4,286
Views
106
CrossRef citations to date
0
Altmetric
Review

Virus-like particle vaccines: immunology and formulation for clinical translation

ORCID Icon, , , & ORCID Icon
Pages 833-849 | Received 11 Jun 2018, Accepted 16 Aug 2018, Published online: 19 Sep 2018

References

  • Al-Barwani F, Donaldson B, Pelham SJ, et al. Antigen delivery by virus-like particles for immunotherapeutic vaccination. Ther Deliv. 2014 Nov;5(11):1223–1240. PubMed PMID: 25491672.
  • Lachance P, Dionne M, Libman M, et al., Medicago, Inc. Immunogenicity of a quadrivalent virus-like particles (VLP) influenza vaccine in healthy adults. NCT02768805. 2016.
  • Sheldon E, Seiden DJ, Medicago, Inc. Immunogenicity, safety and tolerability of a plant-derived seasonal virus-like-particle quadrivalent influenza vaccine in adults. NCT02233816. 2016.
  • Acevedo-Flores M, Diaz C, Hoen B, et al., National Institute of Allergy and Infectious Diseases (NIAID). Trial for safety and immunogenicity of a chikungunya vaccine, VRC-CHKVLP059-00-VP, in healthy adults. NCT02562482. 2016.
  • Langley J, VBI Vaccines Inc. Study to evaluate safety, tolerability, and immunogenicity of candidate human cytomegalovirus vaccine in healthy adults. NCT02826798. 2016.
  • Takeda. Efficacy and immunogenicity of norovirus GI.1/GII.4 bivalent virus-like particle vaccine in adults. NCT02669121. Takeda; 2017.
  • Takeda. Long-term immunogenicity of the norovirus GI.I/GII.4 bivalent virus-like particle (VLP) vaccine in adults. NCT03039790. Takeda; 2017.
  • Takeda. Safety and immunogenicity of norovirus GI.1/GII.4 bivalent virus-like particle vaccine in an elderly population. NCT02661490. Takeda; 2017.
  • Zhao Q, Allen MJ, Wang Y, et al. Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles. Nanomedicine. 2012 Oct;8(7):1182–1189. PubMed PMID: 22306156.
  • Bachmann MF, Proba KG, Maurer P, et al., inventors; Cytos Biotechnology AG, assignee. VLP-antigen conjugates and their uses as vaccines. 2011.
  • Fischer R, Schillberg S, Hellwig S, et al. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv. 2012;30(2):434–439.
  • Franco E, Schiffman M, Wacholder S, et al. Chapter 3. Methodological issues for trials of vaccine efficacy against HPV types 16 and 18. In: IARC HPV Working Group. Primary End-points for Prophylactic HPV Vaccine Trials. Lyon, France: International Agency for Research on Cancer; 2014.
  • Schiller JT, Lowy DR. Raising expectations for subunit vaccine. J Infect Dis. 2014;211(9):1373–1375.
  • Stevens H, Van Overwalle G, Van Looy B, et al. Intellectual property policies in early-phase research in public-private partnerships. Nat Biotechnol. 2016 May 06;34(5):504–510. PubMed PMID: 27153280.
  • Kumru OS, Joshi SB, Smith DE, et al. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals: Journal Int Assoc Biol Standardization. 2014;42(5):237–259.
  • Tonnis W, Amorij J-P, Vreeman M, et al. Improved storage stability and immunogenicity of hepatitis B vaccine after spray-freeze drying in presence of sugars. Eur J Pharm Sci. 2014;55:36–45.
  • Baltimore D. Expression of animal virus genomes. Bacteriol Rev. 1971 Sep;35(3):235–241. PubMed PMID: 4329869; PubMed Central PMCID: PMCPMC378387.
  • Perez EM, Foley J, Tison T, et al. Novel Epstein-Barr virus-like particles incorporating gH/gL-EBNA1 or gB-LMP2 induce high neutralizing antibody titers and EBV-specific T-cell responses in immunized mice. Oncotarget. 2017 Mar 21;8(12):19255–19273. PubMed PMID: 27926486; PubMed Central PMCID: PMCPMC5386682.
  • Saraswat S, Athmaram TN, Parida M, et al. Expression and characterization of yeast derived chikungunya virus like particles (CHIK-VLPs) and its evaluation as a potential vaccine candidate. PLoS Negl Trop Dis. 2016 Jul;10(7):e0004782. PubMed PMID: 27399001; PubMed Central PMCID: PMCPMC4939942.
  • Bracken MK, Hayes BC, Kandel SR, et al. Viral protein requirements for assembly and release of human parainfluenza virus type 3 virus-like particles. J Gen Virol. 2016 Jun;97(6):1305–1310. PubMed PMID: 26960133; PubMed Central PMCID: PMCPMC5042090.
  • Ashley CE, Carnes EC, Phillips GK, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011;5(7):5729–5745.
  • Chen XS, Garcea RL, Goldberg I, et al. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 2000 Mar;5(3):557–567. PubMed PMID: 10882140.
  • Chen BJ, Leser GP, Morita E, et al. Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol. 2007 Jul;81(13):7111–7123. PubMed PMID: 17475660; PubMed Central PMCID: PMCPMC1933269.
  • Pushko P, Tumpey TM, Bu F, et al. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine. 2005 Dec 30;23(50):5751–5759. PubMed PMID: 16143432.
  • Almeida FMF, Blanco A, Trujillo H, et al. Dynamic of immune response induced in hepatitis B surface antigen-transgenic mice immunized with a novel therapeutic formulation. Euroasian J Hepatogastroenterol. 2016 Jan-Jun;6(1):25–30. PubMed PMID: 29201720; PubMed Central PMCID: PMCPMC5578554.
  • Keating GM, Noble S. Recombinant hepatitis B vaccine (Engerix-B): a review of its immunogenicity and protective efficacy against hepatitis B [Review]. Drugs. 2003;63(10):1021–1051. PubMed PMID: 12699402; eng.
  • Lobaina Y, Palenzuela D, Pichardo D, et al. Immunological characterization of two hepatitis B core antigen variants and their immunoenhancing effect on co-delivered hepatitis B surface antigen. Mol Immunol. 2005 Feb;42(3):289–294. PubMed PMID: 15589316.
  • Crawford SE, Labbe M, Cohen J, et al. Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J Virol. 1994 Sep;68(9):5945–5952. PubMed PMID: 8057471; PubMed Central PMCID: PMC237000. eng.
  • Sabara M, Parker M, Aha P, et al. Assembly of double-shelled rotaviruslike particles by simultaneous expression of recombinant VP6 and VP7 proteins. J Virol. 1991 Dec;65(12):6994–6997. PubMed PMID: 1658389; PubMed Central PMCID: PMC250814. eng.
  • Haglund K, Forman J, Krausslich HG, et al. Expression of human immunodeficiency virus type 1 Gag protein precursor and envelope proteins from a vesicular stomatitis virus recombinant: high-level production of virus-like particles containing HIV envelope. Virology. 2000 Mar 01;268(1):112–121. PubMed PMID: 10683333.
  • Sugahara F, Uchiyama T, Watanabe H, et al. Paramyxovirus sendai virus-like particle formation by expression of multiple viral proteins and acceleration of its release by C protein. Virology. 2004;325(1):1–10.
  • Wiedermann U, Wiltschke C, Jasinska J, et al. A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study. Breast Cancer Res Treat. 2010 Feb;119(3):673–683. PubMed PMID: 20092022; eng.
  • Pushko P, Pearce MB, Ahmad A, et al. Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes. Vaccine. 2011 Aug 11;29(35):5911–5918. PubMed PMID: 21723354.
  • Cheng F, Mukhopadhyay S. Generating enveloped virus-like particles with in vitro assembled cores. Virology. 2011;413(2):153–160.
  • Goicochea NL, De M, Rotello VM, et al. Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates. Nano Lett. 2007;7(8):2281–2290.
  • Sánchez-Rodríguez SP, Münch-Anguiano L, Echeverría O, et al. Human parvovirus B19 virus-like particles: in vitro assembly and stability. Biochimie. 2012;94(3):870–878.
  • Suffian IFBM, Wang JT-W, Hodgins NO, et al. Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo. Biomaterials. 2017;120:126–138.
  • Andersson A-MC, Resende M, Salanti A, et al. Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen. Vaccine. 2017;35(8):1140–1147.
  • Moura APV, Santos LC, Brito CRN, et al. Virus-like particle display of the α-Gal carbohydrate for vaccination against Leishmania infection. ACS Cent Sci. 2017;3(9):1026–1031.
  • Marsian J, Lomonossoff GP. Molecular pharming—vLPs made in plants. Curr Opin Biotechnol. 2016;37:201–206.
  • Nerome K, Sugita S, Kuroda K, et al. The large-scale production of an artificial influenza virus-like particle vaccine in silkworm pupae. Vaccine. 2015 Jan 01;33(1):117–125. PubMed PMID: 25448101.
  • Rodríguez-Limas WA, Sekar K, Tyo KE. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr Opin Biotechnol. 2013;24(6):1089–1093.
  • Debbink K, Lindesmith LC, Donaldson EF, et al. Chimeric GII. 4 Norovirus Virus-Like-Particle-Based Vaccines Induce Broadly Blocking Immune Responses. J Virology. 2014;88(13):7256–7266.
  • Noh J-Y, Park J-K, Lee D-H, et al. Chimeric bivalent virus-like particle vaccine for H5N1 HPAI and ND confers protection against a lethal challenge in chickens and allows a strategy of differentiating infected from vaccinated animals (DIVA). PloS one. 2016;11(9):e0162946.
  • Zhao H, Li H-Y, Han J-F, et al. Novel recombinant chimeric virus-like particle is immunogenic and protective against both enterovirus 71 and coxsackievirus A16 in mice. Scientific reports. 2015;5:7878.
  • Donaldson B, Al-Barwani F, Pelham SJ, et al. Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. J Immunother Cancer. 2017 Aug 15;5(1):69. PubMed PMID: 28806910; PubMed Central PMCID: PMCPMC5556368.
  • Jemon K, Young V, Wilson M, et al. An enhanced heterologous virus-like particle for human papillomavirus type 16 tumour immunotherapy. PloS one. 2013;8(6):e66866. PubMed PMID: 23799135; PubMed Central PMCID: PMCPMC3682997.
  • Dallenbach K, Maurer P, Röhn T, et al. Protective effect of a germline, IL‐17‐neutralizing antibody in murine models of autoimmune inflammatory disease. Eur J Immunol. 2015;45(4):1238–1247.
  • Peacey M, Wilson S, Perret R, et al. Virus-like particles from rabbit hemorrhagic disease virus can induce an anti-tumor response [Research Support, Non-U.S. Gov’t]. Vaccine. 2008 Oct 3;26(42):5334–5337. PubMed PMID: 18706958; eng.
  • Speiser DE, Schwarz K, Baumgaertner P, et al. Memory and effector CD8 T-cell responses after nanoparticle vaccination of melanoma patients. J Immunotherapy. 2010;33(8):848–858.
  • Tissot AC, Spohn G, Jennings GT, et al. A VLP‐based vaccine against interleukin‐1α protects mice from atherosclerosis. Eur J Immunol. 2013;43(3):716–722.
  • Cavelti-Weder C, Timper K, Seelig E, et al. Development of an interleukin-1β vaccine in patients with type 2 diabetes. Mol Therapy. 2016;24(5):1003–1012.
  • Cornuz J, Zwahlen S, Jungi WF, et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PloS one. 2008;3(6):e2547.
  • Donaldson B, Al-Barwani F, Young V, et al. Virus-like particles, a versatile subunit vaccine platform. In: Foged C, Rades T, Perrie Y, et al., editors. Subunit Vaccine Delivery. New York: Springer; 2015. 159–180.
  • Lua LH, Connors NK, Sainsbury F, et al. Bioengineering virus‐like particles as vaccines. Biotechnol Bioeng. 2014;111(3):425–440.
  • Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol. 2013 Jan;53(1):92–107. PubMed PMID: 23001867; eng.
  • Al-Barwani F, Young SL, Baird MA, et al. Mannosylation of virus-like particles enhances internalization by antigen presenting cells. PloS one. 2014;9(8):e104523.
  • Pelham SJ. Coupling the adjuvant CpG oligonucleotides to RHDV VLP. Dunedin: University of Otago; 2014.
  • Gramatica A, Petazzi RA, Lehmann MJ, et al. αEnv-decorated phosphatidylserine liposomes trigger phagocytosis of HIV-virus-like particles in macrophages. Nanomedicine: Nanotechnology, Biol Med. 2014;10(5):e981–e989.
  • Tan M, Jiang X. Norovirus P particle: a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine (Lond). 2012 Jun;7(6):889–897. PubMed PMID: 22734641; PubMed Central PMCID: PMCPMC3514417.
  • Manolova V, Flace A, Bauer M, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008 May;38(5):1404–1413. PubMed PMID: 18389478.
  • Roozendaal R, Mempel TR, Pitcher LA, et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity. 2009 Feb 20;30(2):264–276. PubMed PMID: 19185517; PubMed Central PMCID: PMCPMC2699624.
  • Pape KA, Catron DM, Itano AA, et al. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity. 2007 Apr;26(4):491–502. PubMed PMID: 17379546.
  • Cubas R, Zhang S, Kwon S, et al. Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J Immunothe. 2009;32(2):118.
  • Cinamon G, Zachariah MA, Lam OM, et al. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol. 2008 Jan;9(1):54–62. PubMed PMID: 18037889; PubMed Central PMCID: PMCPMC2488964.
  • Carrasco YR, Batista FD. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity. 2007 Jul;27(1):160–171. PubMed PMID: 17658276.
  • Jegerlehner A, Tissot A, Lechner F, et al. A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine. 2002 Aug 19;20(25–26):3104–3112. PubMed PMID: 12163261; eng.
  • Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis. J Gen Virol. 2002 Jul;83(Pt 7):1535–1545. PubMed PMID: 12075072.
  • Yan M, Peng J, Jabbar IA, et al. Despite differences between dendritic cells and Langerhans cells in the mechanism of papillomavirus-like particle antigen uptake, both cells cross-prime T cells. Virology. 2004 Jul 01;324(2):297–310. PubMed PMID: 15207617.
  • Win SJ, Ward VK, Dunbar PR, et al. Cross-presentation of epitopes on virus-like particles via the MHC I receptor recycling pathway [Research Support, Non-U.S. Gov’t]. Immunol Cell Biol. 2011 Aug;89(6):681–688. PubMed PMID: 21221122; eng.
  • Cureton DK, Massol RH, Whelan SP, et al. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 2010 Sep 30;6(9):e1001127. PubMed PMID: 20941355; PubMed Central PMCID: PMCPMC2947997.
  • Ewers H, Smith AE, Sbalzarini IF, et al. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15110–15115. PubMed PMID: 16219700; PubMed Central PMCID: PMCPMC1257700.
  • Fausch SC, Da Silva DM, Kast WM. Differential uptake and cross-presentation of human papillomavirus virus-like particles by dendritic cells and Langerhans cells. Cancer Res. 2003 Jul 01;63(13):3478–3482. PubMed PMID: 12839929.
  • McIntosh JD, Manning K, Chokshi S, et al. An engineered non-toxic superantigen increases cross presentation of hepatitis B virus nucleocapsids by human dendritic cells. PloS one. 2014;9(4):e93598. PubMed PMID: 24690680; PubMed Central PMCID: PMCPMC3972192.
  • Banerjee D, Liu AP, Voss NR, et al. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. Chembiochem. 2010 Jun 14;11(9):1273–1279. PubMed PMID: 20455239; PubMed Central PMCID: PMCPMC4180096.
  • Mani B, Baltzer C, Valle N, et al. Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome. J Virol. 2006 Jan;80(2):1015–1024. PubMed PMID: 16379002; PubMed Central PMCID: PMCPMC1346861.
  • Chen LS, Wang M, Ou WC, et al. Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model. Gene Ther. 2010 Aug;17(8):1033–1041. PubMed PMID: 20410928.
  • Ruedl C, Storni T, Lechner F, et al. Cross‐presentation of virus‐like particles by skin‐derived CD8–dendritic cells: a dispensable role for TAP. Eur J Immunol. 2002;32(3):818–825.
  • Moffat JM, Cheong W-S, Villadangos JA, et al. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells. Vaccine. 2013;31(18):2310–2316.
  • Barth H, Ulsenheimer A, Pape GR, et al. Uptake and presentation of hepatitis C virus–like particles by human dendritic cells. Blood. 2005;105(9):3605–3614.
  • Leclerc D, Beauseigle D, Denis J, et al. Proteasome-independent major histocompatibility complex class I cross-presentation mediated by papaya mosaic virus-like particles leads to expansion of specific human T cells. J Virol. 2007;81(3):1319–1326.
  • Morón VG, Rueda P, Sedlik C, et al. In vivo, dendritic cells can cross-present virus-like particles using an endosome-to-cytosol pathway. J Immunol. 2003;171(5):2242–2250.
  • Haynes JR, Dokken L, Wiley JA, et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine. 2009;27(4):530–541.
  • Herzog C, Hartmann K, Künzi V, et al. Eleven years of Inflexal® V—a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27(33):4381–4387.
  • Mischler R, Metcalfe IC. Inflexal® V a trivalent virosome subunit influenza vaccine: production. Vaccine. 2002;20:B17–B23.
  • Leser GP, Lamb RA. Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology. 2005;342(2):215–227.
  • Rossman JS, Jing X, Leser GP, et al. Influenza virus m2 ion channel protein is necessary for filamentous virion formation. J Virol. 2010;84(10):5078–5088.
  • Matlin KS, Reggio H, Helenius A, et al. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol. 1981;91(3):601–613.
  • Patterson S, Oxford J, Dourmashkin R. Studies on the mechanism of influenza virus entry into cells. J Gen Virol. 1979;43(1):223–229.
  • Chen C, Zhuang X. Epsin 1 is a cargo-specific adaptor for the clathrin-mediated endocytosis of the influenza virus. Proc Natl Acad Sci. 2008;105(33):11790–11795.
  • De Vries E, Tscherne DM, Wienholts MJ, et al. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog. 2011;7(3):e1001329.
  • Lakadamyali M, Rust MJ, Zhuang X. Endocytosis of influenza viruses. Microb Infect. 2004;6(10):929–936.
  • Sieczkarski SB, Whittaker GR. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol. 2002;76(20):10455–10464.
  • Chao C-N, Lin M-C, Fang C-Y, et al. Gene therapy for human lung adenocarcinoma using a suicide gene driven by a lung-specific promoter delivered by JC virus-like particles. PloS one. 2016;11(6):e0157865.
  • Hoffmann DB, Böker KO, Schneider S, et al. In vivo siRNA delivery using JC virus-like particles decreases the expression of RANKL in rats. Mol Ther Nucleic Acids. 2016;5:e298.
  • Elphick GF, Querbes W, Jordan JA, et al. The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science. 2004;306(5700):1380–1383.
  • Pho M, Ashok A, Atwood WJ. JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J Virol. 2000;74(5):2288–2292.
  • Ashok A, Atwood WJ. Contrasting roles of endosomal pH and the cytoskeleton in infection of human glial cells by JC virus and simian virus 40. J Virol. 2003;77(2):1347–1356.
  • An K, Gillock ET, Sweat JA, et al. Use of the baculovirus system to assemble polyomavirus capsid-like particles with different polyomavirus structural proteins: analysis of the recombinant assembled capsid-like particles. J Gen Virol. 1999;80(4):1009–1016.
  • Chang C-F, Wang M, Ou W-C, et al. Human JC virus-like particles as a gene delivery vector. Expert Opin Biol Ther. 2011;11(9):1169–1175.
  • Jariyapong P, Chotwiwatthanakun C, Somrit M, et al. Encapsulation and delivery of plasmid DNA by virus-like nanoparticles engineered from Macrobrachium rosenbergii nodavirus. Virus Res. 2014;179:140–146.
  • Shao W, Paul A, Abbasi S, et al. A novel polyethyleneimine-coated adeno-associated virus-like particle formulation for efficient siRNA delivery in breast cancer therapy: preparation and in vitro analysis. Int J Nanomedicine. 2012;7:1575.
  • El Mehdaoui S, Touzé A, Laurent S, et al. Gene transfer using recombinant rabbit hemorrhagic disease virus capsids with genetically modified DNA encapsidation capacity by addition of packaging sequences from the L1 or L2 protein of human papillomavirus type 16. J Virol. 2000;74(22):10332–10340.
  • Wang G, Jia T, Xu X, et al. Novel miR-122 delivery system based on MS2 virus like particle surface displaying cell-penetrating peptide TAT for hepatocellular carcinoma. Oncotarget. 2016;7(37):59402.
  • Bachmann MF, Zinkernagel RM. Neutralizing antiviral B cell responses. Annu Rev Immunol. 1997;15(1):235–270.
  • Chackerian B, Durfee MR, Schiller JT. Virus-like display of a neo-self antigen reverses B cell anergy in a B cell receptor transgenic mouse model [Research Support, N.I.H., Extramural]. J Immunology. 2008 May 1;180(9):5816–5825. PubMed PMID: 18424700; PubMed Central PMCID: PMC3493123. eng.
  • Bessa J, Zabel F, Link A, et al. Low-affinity B cells transport viral particles from the lung to the spleen to initiate antibody responses. Proc Natl Acad Sci. 2012;109(50):20566–20571.
  • MacLennan I, Toellner KM, Cunningham AF, et al. Extrafollicular antibody responses. Immunol Rev. 2003;194(1):8–18.
  • Nutt SL, Tarlinton DM. Germinal center B and follicular helper T cells: siblings, cousins or just good friends [quest]. Nat Immunol. 2011;12(6):472–477.
  • Radbruch A, Muehlinghaus G, Luger EO, et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol. 2006;6(10):741–750.
  • Fairfax KA, Kallies A, Nutt SL, et al., editors. Plasma cell development: from B-cell subsets to long-term survival niches. Seminars in immunology; 2008; Elsevier.
  • Yang R, Murillo FM, Delannoy MJ, et al. B lymphocyte activation by human papillomavirus-like particles directly induces Ig class switch recombination via TLR4-MyD88. J Immunol. 2005;174(12):7912–7919.
  • Bessa J, Bachmann MF. T cell-dependent and-independent IgA responses: role of TLR signalling. Immunol Invest. 2010;39(4–5):407–428.
  • Bessa J, Jegerlehner A, Hinton HJ, et al. Alveolar macrophages and lung dendritic cells sense RNA and drive mucosal IgA responses. J Immunol. 2009;183(6):3788–3799.
  • Bessa J, Schmitz N, Hinton HJ, et al. Efficient induction of mucosal and systemic immune responses by virus‐like particles administered intranasally: implications for vaccine design. Eur J Immunol. 2008;38(1):114–126.
  • Brandtzaeg P. Mucosal immunity in the female genital tract. J Reprod Immunol. 1997;36(1):23–50.
  • Mestecky J, Kutteh W, Jackson S. Mucosal immunity in the female genital tract: relevance to vaccination efforts against the human immunodeficiency virus. AIDS Res Hum Retroviruses. 1994;10:S11–20.
  • Parr E, Parr M. A comparison of antibody titres in mouse uterine fluid after immunization by several routes, and the effect of the uterus on antibody titres in vaginal fluid. J Reprod Fertil. 1990;89(2):619–625.
  • Hocini H, Barra A, Belec L, et al. Systemic and secretory humoral immunity in the normal human vaginal tract. Scand J Immunol. 1995;42(2):269–274.
  • Kozlowski PA, Cu-Uvin S, Neutra MR, et al. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun. 1997;65(4):1387–1394.
  • Nardelli-Haefliger D, Wirthner D, Schiller JT, et al. Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus–like particles. J Natl Cancer Inst. 2003;95(15):1128–1137.
  • Olsson SE, Villa LL, Costa RL, et al. Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine. 2007 Jun 21;25(26):4931–4939. PubMed PMID: 17499406.
  • Hillaire ML, Osterhaus AD, Rimmelzwaan GF. Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. J Biomed Biotechnol. 2011;2011:939860. PubMed PMID: 22007149; PubMed Central PMCID: PMCPMC3189652.
  • Schotsaert M, Saelens X, Leroux-Roels G. Influenza vaccines: T-cell responses deserve more attention. Expert Rev Vaccines. 2012 Aug;11(8):949–962. PubMed PMID: 23002976.
  • Sommerfelt MA. T-cell-mediated and humoral approaches to universal influenza vaccines. Expert Rev Vaccines. 2011 Oct;10(10):1359–1361. PubMed PMID: 21988298.
  • McElhaney JE, Dutz JP. Better influenza vaccines for older people: what will it take? J Infect Dis. 2008 Sep 01;198(5):632–634. PubMed PMID: 18652548.
  • Ohmit SE, Petrie JG, Cross RT, et al. Influenza hemagglutination-inhibition antibody titer as a correlate of vaccine-induced protection. J Infect Dis. 2011 Dec 15;204(12):1879–1885. PubMed PMID: 21998477.
  • Schwarz K, Meijerink E, Speiser DE, et al. Efficient homologous prime‐boost strategies for T cell vaccination based on virus‐like particles. Eur J Immunol. 2005;35(3):816–821.
  • Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001 Mar 15;344(11):783–792. PubMed PMID: 11248153.
  • Li K, Peers-Adams A, Win SJ, et al. Antigen incorporated in virus-like particles is delivered to specific dendritic cell subsets that induce an effective antitumor immune response in vivo [Research Support, Non-U.S. Gov’t]. J Immunotherapy. 2013 Jan;36(1):11–19. PubMed PMID: 23211625; eng.
  • Li J, Sun Y, Jia T, et al. Messenger RNA vaccine based on recombinant MS2 virus‐like particles against prostate cancer. Int J Cancer. 2014;134(7):1683–1694.
  • Riabov V, Tretyakova I, Alexander RB, et al. Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA-DR transgenic mouse model of prostate cancer. Vaccine. 2015 Oct 5;33(41):5386–5395. PubMed PMID: 26319744; PubMed Central PMCID: PMCPMC4581984.
  • De Filette M, Martens W, Smet A, et al. Universal influenza A M2e-HBc vaccine protects against disease even in the presence of pre-existing anti-HBc antibodies. Vaccine. 2008 Dec 2;26(51):6503–6507. PubMed PMID: 18835315.
  • Gedvilaite A, Zvirbliene A, Staniulis J, et al. Segments of puumala hantavirus nucleocapsid protein inserted into chimeric polyomavirus-derived virus-like particles induce a strong immune response in mice. Viral Immunol. 2004;17(1):51–68. PubMed PMID: 15018662.
  • Jegerlehner A, Wiesel M, Dietmeier K, et al. Carrier induced epitopic suppression of antibody responses induced by virus-like particles is a dynamic phenomenon caused by carrier-specific antibodies. Vaccine. 2010 Jul 26;28(33):5503–5512. PubMed PMID: 20307591.
  • Link A, Zabel F, Schnetzler Y, et al. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunology. 2012 Apr 15;188(8):3724–3733. PubMed PMID: 22427639.
  • Chuan YP, Rivera-Hernandez T, Wibowo N, et al. Effects of pre-existing anti-carrier immunity and antigenic element multiplicity on efficacy of a modular virus-like particle vaccine. Biotechnol Bioeng. 2013 Sep;110(9):2343–2351. PubMed PMID: 23532896.
  • Donaldson B. Immunomodulation and vaccination with RHDV VLP: a thesis submitted for the degree of Doctor of Philosophy, University of Otago, Dunedin, New Zealand. Dunedin: University of Otago; 2017.
  • Zhou H, Guo L, Wang M, et al. Prime immunization with rotavirus VLP 2/6 followed by boosting with an adenovirus expressing VP6 induces protective immunization against rotavirus in mice. Virol J. 2011;8(1):3.
  • McClintock SL. Can different virus-like particles be used for prime-boost vaccination? Dunedin: University of Otago. 2011.
  • Jariyapong P, Xing L, van Houten NE, et al. Chimeric hepatitis E virus-like particle as a carrier for oral-delivery. Vaccine. 2013 Jan 2;31(2):417–424. PubMed PMID: 23107594.
  • Lin S-Y, Chung Y-C, Chiu H-Y, et al. Evaluation of the stability of enterovirus 71 virus-like particle. J Biosci Bioeng. 2014;117(3):366–371.
  • Kissmann J, Ausar SF, Foubert TR, et al. Physical stabilization of Norwalk virus-like particles. J Pharm Sci. 2008 Oct;97(10):4208–4218. PubMed PMID: 18300304.
  • Peixoto C, Sousa MF, Silva AC, et al. Downstream processing of triple layered rotavirus like particles. J Biotechnol. 2007 Jan 10;127(3):452–461. PubMed PMID: 16959354.
  • Kramer RM, Zeng Y, Sahni N, et al. Development of a stable virus-like particle vaccine formulation against Chikungunya virus and investigation of the effects of polyanions. J Pharm Sci. 2013 Dec;102(12):4305–4314. PubMed PMID: 24129946; PubMed Central PMCID: PMCPMC3869236.
  • Lynch A, Meyers AE, Williamson AL, et al. Stability studies of HIV-1 Pr55gag virus-like particles made in insect cells after storage in various formulation media. Virol J. 2012 Sep 18;9:210. PubMed PMID: 22988963; PubMed Central PMCID: PMCPMC3502365.
  • Lang R, Winter G, Vogt L, et al. Rational design of a stable, freeze-dried virus-like particle-based vaccine formulation. Drug Dev Ind Pharm. 2009;35(1):83–97.
  • Lan NT, Kim HJ, Han HJ, et al. Stability of virus-like particles of red-spotted grouper nervous necrosis virus in the aqueous state, and the vaccine potential of lyophilized particles. Biologicals: Journal Int Assoc Biol Standardization. 2018 Jan;51:25–31. PubMed PMID: 29174141.
  • Seth A, Kong IG, Lee SH, et al. Modular virus-like particles for sublingual vaccination against group A streptococcus. Vaccine. 2016 Dec 12;34(51):6472–6480. PubMed PMID: 27866769.
  • Mohr J, Chuan YP, Wu Y, et al. Virus-like particle formulation optimization by miniaturized high-throughput screening. Methods. 2013 May 1;60(3):248–256. PubMed PMID: 23639868.
  • Czyz M, Dembczynski R, Marecik R, et al. Freeze-drying of plant tissue containing HBV surface antigen for the oral vaccine against hepatitis B. Biomed Res Int. 2014;2014:485689. PubMed PMID: 25371900; PubMed Central PMCID: PMCPMC4209752.
  • Kanojia G, Have RT, Soema PC, et al. Developments in the formulation and delivery of spray dried vaccines. Hum Vaccin Immunother. 2017 Oct 3;13(10):2364–2378. PubMed PMID: 28925794; PubMed Central PMCID: PMCPMC5647985.
  • Tumban E, Muttil P, Escobar CA, et al. Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2. Vaccine. 2015 Jun 26;33(29):3346–3353. PubMed PMID: 26003490; PubMed Central PMCID: PMCPMC4468037.
  • Saboo S, Tumban E, Peabody J, et al. Optimized formulation of a thermostable spray-dried virus-like particle vaccine against human papillomavirus. Mol Pharm. 2016 May 2;13(5):1646–1655. PubMed PMID: 27019231; PubMed Central PMCID: PMCPMC4853272.
  • Peabody J, Muttil P, Chackerian B, et al. Characterization of a spray-dried candidate HPV L2-VLP vaccine stored for multiple years at room temperature. Papillomavirus Res. 2017 Jun;3:116–120. PubMed PMID: 28720444; PubMed Central PMCID: PMCPMC5604873.
  • Zhu Q, Zarnitsyn VG, Ye L, et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7968–7973. PubMed PMID: 19416832; PubMed Central PMCID: PMCPMC2683119.
  • Koutsonanos DG, Del Pilar Martin M, Zarnitsyn VG, et al. Transdermal influenza immunization with vaccine-coated microneedle arrays. PloS one. 2009;4(3):e4773. PubMed PMID: 19274084; PubMed Central PMCID: PMCPMC2651574.
  • Pasquale AD, Preiss S, Silva FTD, et al. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;3(2):320–343.
  • Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol. 2016 Jul;28(7):329–338. PubMed PMID: 27006304; PubMed Central PMCID: PMCPMC4922024.
  • Gorski KS, Waller EL, Bjornton-Severson J, et al. Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists. Int Immunol. 2006 Jul;18(7):1115–1126. PubMed PMID: 16728430.
  • Hart OM, Athie-Morales V, O’Connor GM, et al. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J Immunology. 2005 Aug 1;175(3):1636–1642. PubMed PMID: 16034103.
  • Ma F, Zhang J, Zhang J, et al. The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol. 2010 Sep;7(5):381–388. PubMed PMID: 20543857; PubMed Central PMCID: PMCPMC4002679.
  • Zhou Z, Yu X, Zhang J, et al. TLR7/8 agonists promote NK–DC cross-talk to enhance NK cell anti-tumor effects in hepatocellular carcinoma. Cancer Lett. 2015;369(2):298–306.
  • Zou BB, Wang F, Li L, et al. Activation of Toll-like receptor 7 inhibits the proliferation and migration, and induces the apoptosis of pancreatic cancer cells. Mol Med Rep. 2015;12(4):6079–6085.
  • Klimek L, Bachmann MF, Senti G, et al. Immunotherapy of type-1 allergies with virus-like particles and CpG-motifs. Expert Rev Clin Immunol. 2014;10(8):1059–1067.
  • Tumban E, Peabody J, Peabody DS, et al. A universal virus-like particle-based vaccine for human papillomavirus: longevity of protection and role of endogenous and exogenous adjuvants. Vaccine. 2013 Sep 23;31(41):4647–4654. PubMed PMID: 23933337; PubMed Central PMCID: PMCPMC3785330.
  • Martins KA, Cooper CL, Stronsky SM, et al. Adjuvant-enhanced CD4 T cell responses are critical to durable vaccine immunity. EBioMedicine. 2016;3:67–78.
  • Herzog C. Influence of parenteral administration routes and additional factors on vaccine safety and immunogenicity: a review of recent literature. Expert Rev Vaccines. 2014;13(3):399–415.
  • Gillet Y, Steri G, Behre U, et al. Immunogenicity and safety of measles-mumps-rubella-varicella (MMRV) vaccine followed by one dose of varicella vaccine in children aged 15 months–2 years or 2–6 years primed with measles-mumps-rubella (MMR) vaccine. Vaccine. 2009;27(3):446–453.
  • Quan F-S, Kim Y-C, Song J-M, et al. Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch. Clin Vaccine Immunol. 2013;20(9):1433–1439.
  • Tamminen K, Malm M, Vesikari T, et al. Mucosal antibodies induced by intranasal but not intramuscular immunization block norovirus GII.4 virus-like particle receptor binding. Viral Immunol. 2016 Jun;29(5):315–319. PubMed PMID: 27135874.
  • Jiao YY, Fu YH, Yan YF, et al. A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus. Antiviral Res. 2017 Aug;144:57–69. PubMed PMID: 28529001.
  • Huang Z, Elkin G, Maloney BJ, et al. Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine. 2005;23(15):1851–1858.
  • Mason HS, Ball JM, Shi -J-J, et al. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci. 1996;93(11):5335–5340.
  • Berardi A, Lomonossoff GP, Evans DJ, et al. Plant-expressed Hepatitis B core antigen virus-like particles: characterization and investigation of their stability in simulated and pig gastro-intestinal fluids. Int J Pharm. 2017;522(1–2):147–156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.