–758.
  • Hsieh CT, Chang FR, Tsai YH, Wu YC, Hsieh TJ. 2-Bromo-4′-Methoxychalcone and 2-Iodo-4′-methoxychalcone prevent progression of hyperglycemia and obesity via 5′-adenosine-monophosphate-activated protein kinase in diet-induced obese mice. Int J Mol Sci. 2018;19(9):2763–2780.
  • Wu LL, Guo TD, Deng RX, Liu LS, Yu YX. Apigenin ameliorates insulin resistance and lipid accumulation by endoplasmic reticulum stress and Srebp-1c/Srebp-2 pathway in palmitate-induced Hepg2 cells and high-fat diet-fed mice. J Pharmacol Exp Ther. 2021;377(1):146–156.
  • Daveri E, Cremonini E, Mastaloudis A, Hester SN, Wood SM, Waterhouse AL, Anderson M, Fraga CG, Oteiza PI. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol. 2018;18:16–24.
  • Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–2223.
  • Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian target of rapamycin at the crossroad between Alzheimer’s disease and diabetes. Adv Exp Med Biol. 2019;1128:185–225.
  • Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6(1):a009191–a009191.
  • Sharma R, Tiwari S. Renal gluconeogenesis in insulin resistance: a culprit for hyperglycemia in diabetes. World J Diabetes. 2021;12(5):556–568.
  • Sharma R, Kumari M, Prakash P, Gupta S, Tiwari S. Phosphoenolpyruvate carboxykinase in urine exosomes reflect impairment in renal gluconeogenesis in early insulin resistance and diabetes. Am J Physiol Renal Physiol. 2020;318(3):F720–F731.
  • Jang H, Lee GY, Selby CP, Lee G, Jeon YG, Lee JH, Cheng KKY, Titchenell P, Birnbaum MJ, Xu A, et al. Srebp1c-Cry1 signalling represses hepatic glucose production by promoting foxo1 degradation during refeeding. Nat Commun. 2016;7:12180.
  • Klip A, McGraw TE, James DE. Thirty sweet years of Glut4. J Biol Chem. 2019;294(30):11369–11381.
  • Jiang YK, Xin KY, Ge HW, Kong FJ, Zhao G. Upregulation of renal Glut2 and Sglt2 is involved in high-fat diet-induced gestational diabetes in Mice. Diabetes Metab Syndr Obes. 2019;12:2095–2105.
  • Garcia D, Shaw RJ. Ampk: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66(6):789–800.
  • Henagan TM, Lenard NR, Gettys TW, Stewart LK. Dietary quercetin supplementation in mice increases skeletal muscle Pgc1alpha expression, improves mitochondrial function and attenuates insulin resistance in a time-specific manner. PLoS One. 2014;9(2):e89365.
  • Belwal T, Nabavi SF, Nabavi SM, Habtemariam S. Dietary anthocyanins and insulin resistance: when food becomes a medicine. Nutrients. 2017;9(10):1111–1132.
  • Smith BK, Steinberg GR. Amp-activated protein kinase, fatty acid metabolism, and insulin sensitivity. Curr Opin Clin Nutr Metab Care. 2017;20(4):248–253.
  • O’Neill HM, Lally JS, Galic S, Thomas M, Azizi PD, Fullerton MD, Smith BK, Pulinilkunnil T, Chen Z, Samaan MC, et al. Ampk phosphorylation of Acc2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia. 2014;57(8):1693–1702.
  • Huang Y, Hao J, Tian D, Wen Y, Zhao P, Chen H, Lv Y, Yang X. Antidiabetic activity of a flavonoid-rich extract from Sophora Davidii (Franch.) Skeels in Kk-Ay Mice Via activation of Amp-activated protein kinase. Front Pharmacol. 2018;9:760–774.
  • Russo B, Picconi F, Malandrucco I, Frontoni S. Flavonoids and insulin-resistance: from molecular evidences to clinical trials. Int J Mol Sci. 2019;20(9):2061–2078.
  • Tan Y, Tam CC, Rolston M, Alves P, Chen L, Meng S, Hong H, Chang SKC, Yokoyama W. Quercetin ameliorates insulin resistance and restores gut microbiome in mice on high-fat diets. Antioxidants. 2021;10(8):1251–1267.
  • Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018;128(4):1538–1550.
  • Wang ZY, Zeng MM, Wang ZJ, Qin F, Chen J, He ZY. Dietary luteolin: a narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism. J Agric Food Chem. 2021;69(5):1441–1454.
  • Zhao L, Fu Z, Wu J, Aylor KW, Barrett EJ, Cao W, Liu Z. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity. Clin Sci. 2015;129(12):1025–1036.
  • Pesta D, Roden M. The Janus head of oxidative stress in metabolic diseases and during physical exercise. Curr Diab Rep. 2017;17(6):2.
  • Di Meo S, Iossa S, Venditti P. Improvement of obesity-linked skeletal muscle insulin resistance by strength and endurance training. J Endocrinol. 2017;234(3):R159–R181.
  • Bhakkiyalakshmi E, Sireesh D, Rajaguru P, Paulmurugan R, Ramkumar KM. The emerging role of redox-sensitive nrf2–keap1 pathway in diabetes. Pharmacol Res. 2015;91:104–114.
  • Chuang WT, Yen CC, Huang CS, Chen HW, Lii CK. Benzyl isothiocyanate ameliorates high-fat diet-induced hyperglycemia by enhancing nrf2-dependent antioxidant defense-mediated irs-1/akt/tbc1d1 signaling and glut4 expression in skeletal muscle. J Agric Food Chem. 2020;68(51):15228–15238.
  • Wang C-H, Wei Y-H. Roles of mitochondrial sirtuins in mitochondrial function, redox homeostasis, insulin resistance and type 2 diabetes. Int J Mol Sci. 2020;21(15):5266.
  • Sudhakaran M, Doseff AI. The targeted impact of flavones on obesity-induced inflammation and the potential synergistic role in cancer and the gut microbiota. Molecules. 2020;25(11):2477–2504.
  • Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, Camp JV. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev. 2015;47(2):175–190.
  • Ding L, Jin DZ, Chen XL. Luteolin enhances insulin sensitivity via activation of ppargamma transcriptional activity in adipocytes. J Nutr Biochem. 2010;21(10):941–947.
  • Ando C, Takahashi N, Hirai S, Nishimura K, Lin S, Uemura T, Goto T, Yu R, Nakagami J, Murakami S, et al. Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting jnk activation. FEBS Lett. 2009;583(22):3649–3654.
  • Mazibuko-Mbeje SE, Mthembu SXH, Tshiitamune A, Muvhulawa N, Mthiyane FT, Ziqubu K, Muller CJF, Dludla PV. Orientin improves substrate utilization and the expression of major genes involved in insulin signaling and energy regulation in cultured insulin-resistant liver cells. Molecules. 2021;26(20):6154–6163.
  • Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW, Chang YN. Chrysin improves glucose and lipid metabolism disorders by regulating the Ampk/Pi3k/Akt signaling pathway in insulin-resistant Hepg2 Cells and Hfd/Stz-Induced C57bl/6j Mice. J Agric Food Chem. 2021;69(20):5618–5627.
  • Vidyashankar S, Sandeep Varma R, Patki PS. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in Hepg2 cells. Toxicol In Vitro. 2013;27(2):945–953.
  • Alkhalidy H, Moore W, Wang A, Luo J, McMillan RP, Wang Y, Zhen W, Hulver MW, Liu D. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J Nutr Biochem. 2018;58:90–101.
  • Hsu C-Y, Shih H-Y, Chia Y-C, Lee C-H, Ashida H, Lai Y-K, Weng C-F. Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res. 2014;58(6):1168–1176.
  • Sakamoto Y, Kanatsu J, Toh M, Naka A, Kondo K, Iida K. The dietary isoflavone daidzein reduces expression of pro-inflammatory genes through pparalpha/gamma and jnk pathways in adipocyte and macrophage co-cultures. PLoS One. 2016;11(2):e0149676.
  • Cheong SH, Furuhashi K, Ito K, Nagaoka M, Yonezawa T, Miura Y, Yagasaki K. Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in type 2 diabetic model mice. J Nutr Biochem. 2014;25(2):136–143.
  • Syed AA, Reza MI, Shafiq M, Kumariya S, Singh P, Husain A, Hanif K, Gayen JR. Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting Rage/Nf-Kappab mediated mitochondrial apoptosis. Life Sci. 2020;257:118118–118120.
  • Dhanya R, Jayamurthy P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem Funct. 2020;38(4):419–427.
  • Tian M, Han YB, Zhao CC, Liu L, Zhang FL. Hesperidin alleviates insulin resistance by improving hg-induced oxidative stress and mitochondrial dysfunction by restoring Mir-149. Diabetol Metab Syndr. 2021;13(1):50–60.
  • Hu XG, Tian AF, Liu T, Zhou LY, Bei WJ, Guo J. Hesperidin ameliorates insulin resistance by regulating the Irs1-Glut2 pathway Via Tlr4 in Hepg2 cells. Phytother Res. 2019;33(6):1697–1705.
  • Zhang Q, Yuan H, Zhang C, Guan Y, Wu Y, Ling F, Niu Y, Li Y. Epigallocatechin Gallate improves insulin resistance in Hepg2 cells through alleviating inflammation and lipotoxicity. Diabetes Res Clin Pract. 2018;142:363–373.
  • Bao SQ, Cao YL, Zhou HC, Sun X, Shan ZY, Teng WP. Epigallocatechin Gallate (Egcg) suppresses lipopolysaccharide-induced toll-like receptor 4 (Tlr4) activity via 67 Kda Laminin Receptor (67lr) in 3t3-L1 adipocytes. J Agric Food Chem. 2015;63(10):2811–2819.
  • Mi Y, Liu X, Tian H, Liu H, Li J, Qi G, Liu X. Egcg stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts Tnf-Alpha-triggered insulin resistance in adipocytes. Food Funct. 2018;9(6):3374–3386.
  • Mi Y, Zhang W, Tian H, Li R, Huang S, Li X, Qi G, Liu X. Egcg evokes Nrf2 nuclear translocation and dampens Ptp1b expression to ameliorate metabolic misalignment under insulin resistance condition. Food Funct. 2018;9(3):1510–1523.
  • Muscarà C, Molonia MS, Speciale A, Bashllari R, Cimino F, Occhiuto C, Saija A, Cristani M. Anthocyanins ameliorate palmitate-induced inflammation and insulin resistance in 3t3-L1 adipocytes. Phytother Res. 2019;33(7):1888–1897.
  • Luna-Vital D, Weiss M, Gonzalez de Mejia E. Anthocyanins from purple corn ameliorated tumor necrosis factor-Alpha-induced inflammation and insulin resistance in 3t3-L1 adipocytes via activation of insulin signaling and enhanced Glut4 translocation. Mol Nutr Food Res. 2017;61(12):1700362.
  • Xu N, Zhang L, Dong J, Zhang X, Chen Y-G, Bao B, Liu J. Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol Nutr Food Res. 2014;58(6):1258–1268.
  • Baek Y, Lee MN, Wu DY, Pae M. Luteolin reduces adipose tissue macrophage inflammation and insulin resistance in postmenopausal obese mice. J Nutr Biochem. 2019;71:72–81.
  • Kwon EY, Jung UJ, Park T, Yun JW, Choi MS. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes Metab Syndr Obes. 2015;64(5):1658–1669.
  • El-Bassossy HM, Abo-Warda SM, Fahmy A. Chrysin and Luteolin alleviate vascular complications associated with insulin resistance mainly through Ppar-gamma activation. Am J Chin Med. 2014;42(5):1153–1167.
  • Zhang L, Han Y-J, Zhang X, Wang X, Bao B, Qu W, Liu J. Luteolin reduces obesity-associated insulin resistance in Mice by activating Ampkalpha1 signalling in adipose tissue macrophages. Diabetologia. 2016;59(10):2219–2228.
  • Sun YS, Qu W. Dietary Apigenin Promotes Lipid Catabolism, thermogenesis, and browning in adipose tissues of Hfd-Fed mice. Food Chem Toxicol. 2019;133:110780–110789.
  • Feng X, Weng D, Zhou F, Owen YD, Qin H, Zhao J, Huang Y, Chen J, Fu H, Yang N, et al. Activation of Pparγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of macrophage polarization. EBioMedicine. 2016;9:61–76.
  • Yang M, Jiang Z-H, Li C-G, Zhu Y-J, Li Z, Tang Y-Z, Ni C-L. Apigenin prevents metabolic syndrome in high-fructose diet-fed mice by Keap1-Nrf2 pathway. Biomed Pharmacother. 2018;105:1283–1290.
  • Lee Y-S, Cha B-Y, Choi S-S, Choi B-K, Yonezawa T, Teruya T, Nagai K, Woo J-T. Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J Nutr Biochem. 2013;24(1):156–162.
  • Kim YJ, Choi MS, Woo JT, Jeong MJ, Kim SR, Jung UJ. Long-term dietary supplementation with low-dose nobiletin ameliorates hepatic steatosis, insulin resistance, and inflammation without altering fat mass in diet-induced obesity. Mol Nutr Food Res. 2017;61(8):1600889–1600897.
  • Gao LY, Tang H, Zeng QF, Tang T, Chen M, Pu P. The anti-insulin resistance effect of scutellarin may be related to antioxidant stress and Ampkalpha activation in diabetic mice. Obes Res Clin Pract. 2020;14(4):368–374.
  • Arias N, Macarulla MT, Aguirre L, Martinez-Castano MG, Portillo MP. Quercetin can reduce insulin resistance without decreasing adipose tissue and Skeletal Muscle fat accumulation. Genes Nutr. 2014;9(1):361–369.
  • Porras D, Nistal E, Martínez-Flórez S, Pisonero-Vaquero S, Olcoz JL, Jover R, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med. 2017;102:188–202.
  • Jiang J, Zhang G, Yu M, Gu J, Zheng Y, Sun J, Ding S. Quercetin improves the adipose inflammatory response and insulin signaling to reduce “real-world” particulate matter-induced insulin resistance. Environ Sci Pollut Res Int. 2022;29(2):2146–2157.
  • Luo C, Yang H, Tang C, Yao G, Kong L, He H, Zhou Y. Kaempferol alleviates insulin resistance via hepatic ikk/nf-kappab signal in type 2 diabetic rats. Int Immunopharmacol. 2015;28(1):744–750.
  • Khlifi R, Dhaouefi Z, Toumia IB, Lahmar A, Sioud F, Bouhajeb R, Bellalah A, Chekir-Ghedira L. Erica multiflora extract rich in quercetin-3-O-glucoside and kaempferol-3-o-glucoside alleviates high fat and fructose diet-induced fatty liver disease by modulating metabolic and inflammatory pathways in wistar rats. J Nutr Biochem. 2020;86:108490–110850.
  • Alkhalidy H, Moore W, Zhang Y, McMillan R, Wang A, Ali M, Suh K-S, Zhen W, Cheng Z, Jia Z, et al. Small molecule kaempferol promotes insulin sensitivity and preserved pancreatic beta -cell mass in middle-aged obese diabetic mice. J Diabetes Res. 2015;2015:532984–532997.
  • Choi MS, Choi JY, Kwon EY. Fisetin alleviates hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice. J Med Food. 2020;23(10):1019–1032.
  • Cao YK, Zhang SF, Zou SE, Xia X. Daidzein improves insulin resistance in ovariectomized rats. Climacteric. 2013;16(1):111–116.
  • Makena W, Hambolu JO, Timbuak JA, Umana UE, Iliya AI, Dibal NI. Mormodica Charantia L. fruit and genistein ameliorates type 2 diabetes in rats by preventing lipid accumulation, insulin resistance and enhancing beta cell function. J Diabetes Metab Disord. 2020;19(2):1303–1310.
  • Yang R, Jia Q, Mehmood S, Ma SF, Liu XF. Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. Eur J Nutr. 2021;60(4):2155–2168.
  • Pu P, Gao D-M, Mohamed S, Chen J, Zhang J, Zhou X-Y, Zhou N-J, Xie J, Jiang H. Naringin ameliorates metabolic syndrome by activating Amp-activated protein kinase in mice fed a high-fat diet. Arch Biochem Biophys. 2012;518(1):61–70.
  • Peng P, Jin J, Zou G, Sui Y, Han Y, Zhao D, Liu L. Hesperidin prevents hyperglycemia in diabetic rats by activating the insulin receptor pathway. Exp Ther Med. 2021;21(1):53–59.
  • Liu HW, Wei CC, Chen YJ, Chen YA, Chang SJ. Flavanol-rich lychee fruit extract alleviates diet-induced insulin resistance via suppressing Mtor/Srebp-1 mediated lipogenesis in liver and restoring insulin signaling in skeletal muscle. Mol Nutr Food Res. 2016;60(10):2288–2296.
  • Tian B, Zhao J, Xie X, Chen T, Yin Y, Zhai R, Wang X, An W, Li J. Anthocyanins from the Fruits of lycium ruthenicum murray improve high-fat diet-induced insulin resistance by ameliorating inflammation and oxidative stress in mice. Food Funct. 2021;12(9):3855–3871.
  • Kwon EY, Choi MS. Luteolin Targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice. Nutrients. 2018;10(10):1415.
  • Nepali S, Son JS, Poudel B, Lee JH, Lee YM, Kim DK. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κb/mitogen-activated protein kinases pathway. Pharmacogn Mag. 2015;11(43):627–635.
  • Li Y, Pan H, Zhang X, Wang H, Liu S, Zhang H, Qian H, Wang L, Ying H. Geniposide improves glucose homeostasis via regulating foxo1/pdk4 in skeletal muscle. J Agric Food Chem. 2019;67(16):4483–4492.
  • Xiao N, Mei F, Sun Y, Pan GJ, Liu BL, Liu K. Quercetin, luteolin, and epigallocatechin gallate promote glucose disposal in adipocytes with regulation of Amp-activated kinase and/or Sirtuin 1 activity. Planta Med. 2014;80(12):993–1000.
  • Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current status and future perspectives on therapeutic potential of apigenin: focus on metabolic-syndrome-dependent organ dysfunction. Antioxidants. 2021;10(10):1643.
  • Yi H, Peng H, Wu X, Xu X, Kuang T, Zhang J, Du L, Fan G. The therapeutic effects and mechanisms of quercetin on metabolic diseases: pharmacological data and clinical evidence. Oxid Med Cell Longev. 2021;2021:6678662–6678677.
  • Chen S, Jiang HM, Wu XS, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016;2016:9340637–9340641.
  • Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: a review. Phytother Res. 2021;35(10):5352–5364.
  • Dhanya R, Arya AD, Nisha P, Jayamurthy P. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via Ampk pathway in skeletal muscle cell line. Front Pharmacol. 2017;8:336–344.
  • Nie J-P, Qu Z-N, Chen Y, Chen J-H, Jiang Y, Jin M-N, Yu Y, Niu W-Y, Duan H-Q, Qin N, et al. Discovery and anti-diabetic effects of novel isoxazole based flavonoid derivatives. Fitoterapia. 2020;142:104499–104508.
  • Issac PK, Karan R, Guru A, Pachaiappan R, Arasu MV, Al-Dhabi NA, Choi KC, Harikrishnan R, Raj JA. Insulin signaling pathway assessment by enhancing antioxidant activity due to morin using in vitro rat skeletal muscle L6 myotubes cells. Mol Biol Rep. 2021;48(8):5857–5872.
  • Maliehe A, Ghahremani S, Kharghani S, Ghazanfarpour M, Shariati K, Kazemi M, Khadivzadeh T. Effect of isoflavones and genistein on glucose metabolism in peri- and post-menopausal women: an overview of meta-analysis. J Menopausal Med. 2019;25(2):69–73.
  • Fang JY, Lin CH, Huang TH, Chuang SY. In vivo rodent models of type 2 diabetes and their usefulness for evaluating flavonoid bioactivity. Nutrients. 2019;11(3):530–552.
  • Das D, Sarkar S, Bordoloi J, Wann SB, Kalita J, Manna P. Daidzein, its effects on impaired glucose and lipid metabolism and vascular inflammation associated with type 2 diabetes. Biofactors. 2018;44(5):407–417.
  • Amanat S, Eftekhari MH, Fararouei M, Bagheri Lankarani K, Massoumi SJ. Genistein supplementation improves insulin resistance and inflammatory state in non-alcoholic fatty liver patients: a randomized, controlled trial. Clin Nutr. 2018;37(4):1210–1215.
  • Incir S, Bolayirli IM, Inan O, Aydın MS, Bilgin IA, Sayan I, Esrefoglu M, Seven A. The effects of genistein supplementation on fructose induced insulin resistance, oxidative stress and inflammation. Life Sci. 2016;158:57–62.
  • Amanat S, Ashkar F, Eftekhari MH, Tanideh N, Doaei S, Gholamalizadeh M, Koohpeyma F, Mokhtari M. The effect of genistein on insulin resistance, inflammatory factors, lipid profile, and histopathologic indices in rats with polycystic ovary syndrome. Clin Exp Reprod Med. 2021;48(3):236–244.
  • Arunkumar E, Karthik D, Anuradha CV. Genistein sensitizes hepatic insulin signaling and modulates lipid regulatory genes through P70 ribosomal S6 Kinase-1 inhibition in high-fat-high-fructose diet-fed mice. Pharm Biol. 2013;51(7):815–824.
  • Wang DM, Yan JQ, Chen J, Wu WL, Zhu XY, Wang Y. Naringin improves neuronal insulin signaling, brain mitochondrial function, and cognitive function in high-fat diet-induced obese mice. Cell Mol Neurobiol. 2015;35(7):1061–1071.
  • Fidelix M, Milenkovic D, Sivieri K, Cesar T. Microbiota modulation and effects on metabolic biomarkers by orange juice: a controlled clinical trial. Food Funct. 2020;11(2):1599–1610.
  • Mosqueda-Solís A, Sánchez J, Reynés B, Palou M, Portillo MP, Palou A, Picó C. Hesperidin and capsaicin, but not the combination, prevent hepatic steatosis and other metabolic syndrome-related alterations in western diet-fed rats. Sci Rep. 2018;8(1):15100–15113.
  • Rehman K, Munawar SM, Akash MSH, Buabeid MA, Chohan TA, Tariq M, Jabeen K, Arafa E-SA. Hesperidin improves insulin resistance via down-regulation of inflammatory responses: biochemical analysis and in silico validation. PLoS One. 2020;15(1):e0227637–e51.
  • Yousof Ali M, Zaib S, Mizanur Rahman M, Jannat S, Iqbal J, Kyu Park S, Seog Chang M. Poncirin, an orally active flavonoid exerts antidiabetic complications and improves glucose uptake activating Pi3k/Akt signaling pathway in insulin resistant C2c12 cells with anti-glycation capacities. Bioorg Chem. 2020;102:104061–104075.
  • He J, Zhang J, Dong L, Dang X, Wang L, Cheng L, Huang Y. Dihydromyricetin attenuates metabolic syndrome and improves insulin sensitivity by upregulating insulin receptor substrate-1 (Y612) tyrosine phosphorylation in Db/Db Mice. Diabetes Metab Syndr Obes. 2019;12:2237–2249.
  • Tang GY, Xu Y, Zhang C, Wang N, Li HB, Feng YB. Green Tea and Epigallocatechin Gallate (Egcg) for the management of nonalcoholic fatty liver diseases (Nafld): insights into the role of oxidative stress and antioxidant mechanism. Antioxidants. 2021;10(7):1076–1098.
  • Cremonini E, Wang Z, Bettaieb A, Adamo AM, Daveri E, Mills DA, Kalanetra KM, Haj FG, Karakas S, Oteiza PI, et al. (–)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: implications for steatosis and insulin resistance. Redox Biol. 2018;14:588–599.
  • Liu HW, Chan YC, Wang MF, Wei CC, Chang SJ. Dietary (–)-epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse. J Agric Food Chem. 2015;63(38):8407–8417.
  • Ma S-B, Zhang R, Miao S, Gao B, Lu Y, Hui S, Li L, Shi X-P, Wen A-D. Epigallocatechin-3-gallate ameliorates insulin resistance in hepatocytes. Mol Med Rep. 2017;15(6):3803–3809.
  • Mi Y, Qi G, Gao Y, Li R, Wang Y, Li X, Huang S, Liu X. (–)-Epigallocatechin-3-gallate ameliorates insulin resistance and mitochondrial dysfunction in Hepg2 cells: involvement of Bmal1. Mol Nutr Food Res. 2017;61(12):1700440–1700454.
  • Mi Y, Qi G, Fan R, Qiao Q, Sun Y, Gao Y, Liu X. Egcg ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the Irs/Akt and Erk/Creb/Bdnf signaling pathways in the Cns. Faseb J. 2017;31(11):4998–5011.
  • Jennings A, Welch AA, Spector T, Macgregor A, Cassidy A. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr. 2014;144(2):202–208.
  • Lee S, Keirsey KI, Kirkland R, Grunewald ZI, Fischer JG, de La Serre CB. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. J Nutr. 2018;148(2):209–219.
  • Teixeira L. d L, Pilon G, Coutinho CP, Dudonné S, Dube P, Houde V, Desjardins Y, Lajolo FM, Marette A, Hassimotto NMA, et al. Purple Grumixama Anthocyanins (Eugenia Brasiliensis Lam.) attenuate obesity and insulin resistance in high-fat diet mice. Food Funct. 2021;12(8):3680–3691.
  • Mollica A, Locatelli M, Macedonio G, Carradori S, Sobolev AP, De Salvador RF, Monti SM, Buonanno M, Zengin G, Angeli A, et al. Microwave-assisted extraction, Hplc analysis, and inhibitory effects on carbonic anhydrase I, Ii, Va, and Vii isoforms of 14 Blueberry Italian cultivars. J Enzyme Inhib Med Chem. 2016;31(sup4):1–6.
  • Queen A, Khan P, Azam A, Hassan MI. Understanding the role and mechanism of carbonic anhydrase V in obesity and its therapeutic implications. Curr Protein Pept Sci. 2018;19(9):909–923.
  • Xu JF, Yang LJ, Wang R, Zeng K, Fan BY, Zhao ZB. The Biflavonoids as protein tyrosine phosphatase 1b inhibitors from selaginella uncinata and their antihyperglycemic action. Fitoterapia. 2019;137:104255–104262.
  • Guevara-Cruz M, Godinez-Salas ET, Sanchez-Tapia M, Torres-Villalobos G, Pichardo-Ontiveros E, Guizar-Heredia R, Arteaga-Sanchez L, Gamba G, Mojica-Espinosa R, Schcolnik-Cabrera A, et al. Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle Ampk activation in obese subjects. BMJ Open Diab Res Care. 2020;8(1):e000948.
  • Sadiku ME, Car N, Begolli L, Blaslov K, Haliti E, Bahtiri E. The differential influence of glimepiride and glibenclamide on insulin resistance and adiponectin levels in patients with type 2 diabetes. Endocr J. 2019;66(10):915–921.
  • Herman R, Kravos NA, Jensterle M, Janez A, Dolzan V. Metformin and insulin resistance: a review of the underlying mechanisms behind changes in glut4-mediated glucose transport. Int J Mol Sci. 2022;23(3):1264.
  • Cree-Green M, Bergman BC, Cengiz E, Fox LA, Hannon TS, Miller K, Nathan B, Pyle L, Kahn D, Tansey M, et al. Metformin improves peripheral insulin sensitivity in youth with type 1 diabetes. J Clin Endocrinol Metab. 2019;104(8):3265–3278.
  • Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020;25(8):1987.
  • Ding X, Guo L, Zhang Y, Fan S, Gu M, Lu Y, Jiang D, Li Y, Huang C, Zhou Z, et al. Extracts of Pomelo peels prevent high-fat diet-induced metabolic disorders in C57bl/6 Mice through activating the Pparalpha and Glut4 pathway. PLoS One. 2013;8(10):e77915.