580
Views
28
CrossRef citations to date
0
Altmetric
Review

Recent advances in nontoxic Escherichia coli heat-labile toxin and its derivative adjuvants

Pages 1361-1371 | Received 24 Dec 2015, Accepted 22 Apr 2016, Published online: 12 May 2016

References

  • Clements JD, Hartzog NM, Lyon FL. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine. 1988;6:269–277.
  • da Hora VP, Conceicao FR, Dellagostin OA, et al. Non-toxic derivatives of LT as potent adjuvants. Vaccine. 2011;29:1538–1544. doi:10.1016/j.vaccine.2010.11.091. Epub 2010 Dec 14.
  • Merritt EA, Zhang Z, Pickens JC, et al. Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for cholera toxin and E. coli heat-labile enterotoxin. J Am Chem Soc. 2002;124:8818–8824.
  • Streatfield SJ, Sandkvist M, Sixma TK, et al. Intermolecular interactions between the A and B subunits of heat-labile enterotoxin from Escherichia coli promote holotoxin assembly and stability in vivo. Proc Natl Acad Sci U S A. 1992;89:12140–12144.
  • Okamoto K, Nomura T, Fujii Y, et al. Contribution of the disulfide bond of the A subunit to the action of Escherichia coli heat-labile enterotoxin. J Bacteriol. 1998;180:1368–1374.
  • Hajishengallis G, Connell TD. Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties. Vet Immunol Immunopathol. 2013;152:68–77.
  • Pickett CL, Twiddy EM, Belisle BW, et al. Cloning of genes that encode a new heat-labile enterotoxin of Escherichia coli. J Bacteriol. 1986;165:348–352.
  • Pickett CL, Twiddy EM, Coker C, et al. Cloning, nucleotide sequence, and hybridization studies of the type IIb heat-labile enterotoxin gene of Escherichia coli. J Bacteriol. 1989;171:4945–4952.
  • Nawar HF, Greene CJ, Lee CH, et al. LT-IIc, a new member of the type II heat-labile enterotoxin family, exhibits potent immunomodulatory properties that are different from those induced by LT-IIa or LT-IIb. Vaccine. 2011;29:721–727.
  • Jobling MG, Holmes RK, Otto M. Type II heat-labile enterotoxins from 50 diverse Escherichia coli isolates belong almost exclusively to the LT-IIc family and may be prophage encoded. PLoS One. 2012;7:e29898.
  • Moss J, Richardson SH. Activation of adenylate cyclase by heat-labile Escherichia coli enterotoxin. Evidence for ADP-ribosyltransferase activity similar to that of choleragen. J Clin Invest. 1978;62:281–285.
  • Sears CL, Kaper JB. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev. 1996;60:167–215.
  • Horstman AL, Kuehn MJ, Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem. 2002;277:32538–32545. Epub 2002 Jun 26.
  • Douce G, Turcotte C, Cropley I, et al. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci U S A. 1995;92:1644–1648.
  • Erume J, Partidos CD. Evaluation of the LTK63 adjuvant effect on cellular immune responses to measles virus nucleoprotein. Afr Health Sci. 2011;11:151–157.
  • Lundgren A, Bourgeois L, Carlin N, et al. Safety and immunogenicity of an improved oral inactivated multivalent enterotoxigenic Escherichia coli (ETEC) vaccine administered alone and together with dmLT adjuvant in a double-blind, randomized, placebo-controlled Phase I study. Vaccine. 2014;32:7077–7084. doi:10.1016/j.vaccine.2014.10.069. Epub 2014 Nov 5.
  • Ma Y, Luo Y, Huang X, et al. Construction of Bifidobacterium infantis as a live oral vaccine that expresses antigens of the major fimbrial subunit (CfaB) and the B subunit of heat-labile enterotoxin (LTB) from enterotoxigenic Escherichia coli. Microbiology. 2012;158:498–504. doi:10.1099/mic.0.049932-0. Epub 2011 Nov 3.
  • Lee J, Yoo J-K, Sohn H-J, et al. Protective immunity against Naegleria fowleri infection on mice immunized with the rNfa1 protein using mucosal adjuvants. Parasitol Res. 2015;114:1377–1385. doi:10.1007/s00436-015-4316-3. Epub 2015 Jan 22.
  • Marchioro SB, Fisch A, Gomes CK, et al. Local and systemic immune responses induced by a recombinant chimeric protein containing Mycoplasma hyopneumoniae antigens fused to the B subunit of Escherichia coli heat-labile enterotoxin LTB. Vet Microbiol. 2014;173:166–171. doi:10.1016/j.vetmic.2014.07.009. Epub 2014 Jul 19.
  • Harford S, Dykes CW, Hobden AN, et al. Inactivation of the Escherichia coli heat-labile enterotoxin by in vitro mutagenesis of the A-subunit gene. Eur J Biochem. 1989;183:311–316.
  • Tsuji T, Inoue T, Miyama A, et al. A single amino acid substitution in the A subunit of Escherichia coli enterotoxin results in a loss of its toxic activity. J Biol Chem. 1990;265:22520–22525.
  • Pizza M, Domenighini M, Hol W, et al. Probing the structure-activity relationship of Escherichia coli LT-A by site-directed mutagenesis. Mol Microbiol. 1994;14:51–60.
  • Lin I-P, Hsu Y-S, Kang S-W, et al. Escherichia coli heat-labile detoxified enterotoxin modulates dendritic cell function and attenuates allergic airway inflammation. PLoS One. 2014;9:e90293. doi:10.1371/journal.pone.0090293. eCollection 2014.
  • Di Tommaso A, Saletti G, Pizza M, et al. Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant. Infect Immun. 1996;64:974–979.
  • Byrd W, Boedeker EC. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation. Vet Immunol Immunopathol. 2013;152:57–67.
  • Giuliani MM, Del Giudice G, Giannelli V, et al. Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity. J Exp Med. 1998;187:1123–1132.
  • Barrette RW, Szczepanek SM, Rood D, et al. Use of inactivated Escherichia coli enterotoxins to enhance respiratory mucosal adjuvanticity during vaccination in swine. Clin Vaccine Immunol. 2011;18:1996–1998. doi:10.1128/CVI.05273-11. Epub 2011 Sep 14.
  • Bjarnarson SP, Adarna BC, Benonisson H, et al. The adjuvant LT-K63 can restore delayed maturation of follicular dendritic cells and poor persistence of both protein- and polysaccharide-specific antibody-secreting cells in neonatal mice. J Immunol. 2012; 189:1265–1273. doi:10.4049/jimmunol.1200761. Epub 2012 Jul 2.
  • Luiz WB, Rodrigues JF, Crabb JH, et al. Maternal vaccination with a fimbrial tip adhesin and passive protection of neonatal mice against lethal human enterotoxigenic Escherichia coli challenge. Infect Immun. 2015;83:4555–4564.
  • Chong C, Friberg M, Clements JD. LT(R192G), a non-toxic mutant of the heat-labile enterotoxin of Escherichia coli, elicits enhanced humoral and cellular immune responses associated with protection against lethal oral challenge with Salmonella spp. Vaccine. 1998;16:732–740.
  • Sincock SA, Hall ER, Woods CM, et al. Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates. Vaccine. 2016;34:284–291. doi:10.1016/j.vaccine.2015.11.017. Epub 2015 Nov 18.
  • Zhang W, Zhang C, Francis DH, et al. Genetic fusions of heat-labile (LT) and heat-stable (ST) toxoids of porcine enterotoxigenic Escherichia coli elicit neutralizing anti-LT and anti-STa antibodies. Infect Immun. 2010;78:316–325.
  • Liu W, Yuan C, Bao J, et al. Generation of an attenuated strain oral vaccine candidate using a novel double selection platform in Escherichia coli. Appl Microbiol Biotechnol. 2015;99:855–867.
  • Liu M, Zhang C, Mateo K, et al. Modified heat-stable toxins (hSTa) of enterotoxigenic Escherichia coli lose toxicity but display antigenicity after being genetically fused to heat-labile toxoid LT(R192G). Toxins (Basel). 2011;3:1146–1162.
  • Ruan X, Robertson DC, Nataro JP, et al. Characterization of heat-stable (STa) toxoids of enterotoxigenic Escherichia coli fused to double mutant heat-labile toxin peptide in inducing neutralizing Anti-STa antibodies. Infect Immun. 2014;82:1823–1832.
  • Greene CJ, Chadwick CM, Mandell LM, et al. LT-IIb(T13I), a non-toxic type II heat-labile enterotoxin, augments the capacity of a ricin toxin subunit vaccine to evoke neutralizing antibodies and protective immunity. PLoS One. 2013;8:e69678.
  • Berenson CS, Nawar HF, Yohe HC, et al. Mammalian cell ganglioside-binding specificities of E. coli enterotoxins LT-IIb and variant LT-IIb(T13I). Glycobiology. 2010;20:41–54. doi:10.1093/glycob/cwp141. Epub 2009 Sep 12.
  • Nawar HF, King-Lyons ND, Hu JC, et al. LT-IIc, a new member of the type II heat-labile enterotoxin family encoded by an Escherichia coli strain obtained from a nonmammalian host. Infect Immun. 2010;78:4705–4713. doi:10.1128/IAI.00730-10. Epub 2010 Aug 16.
  • Connell TD, Holmes RK. Molecular genetic analysis of ganglioside GD1b-binding activity of Escherichia coli type IIa heat-labile enterotoxin by use of random and site-directed mutagenesis. Infect Immun. 1992;60:63–70.
  • Nawar HF, Arce S, Russell MW, et al. Mutants of type II heat-labile enterotoxin LT-IIa with altered ganglioside-binding activities and diminished toxicity are potent mucosal adjuvants. Infect Immun. 2007;75:621–633. Epub 2006 Nov 21.
  • Wimer-Mackin S, Holmes RK, Wolf AA, et al. Characterization of receptor-mediated signal transduction by Escherichia coli type IIa heat-labile enterotoxin in the polarized human intestinal cell line T84. Infect Immun. 2001;69:7205–7212.
  • Nawar HF, Arce S, Russell MW, et al. Mucosal adjuvant properties of mutant LT-IIa and LT-IIb enterotoxins that exhibit altered ganglioside-binding activities. Infect Immun. 2005;73:1330–1342.
  • Norton EB, Lawson LB, Freytag LC, et al. Characterization of a mutant Escherichia coli heat-labile toxin, LT(R192G/L211A), as a safe and effective oral adjuvant. Clin Vaccine Immunol. 2011;18:546–551. doi:10.1128/CVI.00538-10. Epub 2011 Feb 2.
  • Leach S, Clements JD, Kaim J, et al. The adjuvant double mutant Escherichia coli heat labile toxin enhances IL-17A production in human T cells specific for bacterial vaccine antigens. PLoS One. 2012;7:e51718. doi:10.1371/journal.pone.0051718. Epub 2012 Dec 20.
  • Albert MJ, Haridas S, Ebenezer M, et al. Immunization with a double-mutant (R192G/L211A) of the Heat-Labile Enterotoxin of Escherichia coli offers partial protection against Campylobacter jejuni in an adult mouse intestinal colonization model. PLoS One. 2015;10:e0142090.
  • Holmgren J, Bourgeois L, Carlin N, et al. Development and preclinical evaluation of safety and immunogenicity of an oral ETEC vaccine containing inactivated E. coli bacteria overexpressing colonization factors CFA/I, CS3, CS5 and CS6 combined with a hybrid LT/CT B subunit antigen, administered alone and together with dmLT adjuvant. Vaccine. 2013;31:2457–2464. doi:10.1016/j.vaccine.2013.03.027. Epub 2013 Mar 27.
  • Heine SJ, Diaz-McNair J, Andar AU, et al. Intradermal delivery of Shigella IpaB and IpaD type III secretion proteins: kinetics of cell recruitment and antigen uptake, mucosal and systemic immunity, and protection across serotypes. J Immunol. 2014;192:1630–1640. doi:10.4049/jimmunol.1302743. Epub 2014 Jan 22.
  • Zhang C, Knudsen DE, Liu M, et al. Toxicity and immunogenicity of Enterotoxigenic Escherichia coli heat-labile and heat-stable toxoid fusion 3xSTa(A14Q)-LT(S63K/R192G/L211A) in a murine model. PLoS One. 2013;8:e77386.
  • Jeon BW, Nandre RM, Lee JH. Oral immunization with an attenuated Salmonella Gallinarum mutant as a fowl typhoid vaccine with a live adjuvant strain secreting the B subunit of Escherichia coli heat-labile enterotoxin. BMC Vet Res. 2013;9:96.
  • Chaudhari AA, Lee JH. Evaluation of the adjuvant effect of Salmonella-based Escherichia coli heat-labile toxin B subunits on the efficacy of a live Salmonella-delivered avian pathogenic Escherichia coli vaccine. Avian Pathol. 2013;42:365–372.
  • Gil LA, da Cunha CE, Moreira GM, et al. Production and evaluation of a recombinant chimeric vaccine against clostridium botulinum neurotoxin types C and D. PLoS One. 2013;8:e69692.
  • Jawale CV, Lee JH. Salmonella enterica serovar enteritidis ghosts carrying the Escherichia coli heat-labile enterotoxin B subunit are capable of inducing enhanced protective immune responses. Clin Vaccine Immunol. 2014;21:799–807.
  • Sun Z, Lawson S, Langenhorst R, et al. Construction and immunogenicity evaluation of an epitope-based antigen against swine influenza A virus using Escherichia coli heat-labile toxin B subunit as a carrier-adjuvant. Vet Microbiol. 2013;164:229–238. doi:10.1016/j.vetmic.2013.02.010. Epub 2013 Feb 26.
  • Thanasarasakulpong A, Poolperm P, Tankaew P, et al. Protectivity conferred by immunization with intranasal recombinant outer membrane protein H from Pasteurella multocida serovar A:1 in chickens. J Vet Med Sci. 2015;77:321–326.
  • Qi Y, Kang H, Zheng X, et al. Incorporation of membrane-anchored flagellin or Escherichia coli heat-labile enterotoxin B subunit enhances the immunogenicity of rabies virus-like particles in mice and dogs. Front Microbiol. 2015;6:169.
  • Thiam F, Charpilienne A, Poncet D, et al. B subunits of cholera toxin and thermolabile enterotoxin of Escherichia coli have similar adjuvant effect as whole molecules on rotavirus 2/6-VLP specific antibody responses and induce a Th17-like response after intrarectal immunization. Microb Pathog. 2015;89:27–34.
  • Todoroff J, Lemaire MM, Fillee C, et al. Mucosal and systemic immune responses to Mycobacterium tuberculosis antigen 85A following its co-delivery with CpG, MPLA or LTB to the lungs in mice. PLoS One. 2013;8:e63344. doi:10.1371/journal.pone.0063344. Print 2013.
  • Ji J, Griffiths KL, Milburn PJ, et al. The B subunit of Escherichia coli heat-labile toxin alters the development and antigen-presenting capacity of dendritic cells. J Cell Mol Med. 2015;19:2019–2031. doi:10.1111/jcmm.12599. Epub 2015 Jul 1.
  • El-Kassas S, Faraj R, Martin K, et al. Cell clustering and delay/arrest in T-cell division implicate a novel mechanism of immune modulation by E. coli heat-labile enterotoxin B-subunits. Cell Immunol. 2015; 295:150–162. doi:10.1016/j.cellimm.2015.02.014. Epub 2015 Mar 5.
  • Groux-Degroote S, Guerardel Y, Julien S, et al. Gangliosides in Breast Cancer: New Perspectives. Biochemistry (Mosc). 2015;80:808–819. doi:10.1134/S0006297915070020.
  • Nagafuku M, Okuyama K, Onimaru Y, et al. CD4 and CD8 T cells require different membrane gangliosides for activation. Proc Natl Acad Sci U S A. 2012;109:E336–E342. doi:10.1073/pnas.1114965109. Epub 2012 Jan 17.
  • Inokuchi J, Nagafuku M, Ohno I, et al. Distinct selectivity of gangliosides required for CD4(+) T and CD8(+) T cell activation. Biochim Biophys Acta. 2015; 1851:98–106. doi:10.1016/j.bbalip.2014.07.013. Epub 2014 Sep 3.
  • Holmgren J, Elwing H, Fredman P, et al. Gangliosides as receptors for bacterial toxins and Sendai virus. Adv Exp Med Biol. 1980;125:453–470.
  • Galvan EM, Diema CD, Roth GA, et al. Ability of blood group A-active glycosphingolipids to act as Escherichia coli heat-labile enterotoxin receptors in HT-29 cells. J Infect Dis. 2004;189:1556–1564.
  • Holmner A, Mackenzie A, Okvist M, et al. Crystal structures exploring the origins of the broader specificity of escherichia coli heat-labile enterotoxin compared to cholera toxin. J Mol Biol. 2011;406:387–402. doi:10.1016/j.jmb.2010.11.060. Epub 2010 Dec 17.
  • Jobling MG, Holmes RK. Mutational analysis of ganglioside GM(1)-binding ability, pentamer formation, and epitopes of cholera toxin B (CTB) subunits and CTB/heat-labile enterotoxin B subunit chimeras. Infect Immun. 2002;70:1260–1271.
  • Amin T, Larkins A, James RF, et al. Generation of a monoclonal antibody that recognizes the amino-terminal decapeptide of the B-subunit of Escherichia coli heat-labile enterotoxin. A new probe for studying toxin assembly intermediates. J Biol Chem. 1995;270:20143–20150.
  • Chung WY, Carter R, Hardy T, et al. Inhibition of Escherichia coli heat-labile enterotoxin B subunit pentamer (EtxB5) assembly in vitro using monoclonal antibodies. J Biol Chem. 2006;281:39465–39470. Epub 2006 Oct 12.
  • Fukuta S, Magnani JL, Twiddy EM, et al. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect Immun. 1988;56:1748–1753.
  • Zoeteweij JP, Epperson DE, Porter JD, et al. GM1 binding-deficient exotoxin is a potent noninflammatory broad spectrum intradermal immunoadjuvant. J Immunol. 2006;177:1197–1207.
  • Tsuji T, Honda T, Miwatani T, et al. Analysis of receptor-binding site in Escherichia coli enterotoxin. J Biol Chem. 1985;260:8552–8558.
  • Jobling MG, Holmes RK. Analysis of structure and function of the B subunit of cholera toxin by the use of site-directed mutagenesis. Mol Microbiol. 1991;5:1755–1767.
  • Lee CH, Masso-Welch P, Hajishengallis G, et al. TLR2-dependent modulation of dendritic cells by LT-IIa-B5, a novel mucosal adjuvant derived from a type II heat-labile enterotoxin. J Leukoc Biol. 2011;90:911–921. doi:10.1189/jlb.0511236. Epub 2011 Jul 26.
  • Liang S, Hosur KB, Lu S, et al. Mapping of a microbial protein domain involved in binding and activation of the TLR2/TLR1 heterodimer. J Immunol. 2009;182:2978–2985. doi:10.4049/jimmunol.0803737.
  • Cody V, Pace J, Nawar HF, et al. Structure-activity correlations of variant forms of the B pentamer of Escherichia coli type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding. Acta Crystallogr D Biol Crystallogr. 2012;68:1604–1612. doi:10.1107/S0907444912038917. Epub 2012 Nov 9.
  • Nashar TO, Webb HM, Eaglestone S, et al. Potent immunogenicity of the B subunits of Escherichia coli heat-labile enterotoxin: receptor binding is essential and induces differential modulation of lymphocyte subsets. Proc Natl Acad Sci U S A. 1996;93:226–230.
  • Fraser SA, de Haan L, Hearn AR, et al. Mutant Escherichia coli heat-labile toxin B subunit that separates toxoid-mediated signaling and immunomodulatory action from trafficking and delivery functions. Infect Immun. 2003;71:1527–1537.
  • Guidry JJ, Cardenas L, Cheng E, et al. Role of receptor binding in toxicity, immunogenicity, and adjuvanticity of Escherichia coli heat-labile enterotoxin. Infect Immun. 1997;65:4943–4950.
  • Takahashi I, Kiyono H, Jackson RJ, et al. Epitope maps of the Escherichia coli heat-labile toxin B subunit for development of a synthetic oral vaccine. Infect Immun. 1996;64:1290–1298.
  • Jacob CO, Pines M, Arnon R. Neutralization of heat-labile toxin of E. coli by antibodies to synthetic peptides derived from the B subunit of cholera toxin. Embo J. 1984;3:2889–2893.
  • Jacob CO, Sela M, Arnon R. Antibodies against synthetic peptides of the B subunit of cholera toxin: crossreaction and neutralization of the toxin. Proc Natl Acad Sci U S A. 1983;80:7611–7615.
  • Lewis DJ, Huo Z, Barnett S, et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One. 2009;4:e6999. doi:10.1371/journal.pone.0006999.
  • Hagiwar Y, Tsuji T, Iwasaki T, et al. Effectiveness and safety of mutant Escherichia coli heat-labile enterotoxin (LT H44A) as an adjuvant for nasal influenza vaccine. Vaccine. 2001;19:2071–2079.
  • Hagiwara Y, Iwasaki T, Asanuma H, et al. Effects of intranasal administration of cholera toxin (or Escherichia coli heat-labile enterotoxin) B subunits supplemented with a trace amount of the holotoxin on the brain. Vaccine. 2001;19:1652–1660.
  • Young BE, Sadarangani SP, Leo YS. The avian influenza vaccine Emerflu. Why did it fail? Expert Rev Vaccines. 2015;14:1125–1134. doi:10.1586/14760584.2015.1059760. Epub 2015 Jun 22.
  • Bagley K, Xu R, Ota-Setlik A, et al. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses. Hum Vaccin Immunother. 2015;11:2228–2240. doi:10.1080/21645515.2015.1026498.
  • Li R, Chowdhury MY, Kim J-H, et al. Mucosally administered Lactobacillus surface-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) Induce broadly protective immune responses against divergent influenza subtypes. Vet Microbiol. 2015;179:250–263. doi:10.1016/j.vetmic.2015.07.020. Epub 2015 Jul 17.
  • Chowdhury MY, Li R, Kim J-H, et al. Mucosal vaccination with recombinant Lactobacillus casei-displayed CTA1-conjugated consensus matrix protein-2 (sM2) induces broad protection against divergent influenza subtypes in BALB/c mice. PLoS One. 2014;9:e94051. doi:10.1371/journal.pone.0094051. eCollection 2014.
  • de Haan L, Verweij WR, Feil IK, et al. Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the Escherichia coli heat-labile enterotoxin and its B subunit. Immunology. 1998;94:424–430.
  • Giannelli V, Fontana MR, Giuliani MM, et al. Protease susceptibility and toxicity of heat-labile enterotoxins with a mutation in the active site or in the protease-sensitive loop. Infect Immun. 1997;65:331–334.
  • Hajishengallis G, Tapping RI, Martin MH, et al. Toll-like receptor 2 mediates cellular activation by the B subunits of type II heat-labile enterotoxins. Infect Immun. 2005;73:1343–1349.
  • Backstrom M, Shahabi V, Johansson S, et al. Structural basis for differential receptor binding of cholera and Escherichia coli heat-labile toxins: influence of heterologous amino acid substitutions in the cholera B-subunit. Mol Microbiol. 1997;24:489–497.
  • Iida T, Tsuji T, Honda T, et al. A single amino acid substitution in B subunit of Escherichia coli enterotoxin affects its oligomer formation. J Biol Chem. 1989;264:14065–14070.
  • Alone PV, Garg LC. Secretory and GM1 receptor binding role of N-terminal region of LTB in Vibrio cholerae. Biochem Biophys Res Commun. 2008;376:770–774. doi:10.1016/j.bbrc.2008.09.066. Epub 2008 Sep 22.
  • Mudrak B, Rodriguez DL, Kuehn MJ. Residues of heat-labile enterotoxin involved in bacterial cell surface binding. J Bacteriol. 2009;191:2917–2925. doi:10.1128/JB.01622-08. Epub 2009 Mar 6.
  • Schwarz A, Futerman AH. The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies. Biochim Biophys Acta. 1996;1286:247–267.
  • Chen C, Przedpelski A, Tepp WH, et al. Heat-labile Enterotoxin IIa, a platform to deliver heterologous proteins into neurons. MBio. 2015;6:e00734. doi:10.1128/mBio.00734-15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.