1,311
Views
28
CrossRef citations to date
0
Altmetric
Review

Vaccine platforms to control Lassa fever

&
Pages 1135-1150 | Received 04 Mar 2016, Accepted 27 Apr 2016, Published online: 24 May 2016

References

  • Lukashevich IS, Salvato MS. Lassa virus genome. Curr Genet. 2006;7:351–379.
  • Salvato MS, Clegg JCS, Buchmeier MJ, et al. Family arenaviridae. In: King AMQ, Adams MJ, Carstens EB, et al., editors. Viral taxonomy-ninth report of the international committee on taxonomy of viruses. Amsterdam: Academic Press, Elsevier Inc.; 2012. p. 715–723.
  • Lenz O, Ter Meulen J, Klenk HD, et al. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A. 2001;98(22):12701–12705. doi:10.1073/pnas.221447598.
  • Radoshitzky SR, Bào Y, Buchmeier MJ, et al. Past, present, and future of arenavirus taxonomy. Arch Virol. 2015;160:1851–1874.
  • Buchmeier M, Charrel RN, Clegg CS et al. Four (4) new species in the genus Mammarenavirus, family Arenaviridae. ICTV, Technical Report. 2015:doi:10.13140/RG.2.1.4215.2805.
  • Bowen M, Rollin P, Ksiazek T, et al. Genetic diversity among Lassa virus strains. J Virol. 2000;74(15):6992–7004.
  • Buckley SM, Casals J. Lassa fever, a new virus disease of man from West Africa: III. Isolation and characterization of the Virus. Am J Trop Med Hyg. 1970;19(4):680–691.
  • Leski TA, Stockelman MG, Moses LM, et al. Sequence variability and geographic distribution of lassa virus, sierra leone. Emerg Infect Dis. 2015;21(4):609–618.
  • Gunther S, Emmerich P, Laue T, et al. Imported lassa fever in Germany: molecular characterization of a new lassa virus strain. Emerg Infect Dis. 2000;6(5):466–476.
  • Andersen KG, Shapiro BJ, Matranga CB, et al. Clinical sequencing uncovers origins and evolution of Lassa Virus. Cell. 2015;162(4):738–750.
  • Stenglein MD, Jacobson ER, Chang L-W, et al. Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections. PLoS Pathog. 2015;11(5):e1004900.
  • Safronetz D, Job E, Lopez JE, et al. Detection of lassa virus, mali. Emerg Infect Dis. 2010;16(7):1123–1126.
  • Safronetz D, Sogoba N, Lopez JE, et al. Geographic distribution and genetic characterization of Lassa Virus in sub-saharan mali. PLoS Negl Trop Dis. 2013;7(12):e2582.
  • Sogoba N, Feldmann H, Safronetz D. Lassa fever in West Africa: Evidence for an expanded region of endemicity. Zoonoses Public Health. 2012;59:43–47.
  • Dzotsi EK, Ohene SA, Asiedu-Bekoe F, et al. The first cases of Lassa fever in Ghana. Ghana Med J. 2012;46(3):166–170.
  • Kouadio L, Nowak K, Akoua-Koffi C, et al. Lassa virus in multimammate rats, Côte d’Ivoire, 2013. Emerg Infect Dis. 2015;21(8):1481–1483.
  • Emmerich P, Gunter S, Schmitz H. Strain-specific antibody response to Lassa virus in the local population of West AFrica. J Clin Virol. 2008;42(1):40–44.
  • Borio L, Inglesby T, Peters CJ, et al. Hemorrhagic fever viruses as biological weapons: medical and public health management. Jama. 2002;287(18):2391–2405.
  • Lalis A, Leblois R, Lecompte E, et al. The impact of human conflict on the genetics of mastomys natalensis and Lassa virus in West Africa. PLoS ONE. 2012;7(5):e37068.
  • McCormick JB, Webb PA, Krebs JW, et al. A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis. 1987;155:437–444.
  • Khan SH, Goba A, Chu M, et al. New opportunities for field research on the pathogenesis and treatment of Lassa fever. Antiviral Res. 2008;78(1):103–115.
  • Hartnett JN, Boisen ML, Oottamasathien D, et al. Current and emerging strategies for the diagnosis, prevention and treatment of Lassa fever. Future Virol. 2015;10(5):559–584.
  • Frame JD, Baldwin JM Jr, Gocke DJ, et al. Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am J Trop Med Hyg. 1970;19(4):670–676.
  • Andersen KG, Shylakhter I, Tabrizi S, et al. Genome-wide scans provide evidence for positive selection of genes implicated in Lassa fever. Philos Trans R Soc B Biol Sci. 2012;367(1590):868–877.
  • Sabeti PC, Varilly P, Fry B, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449(7164):913–918.
  • Popescu M, Schaefer H, Lehmann-Grube F. Homologous interference of lymphocytic choriomeningitis virus: detection and measurement of interference focus-forming units. J Virol. 1976;20(1):1–8.
  • De BK, Nayak DP. Defective interfering influenza viruses and host cells: establishment and maintenance of persistent influenza virus infection in MDBK and HeLa cells. J Virol. 1980;36(3):847–859.
  • McCormick JB, Fisher-Hoch SP. Lassa fever. Curr Top Microbiol Immunol. 2002;262:75–109.
  • Keenlyside RA, McCormick JB, Webb PA, et al. Case-control study of Mastomys natalensis and humans in Lassa virus-infected households in Sierra Leone. Am JTrop Med Hyg. 1983;32(4):829–837.
  • Demby AH, Inapogui A, Kargbo K, et al. Lassa fever in Guinea: II. Distribution and prevalence of Lassa virus infection in small mammals. Vector Borne Zoonotic Dis. 2001;1(4):283–297.
  • Demartini J, Green DE, Monath TP. Lassa virus infection of Mastomy natalensis in Sierra Leone. Gros and microscopical findings in infected and uninfected animals. Bull World Health Organ. 1975;52(4–6):651–663.
  • Fichet-Calvet E, Becker-Ziaja B, Koivogui L, et al. Lassa serology in natural populations of rodents and horizontal transmission. Vector Borne Zoonotic Dis. 2014;14(9):665–674. doi:10.1089/vbz.2013.1484. PubMed PMID: PMC4170823.
  • Pinschewer DD, Perez M, Jeetendra E, et al. Kinetics of protective antibodies are determined by the viral surface antigen. J Clin Invest. 2004;114(7):988–993. doi:10.1172/jci200422374.
  • Sommerstein R, Flatz L, Remy MM, et al. Arenavirus glycan shield promotes neutralizing antibody evasion and protracted infection. PLoS Pathog. 2015;11(11):e1005276. doi:10.1371/journal.ppat.1005276.
  • Kiley MP, Swanepoel R, Mitchell SW, et al. Serological and biological evidence that Lassa-complex arenaviruses are widely distributed in Africa. Med Microbiol Immunol. 1986;175(2–3):161–163.
  • Borremans B, Vossen R, Becker-Ziaja B, et al. Shedding dynamics of Morogoro virus, an African arenavirus closely related to Lassa virus, in its natural reservoir host Mastomys natalensis. Naturecom/Scientific Rep. 2015;5:10445.
  • Goyens J, Reijniers J, Borremans B, et al. Density thresholds for Mopeia virus invasion and persistence in its host Mastomys natalensis. J Theoret Biol. 2012;317:55–61.
  • Georges A, Gonzalez JP, Abdul-Wahid S, et al. Antibodies to Lassa and Lassa-like viruses in man and mammals in the Central African Republic. Trans R Soc Trop Med Hyg. 1985;79(1):78–79.
  • Kiley MP, Lange JV, Johnson KM. Protection of rhesus monkeys from Lassa virus by immunisation with closely related Arenavirus. Lancet. 1979;2:738.
  • Lukashevich IS, Vasiuchkov AD, Stel’makh TA, et al. The isolation and characteristics of reassortants between the Lassa and Mopeia arenaviruses. Vopr Virusol. 1991;36(2):146–150.
  • Lukashevich IS. Generation of reassortants between African arenaviruses. Virology. 1992;188:600–605.
  • Meulen JT, Lukashevich I, Sidibe K, et al. Hunting of peridomestic rodents and consumption of their meat as possible risk factors for rodent-to-human transmission of Lassa virus in the republic of Guinea. Am J Trop Med Hyg. 1996;55(6):661–666.
  • Lo Iacono G, Cunningham AA, Fichet-Calvet E, et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of Lassa fever. PLoS Negl Trop Dis. 2015;9(1):e3398. doi:10.1371/journal.pntd.0003398.
  • Lukashevich IS. Chapter 1: “Pathogenesis of the Old World Arenaviruses in Humans”. In: Singh SK, editor. Human emerging and re-emerging infections: Viral & parasitic infections. Vol. 1. Hoboken (NJ): Willey; 2016. p. 1–27.
  • Cao W, Henry MD, Borrow P, et al. Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science. 1998;282:2079–2081.
  • Baize S, Pannetier D, Faure C, et al. Role of interferons in the control of Lassa virus replication in human dendritic cells and macrophages. Microbes Infect. 2006;8(5):1194–1202.
  • Baize S, Kaplon J, Faure C, et al. Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol. 2004;172(5):2861–2869.
  • Baize S, Marianneau P, Loth P, et al. Early and strong immune responses are associated with control of viral replication and recovery in Lassa virus-infected cynomolgus monkeys. J Virol. 2009;83(11):5890–5903. doi:10.1128/jvi.01948-08.
  • Hayes MW, Carrion R, Nunneley J, et al. Pathogenic old world arenaviruses Inhibit TLR2/Mal-dependent Proinflammatory cytokines in vitro. J Virol. 2012;86(13):7216–7226.
  • Lukashevich IS, Maryankova RF, Vladyko AS, et al. Lassa and Mopeia virus replication in human monocytes/macrophages and in endothelial cells: different effects on IL-8 and TNF-alpha gene expression. J Med Virol. 1999;59:552–560.
  • Mahanty S, Bausch DG, Thomas RL, et al. Low levels of interleukin-8 and interferon-inducible protein-10 in serum are associated with fatal infections in acute Lassa fever. J Infect Dis. 2001;183(12):1713–1721.
  • Mahanty S, Hutchinson K, Agarwal S, et al. Cutting edge: Impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol. 2003;170(6):2797–2801.
  • Pannetier D, Faure C, Georges-Courbot MC, et al. Human macrophages, but not dendritic cells, are activated and produce alpha/beta Interferons in response to Mopeia virus infection. J Virol. 2004;78(19):10516–10524.
  • Pannetier D, Reynard S, Russier M, et al. Production of CXC and CC chemokines by human antigen-presenting cells in response to Lassa virus or closely related immunogenic viruses, and in cynomolgus monkeys with Lassa fever. PLoS Negl Trop Dis. 2014;8(1):e2637. doi:10.1371/journal.pntd.0002637.
  • Meulen J, Badusche M, Satoguina J, et al. Old and new world arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones. Virology. 2004;321(1):134–143.
  • Ter Meulen J, Badusche M, Kuhnt K, et al. Characterization of human CD4+ T-cell clones recognizing conserved and variable epitopes of the Lassa virus nucleoprotein. J Virol. 2000;74(5):2186–2192.
  • Pannetier D, Reynard S, Russier M, et al. Human dendritic cells infected with the nonpathogenic mopeia virus induce stronger T-Cell responses than those infected with Lassa virus. J Virol. 2011;85(16):8293–8306. doi:10.1128/jvi.02120-10.
  • Jahrling PB, Frame JD, Smith SB, et al. Endemic Lassa fever in Liberia. III. Characterization of Lassa virus isolates. Trans R Soc Trop Med Hyg. 1985;79(3):374–379.
  • Djavani MM, Crasta OR, Zapata JC, et al. Early blood profiles of virus infection in a monkey model for Lassa fever. J Virol. 2007;81(15):7960–7973.
  • Zapata JC, Carrion R Jr, Patterson JL, et al. Transcriptome analysis of human peripheral blood mononuclear cells exposed to Lassa virus and to the attenuated Mopeia/Lassa reassortant 29 (ML29), a vaccine candidate. PLoS Negl Trop Dis. 2013;7(9):e2406.
  • Malhotra S, Yen JY, Honko AN, et al. Transcriptional profiling of the circulating immune response to lassa virus in an aerosol model of exposure. PLoS Negl Trop Dis. 2013;7(4):e2171. doi:10.1371/journal.pntd.0002171.
  • Safronetz D, Strong JE, Feldmann F, et al. A recently isolated Lassa virus from mali demonstrates atypical clinical disease manifestations and decreased virulence in cynomolgus macaques. J Infect Dis. 2013;207(8):1316–1327.
  • Rasmussen AL, Tchitchek N, Safronetz D, et al. Delayed inflammatory and cell death responses are associated with reduced pathogenicity in Lujo virus-infected cynomolgus macaques. J Virol. 2015;89(5):2543–2552. doi:10.1128/jvi.02246-14.
  • Lukashevich I, Djavani M, Rodas J, et al. Hemorrhagic fever occurs after intravenous, but not after intragastric, inoculation of rhesus macaques with lymphocytic choriomeningitis virus. J Med Virol. 2002;67:171–186. doi:10.1002/jmv.2206.
  • Lukashevich IS, Rodas JD, Tikhonov II, et al. LCMV-mediated hepatitis in rhesus macaques: WE but not ARM strain activates hepatocytes and induces liver regeneration. Arch Virol. 2004;149(12):2319–2336. doi:10.1007/s00705-004-0385-9.
  • Rodas J, Lukashevich I, Zapata J, et al. Mucosal arenavirus infection of primates can protect them from lethal hemorrhagic fever. J Med Virol. 2004;72:424–435. doi:10.1002/jmv.20000.
  • McCormick JB, King IJ, Webb PA, et al. Lassa fever. Effective therapy with ribavirin. N Engl J Med. 1986;314(1):20–26.
  • Caballero IS, Yen JY, Hensley LE, et al. Lassa and Marburg viruses elicit distinct host transcriptional responses early after infection. BMC Genomics. 2014;15(1):1–12. doi:10.1186/1471-2164-15-960.
  • Russier M, Pannetier D, Baize S. Immune responses and Lassa virus infection. Viruses. 2012;4:2766–2785.
  • Meyer B, Ly H. Inhibition of innate immune responses is key to pathogenesis by arenaviruses. J Virol. 2016;90:3810–3818. doi:10.1128/jvi.03049-15.
  • Moraz M-L, Kunz S. Pathogenesis of arenavirus hemorrhagic fevers. Expert Rev Anti Infect Ther. 2011;9(1):49–59. doi:10.1586/eri.10.142.
  • McCormick J, Mitchell S, Kiley M, et al. Inactivated Lassa virus elicits a non protective immune response in rhesus monkeys. J Med Virol. 1992;31(1):1–7.
  • Branco LM, Grove JN, Moses LM, et al. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects. Virol J. 2010;7(1):1–11. doi:10.1186/1743-422x-7-306.
  • Fisher-Hoch SP, McCormick JB. Lassa fever vaccine: A review. Expert Rev Vaccines. 2004;3:103–111. doi:10.1586/14760584.3.2.189.
  • Branco L, Grove J, Boisen M, et al. Emerging trends in Lassa fever: redefining the role of immunoglobulin M and inflammation in diagnosing acute infection. Virol J. 2011;8(478). doi:10.1186/743-422X-8-478.
  • Bausch DG, Rollin PE, Demby AH, et al. Diagnosis and clinical virology of Lassa fever as evaluated by enzyme-linked immunosorbent assay, indirect fluorescent-antibody test, and virus isolation. J Clin Microbiol. 2000;38(7):2670–2677.
  • Lukashevich IS, Clegg JC, Sidibe K. Lassa virus activity in Guinea: distribution of human antiviral antibody defined using enzyme-linked immunosorbent assay with recombinant antigen. J Med Virol. 1993;40(3):210–217.
  • Fisher-Hoch SP, Hutwagner L, Brown B, et al. Effective vaccine for Lassa fever. J Virol. 2000;74(15):6777–6783.
  • Lukashevich IS. Advanced vaccine candidates for Lassa fever. Viruses. 2012;4(11):2514–2557.
  • Iwasaki M, Ngo N, Cubitt B, et al. General molecular strategy for development of arenavirus live-attenuated vaccines. J Virol. 2015;89(23):12166–12177. doi:10.1128/jvi.02075-15.
  • Falzarano D, Feldmann H. Vaccines for viral hemorrhagic fevers - progress and shortcomings. Curr Opin Virol. 2013;3:1–9.
  • Olschlager S, Lukas F. Vaccination strategies against highly pathogenic arenaviruses: the next steps toward clinical trials. PLoS Pathog. 2013;9(4):e1003212.
  • Ambrosio A, Saavedra MC, Mariani MA, et al. Argentine hemorrhagic fever vaccines. Hum Vaccin. 2011;7(6):694–700.
  • Clegg JC, Lloyd G. Vaccinia recombinant expressing Lassa-virus internal nucleocapsid protein protects guinea pigs against Lassa fever. Lancet. 1987;2(8552):186–188.
  • Auperin DD, Esposito AA, Lange JV, et al. Construction of a recombinant vaccinia virus expressing the Lassa virus glycoprotein gene and protection of guinea pigs from a lethal Lassa virus infection. Virus Res. 1988;9(2–3):233–248.
  • Garbutt M, Liebscher R, Wahl-Jensen V, et al. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J Virol. 2004;78(10):5458–5465.
  • Geisbert T, Jones S, Fritz E, et al. Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2005;2:e183. doi:10.1371/journal.pmed.0020183.
  • Lukashevich IS, Patterson J, Carrion R, et al. A live attenuated vaccine for lassa fever made by reassortment of Lassa and Mopeia viruses. J Virol. 2005;79(22):13934–13942.
  • Lukashevich I, Carrion R, Salvato M, et al. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates. Vaccine. 2008;26:5246–5254.
  • Bredenbeek PJ, Molenkamp R, Spaan WJM, et al. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology. 2006;345(2):299–304.
  • Jiang X, Dalebout TJ, Bredenbeek PJ, et al. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs. Vaccine. 2011;29(6):1248–1257.
  • Morrison HG, Bauer SP, Lange JV, et al. Protection of guinea pigs from Lassa fever by vaccinia virus recombinants expressing the nucleoprotein or the envelope glycoproteins of Lassa virus. Virology. 1989;171:179–188.
  • Fisher-Hoch SP, McCormick JB, Auperin D, et al. Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene. Proc Natl Acad Sci USA. 1989;86:317–321.
  • Lee KJ, Novella IS, Teng MN, et al. NP and L proteins of Lymphocytic Choriomeningitis Virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol. 2000;74(8):3470–3477.
  • Schildknecht A, Welti S, Geuking MB, et al. Absence of CTL responses to early viral antigens facilitates viral persistence. J Immunol. 2008;180(5):3113–3121.
  • Darbre S, Johnson S, Kallert S, et al. The nucleoprotein is required for lymphocytic choriomeningitis virus-based vaccine vector immunogenicity. J Virol. 2015;89(22):11734–11738.
  • Djavani M, Yin C, Lukashevich IS, et al. Mucosal immunization with salmonella typhimurium expressing Lassa virus nucleocapsid protein cross-protects mice from lethal challenge with lymphocytic choriomeningitis virus. J Hum Virol. 2001;4(2):103–108. PMID: PMC2391007.
  • Jiang X, Huang Q, Wang W, et al. Structures of arenaviral nucleoproteins with triphosphate dsRNA reveal a unique mechanism of immune suppression. J Biol Chem. 2013;288:16949–16959.
  • Hastie KM, King LB, Zandonatti MA, et al. Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease. PLoS One. 2012;7(8):e44211. Epub 2012 Aug 28. doi:10.1371/journal.pone.0044211.
  • Hastie KM, Liu T, Li S, et al. Crystal structure of the Lassa virus nucleoprotein–RNA complex reveals a gating mechanism for RNA binding. Proc Natl Acad Sci USA. 2011;108(48):19367–19370.
  • Qi X, Lan S, Wang W, et al. Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature. 2010;468:779–783.
  • Peters CJ, Liu CT, Anderson GW, et al. Pathogenesis of viral hemorrhagic fevers: rift Valley fever and Lassa fever contrasted. Rev Infect Dis. 1989;11(Supp. 4):S743–S749.
  • Asper M, Sternsdorf T, Hass M, et al. Inhibition of different Lassa virus strains by alpha and gamma interferons and comparison with a less pathogenic arenavirus. J Virol. 2004;78(6):3162–3169.
  • Rieger T, Merkler D, Gunther S. Infection of type I interferon receptor-deficient mice with various old world arenaviruses: a model for studying vrulence and host species barriers. PLoS ONE. 2013;8(8):e72290. doi:10.1371/journal.pone.0072290.
  • Yun NE, Seregin AV, Walker DH, et al. Mice lacking functional STAT1 are highly susceptable to lethal infection with Lassa virus. J Virol. 2013;87(19):10908–10911.
  • Riviere Y, Oldstone MB. Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis. J Virol. 1986;59(2):363–368.
  • Bishop DHL, Beaty BJ, Shope RE. Recombination and gene coding asignment of bunyaviruses and arenaviruses. Ann N Y Acad Sci. 1980;354:84–106.
  • Riviere Y, Ahmed R, Southern PJ, et al. Genetic mapping of lymphocytic choriomeningitis virus pathogenicity: virulence in guinea pigs is associated with the L RNA segment. J Virol. 1985;55(3):704–709.
  • Zhang L, Marriott KA, Harnis DG, et al. Reassortant analysis of guinea pig virulence of Pichinde virus variants. Virology. 2001;290(1):30–38.
  • Moshkoff DA, Salvato MS, Lukashevich IS. Molecular characterization of a reassortant virus derived from Lassa and M`ses. Virus Genes. 2007;34(2):169–176.
  • Fehling S, Lennartz F, Strecker T. Multifunctional nature of the arenavirus RING finger protein Z. Viruses. 2012;4(11):2973. doi:10.3390/v4112973.
  • Kranzusch PJ, Whelan SPJ. Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex. Proc Natl Acad Sci U S A. 2011;108(49):19743–19748.
  • Carrion R Jr, Patterson JL, Johnson C, et al. A ML29 reassortant virus protects guinea pigs against a distantly related Nigerian strain of Lassa virus and can provide sterilizing immunity. Vaccine. 2007;25(20):4093–4102.
  • Lukashevich IS. The search for animal models for Lassa fever vaccine development. Expert Rev Vaccines. 2013;12(1):71–86.
  • Carrion R, Bredenbeek P, Jiang X, et al. Vaccine platforms to control arenaviral hemorrhagic fevers. J Vaccines Vaccin. 2012;3(7):1000160.
  • Zapata J, Poonia B, Bryant J, et al. An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunity. Virol J. 2013;10(1):52.
  • Zapata JC, Pauza CD, Djavani MM, et al. Lymphocytic choriomeningitis virus (LCMV) infection of macaques: A model for Lassa fever. Antiviral Res. 2011;92(2):125–138. doi:10.1016/j.antiviral.2011.07.015.
  • Lukashevich I, Tikhonov I, Rodas J, et al. Arenavirus-mediated liver pathology: acute lymphocytic choriomeningitis virus infection of rhesus macaques is characterized by high-level interleukin-6 expression and hepatocyte proliferation. J Virol. 2003;77:1727–1737. doi:10.1128/JVI.77.3.1727-1737.2003.
  • Vignuzzi M, Stone JK, Arnold JJ, et al. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature. 2006;439:344–348.
  • Zapata JC, Goicochea M, Nadai Y, et al. Genetic variation in vitro and in vivo of an attenuated lassa vaccine candidate. J Virol. 2014;88(6):3058–3066. doi:10.1128/jvi.03035-13.
  • Beck A, Tesh RB, Wood TG, et al. Comparison of the live attenuated yellow fever vaccine 17D-204 Strain to its virulent parental strain asibi by deep sequencing. J Infect Dis. 2014;209(3):334–344.
  • Pugachev KV, Guirakhoo F, Ocran SW, et al. High fidelity of yellow fever virus RNA polymerase. J Virol. 2004;78(2):1032–1038.
  • Lawson ND, Stillman EA, Whitt MA, et al. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A. 1995;92(10):4477–4481. PubMed PMID: PMC41967.
  • Whitt MA. Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods. 2010;169(2):365–374.
  • Henao-Restrepo AM, Longini IM, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. The Lancet. 2015;386(9996):857–866. doi:10.1016/S0140-6736(15)61117-5.
  • Safronetz D, Mire C, Rosenke K, et al. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses. PLoS Negl Trop Dis. 2015;9(4):e0003736.
  • Pushko P, Geisbert J, Parker M, et al. Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses. J Virol. 2001;75(23):11677–11685.
  • Guy B, Guirakhoo F, Barban V, et al. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine. 2010;28(3):632–649.
  • Pushko P, Tretyakova I. Alphaviirus replicon vectors for prophylacti and cancer intervention. In: Lukashevich IS, Shirwan H, editors. Novel technologies for vaccine development. Wien: Springer; 2014. p. 61–86.
  • Pushko P, Parker M, Ludwig GV, et al. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology. 1997;2(2):389–401.
  • Goicochea MA, Zapata JC, Bryant J, et al. Evaluation of Lassa virus vaccine immunogenicity in a CBA/J-ML29 mouse model. Vaccine. 2012;30(8):1445–1452.
  • WHO. WHO R&D Blueprint. Public consultation on ideas for potential platforms to support development and production of health technologies for priority infectious diseases with epidemic potential. 2015. http://wwwwhoint/medicines/ebola-treatment/WHO-list-of-top-emerging-diseases/en/.
  • Cohen J. Unfilled vials. Science. 2016;351(6268):16–19.
  • Mire CE, Matassov D, Geisbert JB, et al. Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus. Nature. 2015;520(7549):688–691. doi:10.1038/nature14428.
  • Regules JA, Beigel JH, Paolino KM, et al. A recombinant vesicular stomatitis virus ebola vaccine — preliminary report. New England J Med. 2015. doi:10.1056/NEJMoa1414216. PMID: 25830322.
  • Huttner A, Dayer J-A, Yerly S, et al. The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial. Lancet Infect Dis. 2015;15(10):1156–1166. doi:10.1016/S1473-3099(15)00154-1.
  • Matassov D, Marzi A, Latham T, et al. Vaccination with a highly attenuated recombinant vesicular stomatitis virus vector protects against challenge with a lethal dose of Ebola virus. J Infect Dis. 2015;212(suppl2):S443–S451. doi:10.1093/infdis/jiv316.
  • Mire CE, Geisbert JB, Versteeg KM, et al. A single-vector, single-injection trivalent filovirus vaccine: proof of concept study in outbred guinea pigs. J Infect Dis. 2015;212(suppl2):S384–S388. doi:10.1093/infdis/jiv126.
  • Emonet SF, Seregin AV, Yun NE, et al. Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic romero and live-attenuated candid #1 strains of junin virus, the causative agent of argentine hemorrhagic fever disease. J Virol. 2011;85(4):1473–1483. doi:10.1128/jvi.02102-10.
  • Emonet SF, Garidou L, McGavern DB, et al. Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc Natl Acad Sci. 2009;106(9):3473–3478.
  • Emonet SE, Urata S, de la Torre JC. Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology. 2011;411(2):416–425.
  • Snoy PJ. Establishing efficacy of human products using animals: the US food and drug administration’s ‘animal rule’. Vet Pathol Online. 2010;47(5):774–778.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.