416
Views
12
CrossRef citations to date
0
Altmetric
Review

Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned

, , ORCID Icon, &
Pages 1005-1020 | Received 24 Aug 2018, Accepted 08 Oct 2018, Published online: 09 Nov 2018

References

  • UNAIDS. Global AIDS update 2016, 2016.
  • UNAIDS. Global AIDS Response Progress Reporting 2015, 2015.
  • World Health Organization. Global tuberculosis report 2018; 2018.
  • Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68:4650–4655.
  • Rowland-Jones SL, Dong T, Fowke KR, et al. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi. J Clin Invest. 1998;102:1758–1765.
  • Andersen P, Kaufmann SHE. Novel vaccination strategies against tuberculosis. Cold Spring Harb Perspect Med. 2014;4.
  • Horwitz MA, Harth G, Dillon B, et al. Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Nat Acad Sci USA. 2000;97:13853–13858.
  • Wangoo A, Brown IN, Marshall BG, et al. Bacille Calmette-Guerin (BCG)-associated inflammation and fibrosis: modulation by recombinant BCG expressing interferon-gamma (IFN-γ). Clin Exp Immunol. 2000;119:92–98.
  • Fletcher HA. Sleeping beauty and the story of the bacille Calmette-Guérin vaccine. MBio. 2016;7.
  • Lotte A, Wasz-Höckert O, Poisson N, et al. BCG complications. Estimates of the risks among vaccinated subjects and statistical analysis of their main characteristics. Adv Tuberc Res. 1984;21:107–193.
  • Gheorghiu M, Lagrange PH, Fillastre C. The stability and immunogenicity of a dispersed-grown freeze-dried Pasteur BCG vaccine. J Biol Stand. 1988;16:15–26.
  • Matsuo K, Yasutomi Y. Mycobacterium bovis Bacille Calmette-Guérin as a vaccine vector for global infectious disease control. Tuberc Res Treat. 2011;2011:1–9.
  • Joseph J, Saubi N, Pezzat E, et al. Progress towards an HIV vaccine based on recombinant bacillus Calmette–guérin: failures and challenges. Expert Rev Vaccines. 2006;5:827–838.
  • Melancon-Kaplan J, Hunter SW, McNeil M, et al. Immunological significance of Mycobacterium leprae cell walls. Proc Natl Acad Sci USA. 1988;85:1917–1921.
  • Oiso R, Fujiwara N, Yamagami H, et al. Mycobacterial trehalose 6,6ʹ-dimycolate preferentially induces type 1 helper T cell responses through signal transducer and activator of transcription 4 protein. Microb Pathog. 2005;39:35–43.
  • Fujita Y, Naka T, Doi T, et al. Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry. Microbiol. 2005;151:1443–1452.
  • Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999;285:732–736.
  • Nunes-Alves C, Booty MG, Carpenter SM, et al. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol. 2014;12:289–299.
  • Fletcher HA, Schrager L. TB vaccine development and the end TB strategy: importance and current status. Trans R Soc Trop Med Hyg. 2016;110:212–218.
  • Hoft DF. Tuberculosis vaccine development: goals, immunological design, and evaluation. Lancet. 2008;372:164–175.
  • Tang J, Yam W-C, Chen Z. Mycobacterium tuberculosis infection and vaccine development. Tuberculosis. 2016;98:30–41.
  • O’Shea MK, McShane H. A review of clinical models for the evaluation of human TB vaccines. Hum Vaccines Immuno Ther. 2016;12:1–11.
  • Skeiky YAW, Sadoff JC. Advances in tuberculosis vaccine strategies. Nat Rev Microbiol. 2006;4:469–476.
  • Pang Y, Zhao A, Cohen C, et al. Current status of new tuberculosis vaccine in children. Hum Vaccin Immunother. 2016;12:1–11.
  • Timm J, Lim EM, Gicquel B. Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions to lacZ: the pJEM series. J. Bacteriol. 1994;176:6749–6753.
  • Snapper SB, Melton RE, Mustafa S, et al. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990;4:1911–1919.
  • Snapper SB, Lugosi L, Jekkel A, et al. Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA. 1988;85:6987–6991.
  • Bastos RG, Borsuk S, Seixas FK, et al. Recombinant Mycobacterium bovis BCG. Vaccine. 2009;27:6495–6503.
  • Goto Y, Taniguchi H, Udou T, et al. Development of a new host vector system in mycobacteria. FEMS Microbiol Lett. 1991;67:277–282.
  • Stover CK, de la Cruz VF, Fuerst TR, et al. New use of BCG for recombinant vaccines. Nature. 1991;351:456–460.
  • Méderlé I, Bourguin I, Ensergueix D, et al. Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect Immun. 2002;70:303–314.
  • Labidi A, David HL, Roulland-Dussoix D. Restriction endonuclease mapping and cloning of Mycobacterium fortuitum var. fortuitum plasmid pAL5000. Ann l’Institut Pasteur Microbiologie. 1985;136B:209–215.
  • Lee H, Kim BJ, Kim BR, et al. The development of a novel Mycobacterium-Escherichia coli shuttle vector system using pMyong2, a linear plasmid from Mycobacterium yongonense DSM 45126T. PLoS One. 2015;10:e0122897.
  • Kim B-J, Gong J-R, Kim G-N, et al. Recombinant Mycobacterium smegmatis with a pMyong2 vector expressing human immunodeficiency virus type I gag can induce enhanced virus-specific immune responses. Sci Rep. 2017;7:44776.
  • Lugosi L, Jacobs WR, Bloom BR. Genetic transformation of BCG. Tubercle. 1989;70:159–170.
  • Yu J-S, Peacock JW, Vanleeuwen S, et al. Generation of mucosal anti-human immunodeficiency virus type 1 T-cell responses by recombinant Mycobacterium smegmatis. Clin Vaccine Immunol. 2006;13:1204–1211.
  • Aldovini A, Young RA. Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines. Nature. 1991;351:479–482.
  • Joseph J, Fernández-Lloris R, Pezzat E, et al. Molecular characterization of heterologous HIV-1gp120 gene expression disruption in Mycobacterium bovis BCG host strain: a critical issue for engineering Mycobacterial based-vaccine vectors. J Biomed Biotechnol 2010. 2010.
  • Saubi N, Gea-Mallorquí E, Ferrer P, et al. Engineering new mycobacterial vaccine design for HIV–TB pediatric vaccine vectored by lysine auxotroph of BCG. Mol Ther Methods Clin Dev. 2014;1:14017.
  • Streit JA, Recker TJ, Donelson JE, et al. BCG expressing LCR1 of Leishmania chagasi induces protective immunity in susceptible mice. Exp Parasitol. 2000;94:33–41.
  • Chapman R, Chege G, Shephard E, et al. Recombinant Mycobacterium bovis BCG as an HIV vaccine vector. Curr HIV Res. 2010;8:282–298.
  • Dennehy M, Bourn W, Steele D, et al. Evaluation of recombinant BCG expressing rotavirus VP6 as an anti-rotavirus vaccine. Vaccine. 2007;25:3646–3657.
  • Movahedzadeh F, Bitter W. Ins and outs of mycobacterial plasmids. Methods Mol Biol. 2008;465:217–228.
  • Pashley CA, Parish T. Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis. FEMS Microbiol Lett. 2003;229:211–215.
  • Lewis JA, Hatfull GF. Identification and characterization of mycobacteriophage L5 excisionase, Mol. Microbiol. 2000;35:350–360.
  • Bhatt A, Jacobs WR. Gene essentiality testing in Mycobacterium smegmatis using specialized transduction. Methods Mol Biol. 2008;465:325–336.
  • Dieci G, Giuliodori S, Catellani M, et al. Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae. J. Biol Chem. 2002;277:6903–6914.
  • Newton-Foot M, Gey Van Pittius NC. The complex architecture of mycobacterial promoters. Tuberculosis. 2013;93:60–74.
  • Kanno AI, Goulart C, Rofatto HK, et al. New recombinant Mycobacterium bovis BCG expression vectors: improving genetic control over mycobacterial promoters. Appl Environ Microbiol. 2016.
  • Batoni G, Maisetta G, Florio W, et al. Analysis of the Mycobacterium bovis hsp60 promoter activity in recombinant Mycobacterium avium. FEMS Microbiol Lett. 1998;169:117–124.
  • Leung NJ, Aldovini A, Young R, et al. The kinetics of specific immune responses in rhesus monkeys inoculated with live recombinant BCG expressing SIV Gag, Pol, Env, and Nef proteins. Virology. 2000;268:94–103.
  • Kawahara M, Hashimoto A, Toida I, et al. Oral recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing HIV-1 antigens as a freeze-dried vaccine induces long-term, HIV-specific mucosal and systemic immunity. Clin Immunol. 2002;105:326–331.
  • Stover CK, Bansal GP, Hanson MS, et al. Protective immunity elicited by recombinant bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J Exp Med. 1993;178:197–209.
  • Langermann S, Palaszynski SR, Burlein JE, et al. Protective humoral response against pneumococcal infection in mice elicited by recombinant bacille Calmette-Guérin vaccines expressing pneumococcal surface protein A. J Exp Med. 1994;180:2277–2286.
  • Kanekiyo M, Matsuo K, Hamatake M, et al. Mycobacterial codon optimization enhances antigen expression and virus-specific immune responses in recombinant Mycobacterium bovis bacille Calmette-Guerin expressing human immunodeficiency virus type 1 Gag. J Virol. 2005;79:8716–8723.
  • MacHowski EE, McAdam RA, Derbyshire KM, et al. Construction and application of mycobacterial reporter transposons. Gene. 2000;253:67–75.
  • Parish T, Liu J, Nikaido H, et al. A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J Bacteriol. 1997;179:7827–7833.
  • Movahedzadeh F, Frita R, Gutka HJ. A two-step strategy for the complementation of M. tuberculosis mutants. Genet Mol Biol. 2011;34:286–289.
  • Triccas JA, Parish T, Britton WJ, et al. An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol Lett. 1998;167:151–156.
  • Brown AC, Parish T. Instability of the acetamide-inducible expression vector pJAM2 in Mycobacterium tuberculosis. Plasmid. 2006;55:81–86.
  • Manabe YC, Chen JM, Ko CG, et al. Conditional sigma factor expression, using the inducible acetamidase promoter, reveals that the Mycobacterium tuberculosis sigF gene modulates expression of the 16-kilodalton alpha-crystallin homologue. J. Bacteriol. 1999;181:7629–7633.
  • Carroll P, Niranjala Muttucumaru DG, Parish T. Use of a tetracycline-inducible system for conditional expression in Mycobacterium tuberculosis and Mycobacterium smegmatis. Appl Environ Microbiol. 2005;71:3077–3084.
  • Via LE, Curcic R, Mudd MH, et al. Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J Bacteriol. 1996;178:3314–3321.
  • Himmelrich H, Lo-Man R, Winter N, et al. Immune responses induced by recombinant BCG strains according to level of production of a foreign antigen: malE. Vaccine. 2000;18:2636–2647.
  • Murray A, Winter N, Lagranderie M, et al. Expression of Escherichia coli beta-galactosidase in Mycobacterium bovis BCG using an expression system isolated from Mycobacterium paratuberculosis which induced humoral and cellular immune responses. Mol Microbiol. 1992;6:3331–3342.
  • Matsuo K, Yamaguchi R, Yamazaki A, et al. Establishment of a foreign antigen secretion system in mycobacteria. Infect Immun. 1990;58:4049–4054.
  • Winter N, Lagranderie M, Rauzier J, et al. Expression of heterologous genes in Mycobacterium bovis BCG: induction of a cellular response against HIV-1 Nef protein. Gene. 1991;109:47–54.
  • Al-Zarouni M, Dale JW. Expression of foreign genes in Mycobacterium bovis BCG strains using different promoters reveals instability of the hsp60 promoter for expression of foreign genes in Mycobacterium bovis BCG strains. Tuberculosis. 2002;82:283–291.
  • Bastos RG, Dellagostin OA, Barletta RG, et al. Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus. Vaccine. 2002;21:21–29.
  • Mahant A, Saubi N, Eto Y, et al. Preclinical development of BCG.HIVA2auxo.int, harboring an integrative expression vector, for a HIV-TB pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity. Hum Vaccin Immunother. 2017;13:1798–1810.
  • Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol. 2017;101:6865–6877.
  • Da Costa AC, Nogueira SV, Kipnis A, et al. Recombinant BCG: innovations on an old vaccine. Scope of BCG strains and strategies to improve long-lasting memory. Front Immunol. 2014;5:152.
  • Ohara N, Matsuoka M, Nomaguchi H, et al. Protective responses against experimental Mycobacterium leprae infection in mice induced by recombinant bacillus Calmette-Guérin over-producing three putative protective antigen candidates. Vaccine. 2001;19:1906–1910.
  • Seixas FK, Da Silva ÉF, Hartwig DD, et al. Recombinant Mycobacterium bovis BCG expressing the LipL32 antigen of Leptospira interrogans protects hamsters from challenge. Vaccine. 2007;26:88–95.
  • Trovato M, D’Apice L, Prisco A, et al. HIV vaccination: a roadmap among advancements and concerns. Int J Mol Sci. 2018;19.
  • de Taeye SW, Moore JP, Sanders RW. HIV-1 envelope trimer design and immunization strategies to induce broadly neutralizing antibodies. Trends Immunol. 2016;37:221–232.
  • Barouch DH, Stephenson KE, Borducchi EN, et al. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell. 2013;155:531–539.
  • Ondondo B, Murakoshi H, Clutton G, et al. Novel conserved-region T-cell mosaic vaccine with high global HIV-1 coverage is recognized by protective responses in untreated infection. Mol Ther. 2016;24:832–842.
  • Stephenson KE, D’Couto HT, Barouch DH. New concepts in HIV-1 vaccine development. Curr Opin Immunol. 2016;41:39–46.
  • Kameoka M, Nishino Y, Matsuo K, et al. Cytotoxic T lymphocyte response in mice induced by a recombinant BCG vaccination which produces an extracellular alpha antigen that fused with the human immunodeficiency virus type 1 envelope immunodominant domain in the V3 loop. Vaccine. 1994;12:153–158.
  • Lim EM, Lagranderie M, Le Grand R, et al. Recombinant Mycobacterium bovis BCG producing the N-terminal half of SIVmac251 Env antigen induces neutralizing antibodies and cytotoxic T lymphocyte responses in mice and guinea pigs. AIDS Res Hum Retroviruses. 1997;13:1573–1581.
  • Honda M, Matsuo K, Nakasone T, et al. Protective immune-responses induced by secretion of a chimeric soluble-protein from a recombinant Mycobacterium-bovis bacillus-Calmette-Guerin vector candidate vaccine for human-immunodeficiency-virus type-1 in small animals. Proc Natl Acad Sci USA. 1995;92:10693–10697.
  • Andersson GE, Sharp PM. Codon usage in the Mycobacterium tuberculosis complex. Microbiol. 1996;142(4):915–925.
  • Promkhatkaew D, Pinyosukhee N, Thongdeejaroen W, et al. Prime-boost immunization of codon optimized HIV-1 CRF01_AE Gag in BCG with recombinant vaccinia virus elicits MHC class I and II immune responses in mice. Immunol Invest. 2009;38:762–779.
  • Skogman G, Nilsson J, Gustafsson P. The use of a partition locus to increase stability of tryptophan-operon-bearing plasmids in Escherichia coli. Gene. 1983;23:105–115.
  • Maguin E, Duwat P, Hege T, et al. New thermosensitive plasmid for gram-positive bacteria. J Bacteriol. 1992;174:5633–5638.
  • Fabre EE, Bigey P, Beuzard Y, et al. Careful adjustment of Epo non-viral gene therapy for beta-thalassemic anaemia treatment. Genet Vaccines Ther. 2008;6:10.
  • Nikol S, Baumgartner I, Van Belle E, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008;16:972–978.
  • Maulik N. NV1FGF, a pCOR plasmid-based angiogenic gene therapy for the treatment of intermittent claudication and critical limb ischemia. Curr Opin Investig Drugs. 2009;10:259–268.
  • Saubi N, Mbewe-Mvula A, Gea-Mallorqui E, et al. Pre-clinical development of BCG.HIVACAT, an antibiotic-free selection strain, for HIV-TB pediatric vaccine vectored by lysine auxotroph of BCG. PLoS One. 2012;7:e42559.
  • Williams SG, Cranenburgh RM, Weiss AM, et al. Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res. 1998;26:2120–2124.
  • Cobra biologics and pharmaceutical services - cobra bio. Available from: http://www.cobrabio.com/. Date accessed: 2017-09-12
  • Cascioferro A, Boldrin F, Serafini A, et al. Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria. Appl Environ Microbiol. 2010;76:5312–5316.
  • Chujoh Y, Matsuo K, Yoshizaki H, et al. Cross-clade neutralizing antibody production against human immunodeficiency virus type 1 clade E and B??? strains by recombinant Mycobacterium bovis BCG-based candidate vaccine. Vaccine. 2001;20:797–804.
  • Hiroi T, Goto H, Someya K, et al. HIV mucosal vaccine: nasal immunization with rBCG-V3J1 induces a long term V3J1 peptide-specific neutralizing immunity in Th1- and Th2-deficient conditions. J Immunol. 2001;167:5862–5867.
  • Sato H, Jing C, Isshiki M, et al. Immunogenicity and safety of the vaccinia virus LC16m8? Vector expressing SIV Gag under a strong or moderate promoter in a recombinant BCG prime-recombinant vaccinia virus boost protocol. Vaccine. 2013;31:3549–3557.
  • Hopkins R, Bridgeman A, Joseph J, et al. Dual neonate vaccine platform against HIV-1 and M. tuberculosis. PLoS One. 2011;6:e20067.
  • Hopkins R, Bridgeman A, Bourne C, et al. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors. Eur J Immunol. 2011;41:3542–3552.
  • Chapman R, Stutz H, Jacobs W, et al. Priming with recombinant auxotrophic BCG expressing HIV-1 Gag, RT and Gp120 and boosting with recombinant MVA induces a Robust T cell response in mice. PLoS One. 2013;8.
  • Hart BE, Asrican R, Lim S-Y, et al. Stable expression of lentiviral antigens by quality-controlled recombinant Mycobacterium bovis BCG vectors. Clin Vaccine Immunol. 2015;22:726–741.
  • Yu J-S, Peacock JW, Jacobs WR Jr., et al. Recombinant Mycobacterium bovis bacillus Calmette-Guérin elicits human immunodeficiency virus type 1 envelope-specific T lymphocytes at mucosal sites. Clin Vaccine Immunol. 2007;14:886.
  • Aravindhan V, Narayanan S, Gautham N, et al. T-h-2 immunity and CD3+CD45RBlow-activated T cells in mice immunized with recombinant bacillus Calmette-Guérin expressing HIV-1 principal neutralizing determinant epitope. FEMS Immunol Med Microbiol. 2006;47:45–55.
  • Panas MW, Sixsmith JD, White K, et al. Gene deletions in Mycobacterium bovis BCG stimulate increased CD8+ T cell responses. Infect Immun. 2014;82:5317–5326.
  • Chapman R, Shephard E, Stutz H, et al. Priming with a recombinant pantothenate auxotroph of Mycobacterium bovis BCG and boosting with MVA elicits HIV-1 Gag specific CD8+ T cells. PLoS One. 2012;7:e32769.
  • Chapman R, Bourn WR, Shephard E, et al. The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen. PLoS One. 2014.
  • Venkataswamy MM, Ng TW, Kharkwal SS, et al. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells. PLoS One. 2014;9:e108383.
  • Promkhatkaew D, Pinyosukhee N, Thongdeejaroen W, et al. Enhancement of cell-mediated immune response in mice by whole HIV-1. Southeast Asian J Trop Med Public Health. 2009;40:113–122.
  • Promkhatkaew D, Matsuo K, Pinyosukhee N, et al. Prime-boost vaccination using recombinant Mycobacterium bovis BCG and recombinant vaccinia virus DIs harboring HIV-1 CRF01_AE gag in mice: influence of immunization. Southeast Asian J Trop Med Public Health. 2009;40:273–281.
  • Saubi N, Im E-J, Fernández-Lloris R, et al. Newborn mice vaccination with BCG.HIVA 222 + MVA.HIVA enhances HIV-1-specific immune responses: influence of age and immunization routes. Clin Dev Immunol 2011;2011:1–11.
  • Jongwe TI, Chapman R, Douglass N, et al. HIV-1 subtype C mosaic Gag expressed by BCG and MVA elicits persistent effector T cell responses in a prime-boost regimen in mice. PLoS One. 2016;11:e0159141.
  • Kawahara M, Matsuo K, Honda M. Intradermal and oral immunization with recombinant Mycobacterium bovis BCG expressing the simian immunodeficiency virus Gag protein induces long-lasting, antigen-specific immune responses in guinea pigs. Clin Immunol. 2006;119:67–78.
  • Kawahara M. Recombinant Mycobacterium bovis BCG vector system expressing SIV Gag protein stably and persistently induces antigen-specific humoral immune response concomitant with IFNγ response, even at three years after immunization. Clin Immunol. 2008;129:492–498.
  • Ami Y, Izumi Y, Matsuo K, et al. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity. J Virol. 2005;79:12871–12879.
  • Cayabyab MJ, Korioth-Schmitz B, Sun Y, et al. Recombinant Mycobacterium bovis BCG prime-recombinant adenovirus boost vaccination in rhesus monkeys elicits robust polyfunctional simian immunodeficiency virus-specific T-cell responses. J Virol. 2009;83:5505–5513.
  • Rosario M, Hopkins R, Fulkerson J, et al. Novel recombinant Mycobacterium bovis BCG, ovine atadenovirus, and modified vaccinia virus Ankara vaccines combine to induce robust human immunodeficiency virus-specific CD4 and CD8 T-cell responses in Rhesus Macaques. J Virol. 2010;84:5898–5908.
  • Rosario M, Fulkerson J, Soneji S, et al. Safety and immunogenicity of novel recombinant BCG and modified vaccinia virus Ankara vaccines in neonate Rhesus Macaques. J Virol. 2010;84:7815–7821.
  • Jensen K, Ranganathan UDK, Van Rompay KKA, et al. A recombinant attenuated Mycobacterium tuberculosis vaccine strain is safe in immunosuppressed simian immunodeficiency virus-infected infant macaques. Clin Vaccine Immunol. 2012;19:1170–1181.
  • Jensen K, Dela Pena MG, Wilson RL, et al. A neonatal oral Mycobacterium tuberculosis-SIV prime/intramuscular MVA-SIV boost combination vaccine induces both SIV and Mtb-specific immune responses in infant macaques. Trials Vaccinol. 2013;2:53–63.
  • Chege GK, Burgers WA, Stutz H, et al. Robust immunity to an auxotrophic Mycobacterium bovis BCG-VLP prime-boost HIV vaccine candidate in a nonhuman primate model. J Virol. 2013;87:5151–5160.
  • Martins MA, Wilson NA, Piaskowski SM, et al. Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239. J Virol. 2014;88:7493–7516.
  • Sixsmith JD, Panas MW, Lee S, et al. Recombinant Mycobacterium bovis bacillus calmette-guerin vectors prime for strong cellular responses to simian immunodeficiency virus gag in Rhesus Macaques. Clin Vaccine Immunol. 2014;21:1385–1395.
  • Dharmapuri S, Peruzzi D, Aurisicchio L. Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin Biol Ther. 2009;9:1279–1287.
  • Gudmundsdotter L, Nilsson C, Brave A, et al. Recombinant Modified Vaccinia Ankara (MVA) effectively boosts DNA-primed HIV-specific immune responses in humans despite pre-existing vaccinia immunity. Vaccine. 2009;27:4468–4474.
  • Cayabyab MJ, Hovav A-H, Hsu T, et al. Generation of CD8+ T-cell responses by a recombinant nonpathogenic Mycobacterium smegmatis vaccine vector expressing human immunodeficiency virus type 1 Env. J Virol. 2006;80:1645–1652.
  • Sixsmith JD, Panas MW, Lee S, et al. Recombinant Mycobacterium bovis bacillus Calmette-Guérin vectors prime for strong cellular responses to simian immunodeficiency virus gag in Rhesus Macaques. Clin Vaccine Immunol. 2014;21:1385–1395.
  • Korioth-Schmitz B, Perley CC, Sixsmith JD, et al. Rhesus immune responses to SIV Gag expressed by recombinant BCG vectors are independent from pre-existing mycobacterial immunity. Vaccine. 2015;33:5715–5722.
  • Chaparas SD, Maloney CJ, Hedrick SR. Specificity of tuberculins and antigens from various species of mycobacteria. Am Rev Respir Dis. 1970;101:74–83.
  • Harboe M, Mshana RN, Closs O, et al. Cross-reactions between mycobacteria. II. Crossed immunoelectrophoretic analysis of soluble antigens of BCG and comparison with other mycobacteria. Scand J Immunol. 1979;9:115–124.
  • von Reyn CF, Horsburgh CR, Olivier KN, et al. Skin test reactions to Mycobacterium tuberculosis purified protein derivative and Mycobacterium avium sensitin among health care workers and medical students in the United States. Int J Tuberc Lung Dis. 2001;5:1122–1128.
  • von Reyn CF, Williams DE, Horsburgh CR, et al. Dual skin testing with Mycobacterium avium sensitin and purified protein derivative to discriminate pulmonary disease due to M. avium complex from pulmonary disease due to Mycobacterium tuberculosis. J Infect Dis. 1998;177:730–736.
  • Black GF, Dockrell HM, Crampin AC, et al. Patterns and implications of naturally acquired immune responses to environmental and tuberculous mycobacterial antigens in northern Malawi. J Infect Dis. 2001;184:322–329.
  • Black GF, Weir RE, Floyd S, et al. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet (London, England). 2002;359:1393–1401.
  • Weir RE, Fine PEM, Nazareth B, et al. Interferon-gamma and skin test responses of schoolchildren in southeast England to purified protein derivatives from Mycobacterium tuberculosis and other species of mycobacteria. Clin Exp Immunol. 2003;134:285–294.
  • Floyd S, Pönnighaus JM, Bliss L, et al. Kinetics of delayed-type hypersensitivity to tuberculin induced by bacille Calmette-Guérin vaccination in northern Malawi. J Infect Dis. 2002;186:807–814.
  • Black GF, Fine PEM, Warndorff DK, et al. Relationship between IFN-gamma and skin test responsiveness to Mycobacterium tuberculosis PPD in healthy, non-BCG-vaccinated young adults in Northern Malawi. Int J Tuberc Lung Dis. 2001;5:664–672.
  • Brandt L, Feino Cunha J, Weinreich Olsen A, et al. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun. 2002;70:672–678.
  • de Lisle GW, Wards BJ, Buddle BM, et al. The efficacy of live tuberculosis vaccines after presensitization with Mycobacterium avium. Tuberculosis. 2005;85:73–79.
  • World Health Organization. BCG vaccine: WHO position paper, February 2018 – recommendations. Vaccine. 2018;36:3408–3410.
  • Faurholt-Jepsen D, Range N, PrayGod G, et al. BCG protects against tuberculosis irrespective of HIV status: a matched case-control study in Mwanza, Tanzania: table 1. Thorax. 2013;68:288–289.
  • Bhat GJ, Diwan VK, Chintu C, et al. HIV, BCG and TB in children: a case control study in Lusaka, Zambia. J Trop Pediatr. 1993;39:219–223.
  • Van-Dunem JC, Rodrigues LC, Alencar LCA, et al. Effectiveness of the first dose of BCG against tuberculosis among HIV-Infected, Predominantly Immunodeficient Children. Biomed Res Int 2015. 2015;2015:1–10.
  • Roth A, Gustafson P, Nhaga A, et al. BCG vaccination scar associated with better childhood survival in Guinea-Bissau. Int J Epidemiol. 2005;34:540–547.
  • Post CL, Victora CG, Valente JG, et al. Prognostic factors of hospital mortality from diarrhea or pneumonia in infants younger than 1 year old. A case-control study. Rev Saude Publica. 1992;26:369–378.
  • Netea MG, Quintin J, van der Meer JWM. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9:355–361.
  • van der Meer JWM, Joosten LAB, Riksen N, et al. Trained immunity: a smart way to enhance innate immune defence. Mol Immunol. 2015;68:40–44.
  • Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci. 2012;109:17537–17542.
  • Kleinnijenhuis J, Quintin J, Preijers F, et al. BCG-induced trained immunity in NK cells: role for non-specific protection to infection. Clin Immunol. 2014;155:213–219.
  • Jensen K, Nabi R, Van Rompay KKA, et al. Vaccine-elicited mucosal and systemic antibody responses are associated with reduced simian immunodeficiency viremia in infant Rhesus Macaques. J Virol. 2016;90:7285–7302.
  • Jensen K, Dela Pena-Ponce MG, Piatak M, et al. Balancing Trained immunity with persistent immune activation and the risk of simian immunodeficiency virus infection in infant macaques vaccinated with attenuated mycobacterium tuberculosis or Mycobacterium bovis BCG vaccine. Clin Vaccine Immunol. 2017;24:e00360–16.
  • Thayil SM, Ho Y-C, Bollinger RC, et al. Mycobacterium tuberculosis complex enhances susceptibility of CD4 T cells to HIV through a TLR2-mediated pathway. PLoS One. 2012;7:e41093.
  • Rampini SK, Selchow P, Keller C, et al. LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest. Microbiol. 2008;154:2991–3001.
  • Sander P, Rezwan M, Walker B, et al. Lipoprotein processing is required for virulence of Mycobacterium tuberculosis. Mol Microbiol. 2004;52:1543–1552.
  • Seshadri C, Turner MT, Lewinsohn DM, et al. Lipoproteins are major targets of the polyclonal human T cell response to Mycobacterium tuberculosis. J Immunol. 2013;190:278–284.
  • Behr MA. BCG–different strains, different vaccines? Lancet Infect Dis. 2002;2:86–92.
  • Gheorghiu M, Lagrange PH, Lagranderie M, et al. The effects of dispersed or surface grown cultures, manufacture and control methods on BCG standardization. Dev Biol Stand. 1986;58(Pt A):191–205.
  • Champlin R, Hunter RL. Studies on the composition of adjuvants which selectively enhance delayed-type hypersensitivity to lipid conjugated protein antigens. J Immunol. 1975;114:76–80.
  • van Faassen H, Dudani R, Krishnan L, et al. Prolonged antigen presentation, APC-, and CD8+ T cell turnover during mycobacterial infection: comparison with Listeria monocytogenes. J Immunol. 2004;172:3491–3500.
  • van Faassen H, Saldanha M, Gilbertson D, et al. Reducing the stimulation of CD8+ T cells during infection with intracellular bacteria promotes differentiation primarily into a central (CD62LhighCD44high) subset. J Immunol. 2005;174:5341–5350.
  • Hansen SG, Vieville C, Whizin N, et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med. 2009;15:293–299.
  • World Health Organisation. Weekly epidemiological record Relevé épidémiologique hebdomadaire; 2007;82:181–196.
  • Joosten SA, Sullivan LC, Ottenhoff THM. Characteristics of HLA-E restricted T-cell responses and their role in infectious diseases. J Immunol Res. 2016;2016:1–11.
  • Cohen GB, Gandhi RT, Davis DM, et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity. 1999;10:661–671.
  • Hoft DF, Blazevic A, Selimovic A, et al. Safety and immunogenicity of the recombinant BCG vaccine AERAS-422 in healthy BCG-naïve adults: a randomized, active-controlled, first-in-human phase 1 trial. EBioMedicine. 2016;7:278–286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.