484
Views
3
CrossRef citations to date
0
Altmetric
Review

Vaccine candidates against leishmania under current research

, , &
Pages 323-334 | Received 24 Jan 2018, Accepted 27 Mar 2018, Published online: 10 Apr 2018

References

  • McGwire BS, Satoskar AR. Leishmaniasis: clinical syndromes and treatment. Qjm. 2014;107(1):7–14.
  • Abbehusen MMC, Almeida VDA, Solca MDS, et al. Clinical and immunopathological findings during long term follow-up in Leishmania infantum experimentally infected dogs. Sci Rep. 2017;7(1):15914.
  • den Boer M, Argaw D, Jannin J, et al. Leishmaniasis impact and treatment access. Clin Microbiol Infect. 2011;17(10):1471–1477.
  • Requena JM, Soto M. Virulence factors and immune evasion in leishmania spp. In: da Silva MS, Cano MIN, Editors. Frontiers in parasitology (Vol 1) molecular and cellular biology of pathogenic trypanosomatids. Chapter 7. Sharjah, United Arab Emirates (UAE): Bentham Science Publishers; 2017.
  • Nylen S, Gautam S. Immunological perspectives of leishmaniasis. J Glob Infect Dis. 2010;2(2):135–146.
  • Regli IB, Passelli K, Hurrell BP, et al. Survival mechanisms used by some Leishmania species to escape neutrophil killing. Front Immunol. 2017;8:1558.
  • Iborra S, Martinez-Lopez M, Cueto FJ, et al. Leishmania uses mincle to target an inhibitory ITAM signaling pathway in dendritic cells that dampens adaptive immunity to infection. Immunity. 2016;45(4):788–801.
  • von Stebut E, Tenzer S. Cutaneous leishmaniasis: distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. Int J Med Microbiol. 2017;308(1):206–214.
  • Gollob KJ, Viana AG, Dutra WO. Immunoregulation in human American leishmaniasis: balancing pathology and protection. Parasite Immunol. 2014;36(8):367–376.
  • Mandell MA, Beverley SM. Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci USA. 2017;114(5):E801–E810.
  • Lakhal-Naouar I, Slike BM, Aronson NE, et al. The immunology of a healing response in cutaneous leishmaniasis treated with localized heat or systemic antimonial therapy. PLoS Negl Trop Dis. 2015;9(10):e0004178.
  • Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathog Glob Health. 2016;110(6):247–260.
  • Bhattacharya P, Ghosh S, Ejazi SA, et al. Induction of IL-10 and TGF-beta from CD4+CD25+FoxP3+ T cells correlates with parasite load in Indian Kala-azar patients infected with Leishmania donovani. PLoS Negl Trop Dis. 2016;10(2):e0004422.
  • Silva-Barrios S, Charpentier T, Stager S. The deadly dance of B cells with trypanosomatids. Trends Parasitol. 2017;34(2):155–171.
  • Mm DO, Kumar R, Rf DL, et al. Blimp-1-dependent IL-10 production by Tr1 cells regulates TNF-mediated tissue pathology. PLoS Pathog. 2016;12(1):e1005398.
  • Porrozzi R, Teva A, Amaral VF, et al. Cross-immunity experiments between different species or strains of Leishmania in rhesus macaques (Macaca mulatta). Am J Trop Med Hyg. 2004;71(3):297–305.
  • Glennie ND, Scott P. Memory T cells in cutaneous leishmaniasis. Cell Immunol. 2016;309:50–54.
  • Sacks DL. Vaccines against tropical parasitic diseases: a persisting answer to a persisting problem. Nat Immunol. 2014;15(5):403–405.
  • Glennie ND, Volk SW, Scott P. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLoS Pathog. 2017;13(4):e1006349.
  • Glennie ND, Yeramilli VA, Beiting DP, et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J Exp Med. 2015;212(9):1405–1414.
  • Belkaid Y, Kamhawi S, Modi G, et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998;188(10):1941–1953.
  • Peters NC, Pagan AJ, Lawyer PG, et al. Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. PLoS Pathog. 2014;10(12):e1004538.
  • Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol. 2014;5:134.
  • Romano A, Doria NA, Mendez J, et al. Cutaneous infection with Leishmania major mediates heterologous protection against visceral infection with Leishmania infantum. J Immunol. 2015;195(8):3816–3827.
  • Davoudi N, Khamesipour A, Mahboudi F, et al. A dual drug sensitive L. major induces protection without lesion in C57BL/6 mice. PLoS Negl Trop Dis. 2014;8(5):e2785.
  • Daneshvar H, Namazi MJ, Kamiabi H, et al. Gentamicin-attenuated Leishmania infantum vaccine: protection of dogs against canine visceral leishmaniosis in endemic area of southeast of Iran. PLoS Negl Trop Dis. 2014;8(4):e2757.
  • Gannavaram S, Dey R, Avishek K, et al. Biomarkers of safety and immune protection for genetically modified live attenuated vaccines against visceral leishmaniasis: discovery and implications. Front Immunol. 2014;5:241.
  • Chhajer R, Ali N. Genetically modified organisms and visceral leishmaniasis. Front Immunol. 2014;5:213.
  • Solana JC, Ramirez L, Corvo L, et al. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against leishmania major infection in two mice models. PLoS Negl Trp Dis. 2017;11(5):e0005644.
  • Uzonna JE, Spath GF, Beverley SM, et al. Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J Immunol. 2004;172(6):3793–3797.
  • Kebaier C, Uzonna JE, Beverley SM, et al. Immunization with persistent attenuated delta Lpg2 Leishmania major parasites requires adjuvant to provide protective immunity in C57BL/6 mice. Infect Immun. 2006;74(1):777–780.
  • Banerjee A, Bhattacharya P, Dagur PK, et al. Live attenuated Leishmania donovani centrin gene-deleted parasites induce IL-23-dependent IL-17-protective immune response against visceral leishmaniasis in a murine model. J Immunol. 2018;200(1):163–176.
  • Fiuza JA, Gannavaram S, Santiago Hda C, et al. Vaccination using live attenuated Leishmania donovani centrin deleted parasites induces protection in dogs against Leishmania infantum. Vaccine. 2015;33(2):280–288.
  • Dey R, Dagur PK, Selvapandiyan A, et al. Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. J Immunol. 2013;190(5):2138–2149.
  • Spath GF, Lye LF, Segawa H, et al. Identification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies. Infect Immun. 2004;72(6):3622–3627.
  • Breton M, Tremblay MJ, Ouellette M, et al. Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun. 2005;73(10):6372–6382.
  • Pirdel L, Zavaran Hosseini A. Immune response to recombinant leishmania infantum lipophosphoglycan 3 plus CpG oligodeoxynucleotides in BALB/c mice. Parasite Immunol. 2017;39(3):e12345.
  • Pirdel L, Farajnia S. A non-pathogenic recombinant leishmania expressing lipophosphoglycan 3 against experimental infection with leishmania infantum. Scand J Immunol. 2017;86(1):15–22.
  • Katebi A, Gholami E, Taheri T, et al. Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model. Mol Immunol. 2015;67(2Pt B):501–511.
  • Shahbazi M, Zahedifard F, Taheri T, et al. Evaluation of live recombinant nonpathogenic Leishmania tarentolae expressing cysteine proteinase and A2 genes as a candidate vaccine against experimental canine visceral leishmaniasis. PLoS One. 2015;10(7):e0132794.
  • Zahedifard F, Gholami E, Taheri T, et al. Enhanced protective efficacy of nonpathogenic recombinant Leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis. 2014;8(3):e2751.
  • Saljoughian N, Taheri T, Zahedifard F, et al. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis. PLoS Negl Trop Dis. 2013;7(4):e2174.
  • Sundar S, Singh B. Identifying vaccine targets for anti-leishmanial vaccine development. Expert Rev Vacc. 2014;13(4):489–505.
  • Bhowmick S, Ravindran R, Ali N. IL-4 contributes to failure, and colludes with IL-10 to exacerbate Leishmania donovani infection following administration of a subcutaneous leishmanial antigen vaccine. BMC Microbiol. 2014;14:8.
  • Modabber F. Leishmaniasis vaccines: past, present and future. Int J Antimicrob Agents. 2010;36(Suppl 1):S58–61.
  • Badiee A, Heravi Shargh V, Khamesipour A, et al. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends. Vaccine. 2013;31(5):735–749.
  • Askarizadeh A, Jaafari MR, Khamesipour A, et al. Liposomal adjuvant development for leishmaniasis vaccines. Ther Adv Vaccines. 2017;5(4–5):85–101.
  • Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–1608.
  • Hanagata N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int J Nanomedicine. 2017;12:515–531.
  • Dockrell HM, Smith SG. What have we learnt about BCG vaccination in the last 20 years? Front Immunol. 2017;8:1134.
  • Jafari I, Heravi Shargh V, Shahryari M, et al. Cationic liposomes formulated with a novel Whole Leishmania lysate (WLL) as a vaccine for leishmaniasis in murine model. Immunobiol. 2018;223(6–7):493–500.
  • Thakur A, Kaur H, Kaur S. Evaluation of the immunoprophylactic potential of a killed vaccine candidate in combination with different adjuvants against murine visceral leishmaniasis. Parasitol Int. 2015;64(1):70–78.
  • Margaroni M, Agallou M, Athanasiou E, et al. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFalpha-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis. Int J Nanomedicine. 2017;12:6169–6184.
  • Eskandari F, Talesh GA, Parooie M, et al. Immunoliposomes containing Soluble Leishmania Antigens (SLA) as a novel antigen delivery system in murine model of leishmaniasis. Exp Parasitol. 2014;146:78–86.
  • Firouzmand H, Badiee A, Khamesipour A, et al. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA). Acta Trop. 2013;128(3):528–535.
  • Shargh VH, Jaafari MR, Khamesipour A, et al. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis. Vaccine. 2012;30(26):3957–3964.
  • Palatnik-de-Sousa CB. Vaccines for leishmaniasis in the fore coming 25 years. Vaccine. 2008;26(14):1709–1724.
  • Otranto D, Dantas-Torres F. The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol. 2013;29(7):339–345.
  • Atayde VD, Hassani K, da SilvaLira FA, et al. Leishmania exosomes and other virulence factors: impact on innate immune response and macrophage functions. Cell Immunol. 2016;309:7–18.
  • Moreno J, Vouldoukis I, Schreiber P, et al. Primary vaccination with the LiESP/QA-21 vaccine (CaniLeish) produces a cell-mediated immune response which is still present 1 year later. Vet Immunol Immunopathol. 2014;158(3–4):199–207.
  • Moreno J, Vouldoukis I, Martin V, et al. Use of a LiESP/QA-21 vaccine (CaniLeish) stimulates an appropriate Th1-dominated cell-mediated immune response in dogs. PLoS Negl Trop Dis. 2012;6(6):e1683.
  • Oliva G, Nieto J, Foglia Manzillo V, et al. A randomised, double-blind, controlled efficacy trial of the LiESP/QA-21 vaccine in naive dogs exposed to two Leishmania infantum transmission seasons. PLoS Negl Trop Dis. 2014;8(10):e3213.
  • Chavez-Fumagalli MA, Costa MA, Oliveira DM, et al. Vaccination with the Leishmania infantum ribosomal proteins induces protection in BALB/c mice against Leishmania chagasi and Leishmania amazonensis challenge. Microbes Infect. 2010;12(12–13):967–977.
  • Soto M, Ramirez L, Pineda MA, et al. Searching genes encoding Leishmania antigens for diagnosis and protection. Schol Res Exch. 2009;2009 (Article ID 173039). Available from: https://www.hindawi.com/journals/syrexe/2009/173039/abs/
  • Lage DP, Martins VT, Duarte MC, et al. Cross-protective efficacy of Leishmania infantum LiHyD protein against tegumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species. Acta Trop. 2016;158:220–230.
  • Maalej IA, Chenik M, Louzir H, et al. Comparative evaluation of ELISAs based on ten recombinant or purified Leishmania antigens for the serodiagnosis of mediterranean visceral leishmaniasis. Am J Trop Med Hyg. 2003;68(3):312–320.
  • Soto M, Requena JM, Quijada L, et al. Antigenicity of the Leishmania infantum histones H2B and H4 during canine viscerocutaneous leishmaniasis. Clin Exp Immunol. 1999;115(2):342–349.
  • Baharia RK, Tandon R, Sahasrabuddhe AA, et al. Nucleosomal histone proteins of L. donovani: a combination of recombinant H2A, H2B, H3 and H4 proteins were highly immunogenic and offered optimum prophylactic efficacy against Leishmania challenge in hamsters. PLoS One. 2014;9(6):e97911.
  • Julia V, Rassoulzadegan M, Glaichenhaus N. Resistance to Leishmania major induced by tolerance to a single antigen. Science. 1996;274(5286):421–423.
  • Peters NC, Egen JG, Secundino N, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891):970–974.
  • Lestinova T, Rohousova I, Sima M, et al. Insights into the sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11(7):e0005600.
  • Oliveira F, Rowton E, Aslan H, et al. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med. 2015;7(290):290ra290.
  • Kamhawi S, Aslan H, Valenzuela JG. Vector saliva in vaccines for visceral leishmaniasis: a brief encounter of high consequence? Front Public Health. 2014;2:99.
  • Iborra S, Abanades DR, Parody N, et al. The immunodominant T helper 2 (Th2) response elicited in BALB/c mice by the Leishmania LiP2a and LiP2b acidic ribosomal proteins cannot be reverted by strong Th1 inducers. Clin Exp Immunol. 2007;150(2):375–385.
  • Canine GL. Leishmania vaccines: still a long way to go. Vet Parasitol. 2015;208(1–2):94–100.
  • Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Annu Rev Immunol. 2000;18:927–974.
  • Kumar A, Samant M. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control. Parasite Immunol. 2016;38(5):273–281.
  • Saljoughian N, Zahedifard F, Doroud D, et al. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice. Parasite Immunol. 2013;35(12):397–408.
  • Shahbazi M, Zahedifard F, Saljoughian N, et al. Immunological comparison of DNA vaccination using two delivery systems against canine leishmaniasis. Vet Parasitol. 2015;212(3–4):130–139.
  • Moreno E, Schwartz J, Calvo A, et al. Skin vaccination using microneedles coated with a plasmid DNA cocktail encoding nucleosomal histones of Leishmania spp. Int J Pharm. 2017;533(1):236–244.
  • Das S, Freier A, Boussoffara T, et al. Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis. Sci Transl Med. 2014;6(234):234ra256.
  • Osman M, Mistry A, Keding A, et al. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: first-in-human trial of ChAd63-KH. PLoS Negl Trp Dis. 2017;11(5):e0005527.
  • Miura R, Kooriyama T, Yoneda M, et al. Efficacy of recombinant canine distemper virus expressing Leishmania antigen against Leishmania challenge in dogs. PLoS Negl Trop Dis. 2015;9(7):e0003914.
  • Hugentobler F, Di Roberto RB, Gillard J, et al. Oral immunization using live Lactococcus lactis co-expressing LACK and IL-12 protects BALB/c mice against Leishmania major infection. Vaccine. 2012;30(39):5726–5732.
  • Cecilio P, Perez-Cabezas B, Fernandez L, et al. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Negl Trop Dis. 2017;11(11):e0005951.
  • Fiuza JA, Dey R, Davenport D, et al. Intradermal immunization of Leishmania donovani centrin knock-out parasites in combination with salivary protein LJM19 from sand fly vector induces a durable protective immune response in hamsters. PLoS Negl Trop Dis. 2016;10(1):e0004322.
  • Duthie MS, Reed SG. Not all antigens are created equally: progress, challenges, and lessons associated with developing a vaccine for leishmaniasis. Clin Vaccine Immunol. 2017;24:7.
  • Skeiky YA, Coler RN, Brannon M, et al. Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine. 2002;20(27–28):3292–3303.
  • Coler RN, Skeiky YA, Bernards K, et al. Immunization with a polyprotein vaccine consisting of the T-Cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infect Immun. 2002;70(8):4215–4225.
  • Carcelen J, Iniesta V, Fernandez-Cotrina J, et al. The chimerical multi-component Q protein from Leishmania in the absence of adjuvant protects dogs against an experimental Leishmania infantum infection. Vaccine. 2009;27(43):5964–5973.
  • Bertholet S, Goto Y, Carter L, et al. Optimized subunit vaccine protects against experimental leishmaniasis. Vaccine. 2009;27(50):7036–7045.
  • Gomes R, Teixeira C, Oliveira F, et al. KSAC, a defined leishmania antigen, plus adjuvant protects against the virulence of L. major transmitted by its natural vector Phlebotomus duboscqi. PLoS Negl Trop Dis. 2012;6(4):e1610.
  • Peters NC, Bertholet S, Lawyer PG, et al. Evaluation of recombinant Leishmania polyprotein plus glucopyranosyl lipid A stable emulsion vaccines against sand fly-transmitted Leishmania major in C57BL/6 mice. J Immunol. 2012;189(10):4832–4841.
  • Dominguez-Bernal G, Horcajo P, Orden JA, et al. HisAK70: progress towards a vaccine against different forms of leishmaniosis. Parasit Vectors. 2015;8:629.
  • Coler RN, Duthie MS, Hofmeyer KA, et al. From mouse to man: safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISH-F3+GLA-SE. Clin Transl Immunology. 2015;4(4):e35.
  • Martins VT, Lage DP, Duarte MC, et al. A recombinant fusion protein displaying murine and human MHC class I- and II-specific epitopes protects against Leishmania amazonensis infection. Cell Immunol. 2017;313:32–42.
  • Martins VT, Duarte MC, Lage DP, et al. A recombinant chimeric protein composed of human and mice-specific CD4+ and CD8+ T-cell epitopes protects against visceral leishmaniasis. Parasite Immunol. 2017;39:1.
  • Goto Y, Bhatia A, Raman VS, et al. KSAC, the first defined polyprotein vaccine candidate for visceral leishmaniasis. Clin Vaccine Immunol. 2011;18(7):1118–1124.
  • Dominguez-Bernal G, Martinez-Rodrigo A, Mas A, et al. Alternative strategy for visceral leishmaniosis control: hisAK70-Salmonella choleraesuis-pulsed dendritic cells. Comp Immunol Microbiol Infect Dis. 2017;54:13–19.
  • Gillespie PM, Beaumier CM, Strych U, et al. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine. 2016;34(26):2992–2995.
  • Beaumier CM, Gillespie PM, Hotez PJ, et al. New vaccines for neglected parasitic diseases and dengue. Transl Res. 2013;162(3):144–155.
  • Fernandez Cotrina J, Iniesta V, Monroy I, et al. A large-scale field randomized trial demonstrates safety and efficacy of the vaccine LetiFend(R) against canine leishmaniosis. Vaccine. 2018;36(15):1972–1982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.