218
Views
22
CrossRef citations to date
0
Altmetric
Perspective

High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques

, , &
Pages 569-576 | Received 26 Apr 2018, Accepted 25 Jun 2018, Published online: 12 Jul 2018

References

  • Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature. 2008;2451:990–993.
  • Gortazar C, Reperant LA, Kuiken T, et al. Crossing the interspecies barrier: opening the door to zoonotic pathogens. PLoS Pathog. 2014;10:e1004129.
  • Estrada-Peña A, Ostfeld RS, Peterson AT, et al. Effects of environmental change on zoonotic disease risk: an ecological primer. Trends Parasitol. 2014;30:205–214.
  • Estrada-Peña A, De La Fuente J, Cabezas-Cruz A. Functional redundancy and ecological innovation shape the circulation of tick-transmitted pathogens. Front Cell Infect Microbiol. 2017;7:234.
  • Martina B, Barzon L, Pijlman GP, et al. Human to human transmission of arthropod-borne pathogens. Curr Opin Virol. 2017;22:13–21.
  • Estrada-Peña A. de la Fuente J. Host distribution does not limit the range of the tick Ixodes ricinus but impacts the circulation of transmitted pathogens. Front Cell Infect Microbiol. 2017;7:405.
  • de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines. 2015;14:1367–1376.
  • de la Fuente J, Contreras M, Estrada-Peña A, et al. Targeting a global health problem: vaccine design and challenges for the control of tick-borne diseases. Vaccine. 2017;35:5089–5094.
  • de la Fuente J. Controlling ticks and tick-borne diseases … looking forward. Ticks Tick Borne Dis. 2018. DOI:10.1016/j.ttbdis.2018.04.001
  • de la Fuente J, Merino O. Vaccinomics, the new road to tick vaccines. Vaccine. 2013;31:5923–5929.
  • de la Fuente J, Kopáček P, Lew-Tabor A, et al. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol. 2016;38:754–769.
  • Merino O, Antunes S, Mosqueda J, et al. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine. 2013;31:5889–5896.
  • Contreras M, Alberdi P, Fernández de Mera IG, et al. Vaccinomics approach to the identification of candidate protective antigens for the control of tick vector infestations and Anaplasma phagocytophilum infection. Front Cell Infect Microbiol. 2017;7:360.
  • Contreras M, Alberdi P, Mateos-Hernández L, et al. Anaplasma phagocytophilum MSP4 and HSP70 proteins are involved in interactions with host cells during pathogen infection. Front Cell Infect Microbiol. 2017;7:307.
  • Villar M, Marina A, de la Fuente J. Applying proteomics to tick vaccine development: where are we? Expert Rev Proteomics. 2017;14:211–221.
  • Gulia-Nuss M, Nuss AB, Meyer JM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016;7:10507.
  • Pruneau L, Moumène A, Meyer DF, et al. Understanding Anaplasmataceae pathogenesis using “Omics” approaches. Front Cell Infect Microbiol. 2014;4:86.
  • de la Fuente J, Antunes S, Bonnet S, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017;7:114.
  • Antunes S, Rosa C, Couto J, et al. Deciphering Babesia-vector interactions. Front Cell Infect Microbiol. 2017;7:429.
  • Kazimirova M, Thangamani S, Bartikova P, et al. Tick-borne viruses and biological processes at the tick-host-virus interface. Front Cell Infect Microbiol. 7:339.
  • Papa A, Tsergouli K, Tsioka K, et al. Crimean-Congo Hemorrhagic Fever: tick-host-virus interactions. Front Cell Infect Microbiol. 2017;7: 213. (2017).
  • Ayllón N, Villar V, Galindo RC, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 2015;11:e1005120.
  • Villar M, Ayllón N, Alberdi P, et al. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol Cell Proteomics. 2015;14:3154–3172.
  • Kim TK, Tirloni L, Pinto AF, et al. Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl Trop Dis. 2016;10:e0004323.
  • de la Fuente J, Waterhouse RM, Sonenshine DE, et al. Tick genome assembled: new opportunities for research on tick-host-pathogen interactions. Front Cell Infect Microbiol. 2016;6:103.
  • Shaw DK, Wang X, Brown LJ, et al. Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nat Commun. 2017;8:14401.
  • Grabowski JM, Hill CA. A roadmap for tick-borne flavivirus research in the “omics” era. Front Cell Infect Microbiol. 2017;7:519.
  • Estrada-Peña A, Villar M, Artigas-Jerónimo S, et al. Use of graph theory to characterize human and arthropod vector cell protein response to infection. Front Cell Infect Microbiol. 2018. In press.
  • Coulston JW, Blinn CE, Thomas VA, et al. Approximating prediction uncertainty for random forest regression models. Photogramm Eng Remote Sensing. 2016;82:189–197.
  • Ribeiro MT, Singh S, Guestrin C Model-agnostic interpretability of machine learning. ICML Workshop on Human Interpretability in Machine Learning (WHI’16), New York, 2016; arXiv:1606.05386v1.
  • Pereira S, Meier R, McKinley R, et al. Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation. Med Image Anal. 2018;44:228–244.
  • Olivas JA A contribution to the experimental study of prediction based on Fuzzy Deformable Categories. PhD Thesis, University of Castilla-La Mancha, Spain, 2000.
  • Romero FP, Caballero I, Serrano-Guerrero J, et al. An approach to web-based personal health records filtering using fuzzy prototypes and data quality criteria. Inf Process Manag. 2012;48:451–466.
  • Romero-Cordoba R, Olivas JA, Romero FP, et al. An application of Fuzzy Prototypes to the diagnosis and treatment of fuzzy diseases. Int J Intell Sys. 2017;32:194–210.
  • Embrechts MJ, Gatti CJ, Linton J, et al. Hierarchical clustering for large data sets. In: Lyudmila Mihaylova, Petia Georgieva, Lakhmi C. Jain, editors. Advances in intelligent signal processing and data mining. Springer; 2013. p. 197–233.
  • Chen CP, Zhang CY. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. J Inf Sci. 2014;275:314–347.
  • Wang HW, Pai TW. Machine learning-based methods for prediction of linear B-cell epitopes. Methods Mol Biol. 2014;1184:217–236.
  • Miho E, Yermanos A, Weber CR, et al. Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front Immunol. 2018;9:224.
  • Alvarez B, Barra C, Nielsen M, et al. Computational tools for the identification and interpretation of sequence motifs in immunopeptidomes. Proteomics. 2018. DOI:10.1002/pmic.201700252
  • Arnold KB, Chung AW. Prospects from systems serology research. Immunology. 2018;153:279–289.
  • Scheuermann RH, Sinkovits RS, Schenkelberg T, et al. A bioinformatics roadmap for the human vaccines project. Expert Rev Vaccines. 2017;16:535–544.
  • Heinson AI, Woelk CH, Newell ML. The promise of reverse vaccinology. Int Health. 2015;7:85–89.
  • Valdés JJ, Moal IH. Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome. Ticks Tick Borne Dis. 2014;5:947–950.
  • Lopez DM, de Mello FL, Giordano Dias CM, et al. Evaluating the surveillance system for spotted fever in Brazil using machine-learning techniques. Front Public Health. 2017;5:323.
  • Villar M, Ayllón N, Kocan KM, et al. Identification and characterization of Anaplasma phagocytophilum proteins involved in infection of the tick vector, Ixodes scapularis. PLoS ONE. 2015;10:e0137237.
  • Villar M, López V, Ayllón N, et al. The intracellular bacterium Anaplasma phagocytophilum selectively manipulates the levels of vertebrate host proteins in the tick vector Ixodes scapularis. Parasit Vectors. 2016;9:467.
  • de la Fuente J, Blouin EF, Manzano-Roman R, et al. Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. Genomics. 2007;90:712–722.
  • Zivkovic Z, Esteves E, Almazán C, et al. Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus) microplus in response to infection with Anaplasma marginale. BMC Genomics. 2010;11:186.
  • Mansfield KL, Cook C, Ellis R, et al. Tick-borne pathogens induce differential expression of genes promoting cell survival and host resistance in Ixodes ricinus cells. Parasit Vectors. 2017;10:81.
  • Thangamani S, Hermance ME, Santos RI, et al. Transcriptional immunoprofiling at the tick-virus-host interface during early stages of tick-borne encephalitis virus transmission. Front Cell Infect Microbiol. 2017;7:494.
  • Johnson WC, Taus NS, Reif KE, et al. Analysis of stage-specific protein expression during Babesia Bovis development within Female Rhipicephalus microplus. J Proteome Res. 2017;16:1327–1338.
  • Antunes S, Couto J, Ferrolho J, et al. Rhipicephalus bursa sialotranscriptomic response to blood feeding and Babesia ovis infection: identification of candidate protective antigens. Front Cell Infect Microbiol. 2017;8:116.
  • Martins LA, Galletti M, Ribeiro JM, et al. The distinct transcriptional response of the midgut of Amblyomma sculptum and Amblyomma aureolatum ticks to rickettsia rickettsii correlates to their differences in susceptibility to infection. Front Cell Infect Microbiol. 2017;7:129.
  • Tirloni L, Kim TK, Pinto AFM, et al. Tick-host range adaptation: changes in protein profiles in unfed adult Ixodes scapularis and Amblyomma americanum saliva stimulated to feed on different hosts. Front Cell Infect Microbiol. 2017;7:517.
  • Popara M, Villar M, Mateos-Hernández L, et al. Proteomics approach to the study of cattle tick adaptation to white tailed deer. Biomed Res Int. 2013;2013:1–8.
  • Mudenda L, Pierlé SA, Turse JE, et al. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int J Parasitol. 2014;44:1029–1037.
  • Carreras-González A, Navasa N, Martín-Ruiz I, et al. A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi. Emerg Microbes Infect. 2018;7:19.
  • de la Fuente J, Ayoubi P, Blouin EF, et al. Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cell Microbiol. 2005;7:549–559.
  • Tjale MA, Pretorius A, Josemans A, et al. Transcriptomicanalysis of Ehrlichia ruminantium during the developmental stages in bovine and tick cell culture. Ticks Tick Borne Dis. 2018;9:126–134.
  • Noh SM, Brayton KA, Brown WC, et al. Composition of the surface proteome of Anaplasma marginale and its role in protective immunity induced by outer membrane immunization. Infect Immun. 2008;76:2219–2226.
  • Heekin AM, Guerrero FD, Bendele KG, et al. The ovarian transcriptome of the cattle tick, Rhipicephalus (Boophilus) microplus, feeding upon a bovine host infected with Babesia bovis. Parasit Vectors. 2013;6:276.
  • Heekin AM, Guerrero FD, Bendele KG, et al. Gut transcriptome of replete adult female cattle ticks, Rhipicephalus (Boophilus) microplus, feeding upon a Babesia bovis-infected bovine host. Parasitol Res. 2013;112:3075–3090.
  • Barrat A, Barthélemy M, Pastor-Satorras R, et al. The architecture of complex weighted networks. Proc Natl Acad Sci USA. 2004;101:3747–3752.
  • Horvath S. Weighted network analysis. applications in genomics and systems biology. New York: Springer Book Press; 2011.
  • Lafferty KD, Dobson AP, Kuris AM. Parasites dominate food web links. Proc Natl Acad Sci USA. 2006;103:11211–11216.
  • Estrada-Peña A, de la Fuente J, Ostfeld RS, et al. Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Sci Rep. 2015;5:10361.
  • Bremermann H. Pattern recognition. In: Hartmut B, Klaczko S, Müller N, editors. Systems theory in the social sciences. Basel: Birkhäuser Verlag; 1976. p. 116–159.
  • Zadeh LA. A note on prototype set theory and fuzzy sets. Cognition. 1982;12:291–297.
  • Osheron DN, Smith EE. On the adequacy of prototype theory of concepts. Cognition. 1981;9:35–58.
  • Olivas JA, Sobrino A. An application of zadeh’s prototype theory to the prediction of forest fire in a knowledge-based system. Proc 5th IPMU. 1994;II:747–752. Available at http://sedici.unlp.edu.ar/bitstream/handle/10915/23461/SI-008.pdf?sequence=1
  • Olivas JA Forest fire prediction and management using soft computing. Proc 1st IEEE International Conference on Industrial Informatics 2003; pp. 338–344.
  • Genero M, Olivas JA, Piattini M, et al. Using metrics to predict OO information systems maintainability. In:Advanced Information Systems Engineering 2001, Proc 13th International Conference, CAiSE 2001 Interlaken, Switzerland, 2001 Jun 4–8, pp. 388–401.
  • Peralta A, Romero FP, Olivas JA, et al. 2010. Knowledge extraction of the behaviour of software developers by the analysis of time recording logs. Proc 10th IEEE International Conference on Fuzzy Systems 2010. Available at: https://ieeexplore.ieee.org/document/5584364/
  • Angulo E, Romero FP, García R, et al. An adaptive approach to enhanced traffic signal optimization by using soft-computing techniques. Expert Syst Appl. 2011;38:2235–2247.
  • Sobrino A, Puente C, Olivas JA. Extracting answers from causal mechanisms in a medical document. Neurocomputing. 2014;135:53–60.
  • Sobrino A, Olivas JA, Puente C Causality and imperfect causality from texts: a frame for causality in social sciences. Proc 10th IEEE International Conference on Fuzzy Systems 2010. Available at: https://ieeexplore.ieee.org/document/5584863/
  • Puente C, Sobrino A, Olivas JA, 2010. Extraction, analysis and representation of imperfect conditional and causal sentences by means of a semi-automatic process. Proc 10th IEEE International Conference on Fuzzy Systems 2010. Available at: https://ieeexplore.ieee.org/document/5584115/
  • Serrano-Guerrero J, Olivas JA, Romero FP, et al. Sentiment analysis: a review and comparative analysis of web services. J Inf Sci. 2015;311:18–38.
  • de la Fuente J, Almazán C, Naranjo V, et al. Autocidal control of ticks by silencing of a single gene by RNA interference. Biochem Biophys Res Commun. 2006;344:332–338.
  • Merino O, Almazán C, Canales M, et al. Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. Vaccine. 2011;29:2248–2254.
  • Adelman ZN, Tu Z. Control of mosquito-borne infectious diseases: sex and gene drive. Trends Parasitol. 2016;32:219–229.
  • Macias VM, Ohm JR, Rasgon JL. Gene drive for mosquito control: where did it come from and where are we headed? Int J Environ Res Public Health. 2017;14:1006.
  • Aguirre Ade A, Garcia MV, Szabó MP, et al. Formula to evaluate efficacy of vaccines and systemic substances against three-host ticks. Int J Parasitol. 2015;45:357–359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.