365
Views
5
CrossRef citations to date
0
Altmetric
Review

Novel strategies for development of hemorrhagic fever arenavirus live-attenuated vaccines

&
Pages 1113-1121 | Received 19 Jan 2016, Accepted 20 Apr 2016, Published online: 13 May 2016

References

  • Buchmeier MJ, de la Torre, JC, Peters, CJ. Arenaviridae: The Viruses and Their Replication. In: David Knipe P, Peter Howley, MD, Diane Griffin, MD, Robert Lamb, S, Malcolm Martin, MD, Bernard Roizman, S, Stephen Straus, MD, editors. Fields Virology. 5th ed. vol II, Philadelphia (PA): Lippincott Williams & Wilkins; 2007. p 1791–1827.
  • Bray M. Pathogenesis of viral hemorrhagic fever. Curr Opin Immunol. 2005;17:399–403.
  • Freedman DO, Woodall J. Emerging infectious diseases and risk to the traveler. Med Clin North Am. 1999;83:865–883.
  • Andersen KG, Shapiro BJ, Matranga CB, et al. Clinical sequencing uncovers origins and evolution of lassa virus. Cell. 2015;162:738–750.
  • Shaffer JG, Grant DS, Schieffelin JS, et al. Lassa fever in post-conflict sierra leone. PLoS Negl Trop Dis. 2014;8:e2748.
  • McCormick JB. Clinical, epidemiologic, and therapeutic aspects of Lassa fever. Med Microbiol Immunol. 1986;175:153–155.
  • Lo Iacono G, Cunningham AA, Fichet-Calvet E, et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of lassa fever. PLoS Negl Trop Dis. 2015;9:e3398.
  • Falzarano D, Feldmann H. Vaccines for viral hemorrhagic fevers - progress and shortcomings. Curr Opin Virol. 2013;3:343–351.
  • Peters CJ. Human infection with arenaviruses in the Americas. Curr Top Microbiol Immunol. 2002;262:65–74.
  • Barton LL. Lymphocytic choriomeningitis virus: a neglected central nervous system pathogen. Clin Infect Dis. 1996;22:197.
  • Jahrling PB, Peters CJ. Lymphocytic choriomeningitis virus. A neglected pathogen of man. Arch Pathol Lab Med. 1992;116:486–488.
  • Borio L, Inglesby T, Peters CJ, et al. Hemorrhagic fever viruses as biological weapons: medical and public health management. Jama. 2002;287:2391–2405.
  • Damonte EB, Coto CE. Treatment of arenavirus infections: from basic studies to the challenge of antiviral therapy. Adv Virus Res. 2002;58:125–155.
  • Jahrling PB, Hesse RA, Eddy GA, et al. Lassa virus infection of rhesus monkeys: pathogenesis and treatment with ribavirin. J Infect Dis. 1980;141:580–589.
  • Rodriguez M, McCormick JB, Weissenbacher MC. Antiviral effect of ribavirin on Junin virus replication in vitro. Rev Argent Microbiol. 1986;18:69–74.
  • Enria DA, Briggiler AM, Sanchez Z. Treatment of argentine hemorrhagic fever. Antiviral Res. 2008;78:132–139.
  • Enria D, Franco SG, Ambrosio A, et al. Current status of the treatment of argentine hemorrhagic fever. Med Microbiol Immunol. 1986;175:173–176.
  • Zapata J, Poonia B, Bryant J, et al. An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunity. Virol J. 2013;10:52.
  • Lukashevich IS, Patterson J, Carrion R, et al. A live attenuated vaccine for Lassa fever made by reassortment of lassa and mopeia viruses. J Virol. 2005;79:13934–13942.
  • Carrion R, Bredenbeek P, Jiang X, et al. Vaccine platforms to control arenaviral hemorrhagic fevers. J Vaccines Vaccin. 2012;3:1000160.
  • Jahrling PB. Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J Med Virol. 1983;12:93–102.
  • Jahrling PB, Peters CJ. Passive antibody therapy of Lassa fever in cynomolgus monkeys: importance of neutralizing antibody and Lassa virus strain. Infect Immun. 1984;44:528–533.
  • Jahrling PB, Peters CJ, Stephen EL. Enhanced treatment of Lassa fever by immune plasma combined with ribavirin in cynomolgus monkeys. J Infect Dis. 1984;149:420–427.
  • Monath TP, Casals J. Diagnosis of Lassa fever and the isolation and management of patients. Bull World Health Organ. 1975;52:707–715.
  • Perez M, Craven RC, de la Torre JC. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A. 2003;100:12978–12983.
  • Strecker T, Eichler R, Meulen J, et al. Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. J Virol. 2003;77:10700–10705.
  • Emonet SE, Urata S, de la Torre JC. Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology. 2011;411:416–425.
  • Lee KJ, de la Torre JC. Reverse genetics of arenaviruses. Curr Top Microbiol Immunol. 2002;262:175–193.
  • Albarino CG, Bergeron E, Erickson BR, et al. Efficient reverse genetics generation of infectious junin viruses differing in glycoprotein processing. J Virol. 2009;83:5606–5614.
  • Albarino CG, Bird BH, Chakrabarti AK, et al. Efficient rescue of recombinant Lassa virus reveals the influence of S segment noncoding regions on virus replication and virulence. J Virol. 2011;85:4020–4024.
  • Cheng BY, Ortiz-Riano E, de la Torre JC, et al. Generation of recombinant arenavirus for vaccine development in FDA-approved Vero cells. J Vis Exp. 2013. doi:10.3791/50662.
  • Emonet SF, Garidou L, McGavern DB, et al. Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc Natl Acad Sci U S A. 2009;106:3473–3478.
  • Rodrigo WW, de la Torre JC, Martinez-Sobrido L. Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J Virol. 2011;85:1684–1695.
  • Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004;22:346–353.
  • Kanaya S, Yamada Y, Kinouchi M, et al. Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol. 2001;53:290–298.
  • Lavner Y, Kotlar D. Codon bias as a factor in regulating expression via translation rate in the human genome. Gene. 2005;345:127–138.
  • Urrutia AO, Hurst LD. Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics. 2001;159:1191–1199.
  • Yang C, Skiena S, Futcher B, et al. Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice. Proc Natl Acad Sci U S A. 2013;110:9481–9486.
  • Gao J, Meng C, Chen Z, et al. Codon optimization of the rabbit hemorrhagic disease virus (RHDV) capsid gene leads to increased gene expression in Spodoptera frugiperda 9 (Sf9) cells. J Vet Sci. 2013;14:441–447.
  • Mani I, Singh V, Chaudhary DK, et al. Codon optimization of the major antigen encoding genes of diverse strains of influenza a virus. Interdiscip Sci. 2011;3:36–42.
  • Tenbusch M, Grunwald T, Niezold T, et al. Codon-optimization of the hemagglutinin gene from the novel swine origin H1N1 influenza virus has differential effects on CD4(+) T-cell responses and immune effector mechanisms following DNA electroporation in mice. Vaccine. 2010;28:3273–3277.
  • Barrett JW, Sun Y, Nazarian SH, et al. Optimization of codon usage of poxvirus genes allows for improved transient expression in mammalian cells. Virus Genes. 2006;33:15–26.
  • Bains W. Codon usage in mammalian genes is biased by sequence slippage mechanisms. DNA Seq. 1993;3:277–282.
  • Mouchiroud D, Gautier C. High codon-usage changes in mammalian genes. Mol Biol Evol. 1988;5:192–194.
  • Burns CC, Shaw J, Campagnoli R, et al. Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol. 2006;80:3259–3272.
  • Coleman JR, Papamichail D, Skiena S, et al. Virus attenuation by genome-scale changes in codon pair bias. Science. 2008;320:1784–1787.
  • Mueller S, Papamichail D, Coleman JR, et al. Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol. 2006;80:9687–9696.
  • Mueller S, Coleman JR, Papamichail D, et al. Live attenuated influenza virus vaccines by computer-aided rational design. Nat Biotechnol. 2010;28:723–726.
  • Cheng BY, Ortiz-Riano E, Nogales A, et al. Development of live-attenuated arenavirus vaccines based on codon deoptimization. J Virol. 2015;89:3523–3533.
  • Pinschewer DD, Perez M, de la Torre JC. Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation. J Virol. 2005;79:4519–4526.
  • Iwasaki M, Ngo N, Cubitt B, et al. General molecular strategy for development of arenavirus live-attenuated vaccines. J Virol. 2015;89:12166–12177.
  • Iwasaki M, Cubitt B, Sullivan BM, et al. The high degree of sequence plasticity of the arenavirus non-coding intergenic region (IGR) enables the use of a non-viral universal Synthetic IGR to attenuate arenaviruses. J Virol. 2016;90:3187–3197. doi:10.1128/JVI.03145-15.
  • Emonet SF, Seregin AV, Yun NE, et al. Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of Argentine hemorrhagic fever disease. J Virol. 2011;85:1473–1483.
  • Snoy PJ. Establishing efficacy of human products using animals. Vet Pathol Online. 2010;47:774–778.
  • Callis RT, Jahrling PB, DePaoli A. Pathology of Lassa virus infection in the rhesus monkey. Am J Trop Med Hyg. 1982;31:1038–1045.
  • Fisher-Hoch SP, Mitchell SW, Sasso DR, et al. Physiological and immunologic disturbances associated with shock in a primate model of Lassa fever. J Infect Dis. 1987;155:465–467.
  • Fisher-Hoch SP, Hutwagner L, Brown B, et al. Effective vaccine for Lassa fever. J Virol. 2000;74:6777–6783.
  • Geisbert TW, Jones S, Fritz EA, et al. Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2005;2:e183.
  • Walker DH, Johnson KM, Lange JV, et al. Experimental infection of rhesus monkeys with Lassa virus and a closely related arenavirus, mozambique virus. J Infect Dis. 1982;146:360–363.
  • Walker DH, Wulff H, Lange JV, et al. Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and mastomys natalensis. Bull World Health Organ. 1975;52:523–534.
  • Hensley LE, Smith MA, Geisbert JB, et al. Pathogenesis of lassa fever in cynomolgus macaques. Virol. 2011;8:205.
  • Carrion R, Brasky K, Mansfield K, et al. Lassa virus infection in experimentally infected marmosets: liver pathology and immunophenotypic alterations in target tissues. J Virol. 2007;81:6482–6490.
  • Carrion RJ, Patterson JL. Vaccines against viral hemorrhagic fevers: non-human primate models. Hum Vaccin. 2011;7:667–673.
  • Carrion RJ, Patterson JL. An animal model that reflects human disease: the common marmoset (Callithrix jacchus). Curr Opin Immunol. 2012;2:357–362.
  • Gowen BB, Holbrook MR. Animal models of highly pathogenic RNA viral infections: hemorrhagic fever viruses. Antivir Res. 2008;78:79–90.
  • Lukashevich I, Carrion R, Salvato M, et al. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates. Vaccine. 2008;26:5254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.