490
Views
16
CrossRef citations to date
0
Altmetric
Review

The role of systems biology approaches in determining molecular signatures for the development of more effective vaccines

, , , &
Pages 253-267 | Received 12 Oct 2018, Accepted 24 Jan 2019, Published online: 11 Feb 2019

References

  • Centers for Disease Control and Prevention. Ten great public health achievements–United States, 1900–1999. MMWR. 1999;48(12):241–243.
  • Poland GA, Kennedy RB, Ovsyannikova IG. Vaccinomics and personalized vaccinology: is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathog. 2011;7(12):e1002344.
  • Savy M, Edmond K, Fine PE, et al. Landscape analysis of interactions between nutrition and vaccine responses in children. J Nutr. 2009 Nov;139(11):2154S–218S.
  • Prendergast AJ. Malnutrition and vaccination in developing countries. Philos Trans R Soc Lond B Biol Sci. 2015 Jun 19;370:1671.
  • Yeh TL, Shih PC, Liu SJ, et al. The influence of prebiotic or probiotic supplementation on antibody titers after influenza vaccination: a systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther. 2018;12:217–230.
  • Poland GA, Ovsyannikova IG, Jacobson RM. Vaccine immunogenetics: bedside to bench to population. Vaccine. 2008;26:6183–6188.
  • Alper CA, Kruskall MS, Marcus-Bagley D, et al. Genetic prediction of nonresponse to hepatitis B vaccine. New Engl J Med. 1989;321:708–712.
  • Ovsyannikova IG, Poland GA. Vaccinomics: current findings, challenges and novel approaches for vaccine development. AAPS. 2011;13(3):438–444.
  • Zimmermann P, Curtis N. The influence of the intestinal microbiome on vaccine responses. Vaccine. 2018 Jul 16;36(30):4433–4439.
  • Harris VC, Haak BW, Handley SA, et al. Effect of antibiotic-mediated microbiome modulation on rotavirus vaccine immunogenicity: a human, randomized-control proof-of-concept trial. Cell Host Microbe. 2018 Aug 8;24(2):197–207 e4.
  • Davis MM, Tato CM. Will systems biology deliver its promise and contribute to the development of new or improved vaccines? Seeing the forest rather than a few trees. Cold Spring Harb Perspect Biol. 2018 Aug 1;10:8.
  • Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013 Jan;101(1):22.
  • Van Gelder RN, von Zastrow ME, Yool A, et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA. 1990 Mar;87(5):1663–1667.
  • Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002;4:129–153.
  • Parnell G, McLean A, Booth D, et al. Aberrant cell cycle and apoptotic changes characterise severe influenza A infection–a meta-analysis of genomic signatures in circulating leukocytes. PLos ONE. 2011 Mar 08;6(3):e17186.
  • Davenport EE, Antrobus RD, Lillie PJ, et al. Transcriptomic profiling facilitates classification of response to influenza challenge. J Mol Med (Berl). 2015 Jan;93(1):105–114.
  • Zaas AK, Chen M, Varkey J, et al. Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. Cell Host Microbe. 2009;6(3):207–217.
  • Ockenhouse CF, Hu WC, Kester KE, et al. Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect Immun. 2006 Oct;74(10):5561–5573.
  • Kwissa M, Nakaya HI, Onlamoon N, et al. Dengue virus infection induces expansion of a CD14(+)CD16(+) monocyte population that stimulates plasmablast differentiation. Cell Host Microbe. 2014 Jul 9;16(1):115–127.
  • Geiss GK, Bumgarner RE, An MC, et al. Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology. 2000;266(1):8–16.
  • Obermoser G, Presnell S, Domico K, et al. Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity. 2013 Apr 18;38(4):831–844.
  • Henn AD, Wu S, Qiu X, et al. High-resolution temporal response patterns to influenza vaccine reveal a distinct human plasma cell gene signature. Sci Rep. 2013;3:2327.
  • Nakaya HI, Wrammert J, Lee EK, et al. Systems biology of seasonal influenza vaccination in humans. Nat Immunol. 2011;12(8):786–795.
  • Li S, Rouphael N, Duraisingham S, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat.Immunol. 2014 Feb;15(2):195–204.
  • Vahey MT, Wang Z, Kester KE, et al. Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine. J Infect Dis. 2010;201(4):580–589.
  • Querec TD, Akondy RS, Lee EK, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10(1):116–125.
  • Howard LM, Hoek KL, Goll JB, et al. Cell-based systems biology analysis of human AS03-adjuvanted H5N1 avian influenza vaccine responses: a phase I randomized controlled trial. PLos ONE. 2017;12(1):e0167488.
  • Voigt EA, Grill DE, Zimmermann MT, et al. Transcriptomic signatures of cellular and humoral immune responses in older adults after seasonal influenza vaccination identified by data-driven clustering. Sci Rep. 2018 Jan 15;8(1):739.
  • Poland GA, Jacobson RM, Schaid D, et al. The association between HLA class I alleles and measles vaccine-induced antibody response: evidence of a significant association. Vaccine. 1998 Nov;16(19):1869–1871.
  • Li S, Sullivan NL, Rouphael N, et al. Metabolic phenotypes of response to vaccination in humans. Cell. 2017 May 18;169(5):862–877 e17.
  • Rechtien A, Richert L, Lorenzo H, et al. Systems vaccinology identifies an early innate immune signature as a correlate of antibody responses to the ebola vaccine rVSV-ZEBOV. Cell Rep. 2017 Aug 29;20(9):2251–2261.
  • Jackson KJ, Liu Y, Roskin KM, et al. Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell Host Microbe. 2014 Jul 9;16(1):105–114.
  • Jiang N, He J, Weinstein JA, et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med. 2013 Feb 6;5(171):171ra19.
  • Wu YC, Kipling D, Dunn-Walters DK. Age-related changes in human peripheral blood IGH repertoire following vaccination. Front Immunol. 2012;3:193.
  • Su LF, Kidd BA, Han A, et al. Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity. 2013 Feb 21;38(2):373–383.
  • Wang C, Liu Y, Xu LT, et al. Effects of aging, cytomegalovirus infection, and EBV infection on human B cell repertoires. J Immunol. 2014 Jan 15;192(2):603–611.
  • Robinson WH. Sequencing the functional antibody repertoire–diagnostic and therapeutic discovery. Nat Rev Rheumatol. 2015 Mar;11(3):171–182.
  • Han A, Glanville J, Hansmann L, et al. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol. 2014 Jul;32(7):684–692.
  • Tan YC, Kongpachith S, Blum LK, et al. Barcode-enabled sequencing of plasmablast antibody repertoires in rheumatoid arthritis. Arthritis Rheumatol. 2014 Oct;66(10):2706–2715.
  • Birnbaum ME, Mendoza JL, Sethi DK, et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell. 2014 May 22;157(5):1073–1087.
  • Tan YC, Blum LK, Kongpachith S, et al. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin Immunol. 2014 Mar;151(1):55–65.
  • Glanville J, Huang H, Nau A, et al. Identifying specificity groups in the T cell receptor repertoire. Nature. 2017 Jul 6;547(7661):94–98.
  • Dash P, Fiore-Gartland AJ, Hertz T, et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature. 2017 Jul 6;547(7661):89–93.
  • Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013 Dec;10(12):1213–1218.
  • Ucar D, Marquez EJ, Chung CH, et al. The chromatin accessibility signature of human immune aging stems from CD8(+) T cells. J Exp Med. 2017 Oct 2;214(10):3123–3144.
  • Scharer CD, Bally AP, Gandham B, et al. Cutting edge: chromatin accessibility programs CD8 T cell memory. J Immunol. 2017 Mar 15;198(6):2238–2243.
  • Akondy RS, Fitch M, Edupuganti S, et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature. 2017 Dec 21;552(7685):362–367.
  • Mikami Y, Kanno Y. GoldiRunx and remembering cytotoxic memory. Immunity. 2018 Apr 17;48(4):614–615.
  • Youngblood B, Hale JS, Ahmed R. T-cell memory differentiation: insights from transcriptional signatures and epigenetics. Immunol. 2013 Jul;139(3):277–284.
  • Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protection after vaccination. Clin Infect Dis. 2012;54(11):1615–1617.
  • Youngblood B, Hale JS, Akondy R. Using epigenetics to define vaccine-induced memory T cells. Curr Opin Virol. 2013 Jun;3(3):371–376.
  • Ohkura N, Hamaguchi M, Morikawa H, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. 2012 Nov 16;37(5):785–799.
  • Youngblood B, Oestreich KJ, Ha SJ, et al. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity. 2011 Sep 23;35(3):400–412.
  • Stoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017 Sep;14(9):865–868.
  • Peterson VM, Zhang KX, Kumar N, et al. Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 2017 Oct;35(10):936–939.
  • Gierahn TM, Wadsworth MH 2nd, Hughes TK, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017 Apr;14(4):395–398.
  • Zeisel A, Munoz-Manchado AB, Codeluppi S, et al. Brain structure cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015 Mar 6;347(6226):1138–1142.
  • Li GW, Xie XS. Central dogma at the single-molecule level in living cells. Nature. 2011 Jul 20;475(7356):308–315.
  • Nolan JP, Condello D. Spectral flow cytometry. Curr Protoc Cytom. 2013 Jan;63(1):1–27.
  • De Rosa SC. Vaccine applications of flow cytometry. Methods. 2012 Jul;57(3):383–391.
  • Biancotto A, Fuchs JC, Williams A, et al. High dimensional flow cytometry for comprehensive leukocyte immunophenotyping (CLIP) in translational research. J Immunol Methods. 2011 Jan 5;363(2):245–261.
  • Tsang JS, Schwartzberg PL, Kotliarov Y, et al. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell. 2014 Apr 10;157(2):499–513.
  • Odendahl M, Mei H, Hoyer BF, et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood. 2005 Feb 15;105(4):1614–1621.
  • Wrammert J, Smith K, Miller J, et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature. 2008;453(7195):667–671.
  • Halliley JL, Kyu S, Kobie JJ, et al. Peak frequencies of circulating human influenza-specific antibody secreting cells correlate with serum antibody response after immunization. Vaccine. 2010;28(20):3582–3587.
  • Bandura DR, Baranov VI, Ornatsky OI, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009 Aug 15;81(16):6813–6822.
  • Reeves PM, Sluder AE, Paul SR, et al. Application and utility of mass cytometry in vaccine development. FASEB J. 2018 Jan;32(1):5–15.
  • Newell EW, Sigal N, Bendall SC, et al. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity. 2012;36(1):142–152.
  • Newell EW, Sigal N, Nair N, et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol. 2013 Jul;31(7):623–629.
  • Swadling L, Capone S, Antrobus RD, et al. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci Transl Med. 2014 Nov 5;6(261):261ra153.
  • O’Gorman WE, Huang H, Wei YL, et al. The split virus influenza vaccine rapidly activates immune cells through Fcgamma receptors. Vaccine. 2014 Oct 14;32(45):5989–5997.
  • Brodin P, Jojic V, Gao T, et al. Variation in the human immune system is largely driven by non-heritable influences. Cell. 2015 Jan 15;160(1–2):37–47.
  • Purohit S, Sharma A, She JX. Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes. Biomed Res Int. 2015;2015:326918.
  • Reslova N, Michna V, Kasny M, et al. xMAP technology: applications in detection of pathogens. Front Microbiol. 2017;8:55.
  • Keustermans GC, Hoeks SB, Meerding JM, et al. Cytokine assays: an assessment of the preparation and treatment of blood and tissue samples. Methods. 2013 May 15;61(1):10–17.
  • Smith SG, Lecher S, Blitz R, et al. Broad heparin-binding haemagglutinin-specific cytokine and chemokine response in infants following Mycobacterium bovis BCG vaccination. Eur J Immunol. 2012 Sep;42(9):2511–2522.
  • James EA, LaFond RE, Gates TJ, et al. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins. J Virol. 2013 Dec;87(23):12794–12804.
  • Eriksson JC, Cox RJ, Szyszko E, et al. Local and systemic cytokine and chemokine responses after parenteral influenza vaccination. Influenza Respir Viruses. 2007 Jul;1(4):139–146.
  • Lalor MK, Floyd S, Gorak-Stolinska P, et al. BCG vaccination induces different cytokine profiles following infant BCG vaccination in the UK and Malawi. J Infect Dis. 2011 Oct 1;204(7):1075–1085.
  • Yucesoy B, Johnson VJ, Fluharty K, et al. Influence of cytokine gene variations on immunization to childhood vaccines. Vaccine. 2009;27(50):6991–6997.
  • Farooq F, Beck K, Paolino KM, et al. Circulating follicular T helper cells and cytokine profile in humans following vaccination with the rVSV-ZEBOV Ebola vaccine. Sci Rep. 2016 Jun;21(6):27944.
  • Sutandy FX, Qian J, Chen CS, et al. Overview of protein microarrays. Curr Protoc Protein Sci. 2013 Apr;72(1):27.
  • Sun H, Chen GY, Yao SQ. Recent advances in microarray technologies for proteomics. Chem Biol. 2013 May 23;20(5):685–699.
  • Stephenson KE, Neubauer GH, Reimer U, et al.Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development. J Immunol Methods. 2015;416:105–123.
  • Furman D, Jojic V, Kidd B, et al. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Mol Syst Biol. 2013;9:659.
  • Price JV, Jarrell JA, Furman D, et al. Characterization of influenza vaccine immunogenicity using influenza antigen microarrays. PLos ONE. 2013;8(5):e64555.
  • Da Silva FR, Napoleao-Pego P, De-Simone SG. Identification of linear B epitopes of pertactin of Bordetella pertussis induced by immunization with whole and acellular vaccine. Vaccine. 2014 Oct 29;32(47):6251–6258.
  • Gaze S, Driguez P, Pearson MS, et al. An immunomics approach to schistosome antigen discovery: antibody signatures of naturally resistant and chronically infected individuals from endemic areas. PLoS Pathog. 2014 Mar;10(3):e1004033.
  • Lu F, Li J, Wang B, et al. Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). J Proteomics. 2014 May;6(102):66–82.
  • Charles RC, Liang L, Khanam F, et al. Immunoproteomic analysis of antibody in lymphocyte supernatant in patients with typhoid fever in Bangladesh. Clin Vaccine Immunol. 2014 Mar;21(3):280–285.
  • Mendes TA, Reis Cunha JL, de Almeida Lourdes R, et al. Identification of strain-specific B-cell epitopes in Trypanosoma cruzi using genome-scale epitope prediction and high-throughput immunoscreening with peptide arrays. PLoS Negl Trop Dis. 2013;7(10):e2524.
  • Hermanson G, Chun S, Felgner J, et al. Measurement of antibody responses to Modified Vaccinia virus Ankara (MVA) and Dryvax((R)) using proteome microarrays and development of recombinant protein ELISAs. Vaccine. 2012 Jan 11;30(3):614–625.
  • Furman D, Davis MM. New approaches to understanding the immune response to vaccination and infection. Vaccine. 2015 Sep 29;33(40):5271–5281.
  • Cambiaghi A, Ferrario M, Masseroli M. Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Brief Bioinform. 2017 May 1;18(3):498–510.
  • Siskos AP, Jain P, Romisch-Margl W, et al. Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma. Anal Chem. 2017 Jan 3;89(1):656–665.
  • Alonso A, Marsal S, Julia A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:23.
  • Roe B, Kensicki E, Mohney R, et al. Metabolomic profile of hepatitis C virus-infected hepatocytes. PLos ONE. 2011;6(8):e23641.
  • Seymour CW, Yende S, Scott MJ, et al. Metabolomics in pneumonia and sepsis: an analysis of the GenIMS cohort study. Intensive Care Med. 2013 Aug;39(8):1423–1434.
  • Fontaine KA, Camarda R, Lagunoff M. Vaccinia virus requires glutamine but not glucose for efficient replication. J Virol. 2014 Apr;88(8):4366–4374.
  • Olafsdottir T, Lindqvist M, Harandi AM. Molecular signatures of vaccine adjuvants. Vaccine. 2015 Sep 29;33(40):5302–5307.
  • McClenathan BM, Stewart DA, Spooner CE, et al. Metabolites as biomarkers of adverse reactions following vaccination: a pilot study using nuclear magnetic resonance metabolomics. Vaccine. 2017 Mar 1;35(9):1238–1245.
  • Weiner J 3rd, Mohney RP, Kaufmann SHE. The potential of metabolic profiling for vaccine development. Semin Immunol. 2018 Oct;39:44–51.
  • Cui L, Lee YH, Kumar Y, et al. Serum metabolome and lipidome changes in adult patients with primary dengue infection. PLoS Negl Trop Dis. 2013;7(8):e2373.
  • Jeong H, Mason SP, Barabasi AL, et al. Lethality and centrality in protein networks. Nature. 2001 May 3;411(6833):41–42.
  • Langfelder P, Mischel PS, Horvath S. When is hub gene selection better than standard meta-analysis? PLos ONE. 2013;8(4):e61505.
  • Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA. 2006 Nov 21;103(47):17973–17978.
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
  • Rahmani B, Zimmermann MT, Grill DE, et al. Recursive indirect-paths modularity (RIP-M) for detecting community structure in RNA-seq co-expression networks. Front Genet. 2016;7:80.
  • Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009 Nov 5;462(7269):108–112.
  • Le TT, Savitz J, Suzuki H, et al. Identification and replication of RNA-Seq gene network modules associated with depression severity. Transl Psychiatry. 2018 Sep 5;8(1):180.
  • Tan Y, Tamayo P, Nakaya H, et al. Gene signatures related to B-cell proliferation predict influenza vaccine-induced antibody response. Eur J Immunol. 2014 Oct 17;44(1):285–295.
  • de la Fuente A. From ‘differential expression’ to ‘differential networking’ - identification of dysfunctional regulatory networks in diseases. Trends Genet. 2010 Jul;26(7):326–333.
  • Lareau CA, White BC, Oberg AL, et al. Differential co-expression network centrality and machine learning feature selection for identifying susceptibility hubs in networks with scale-free structure. Bio Data Min. 2015;8:5.
  • McKinney BA, Crowe JE, Guo J, et al. Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis. PLoS Genet. 2009;5(3):e1000432.
  • Parvandeh S, McKinney BA. EpistasisRank and EpistasisKatz: interaction network centrality methods that integrate prior knowledge networks. Bioinformatics. 2018 Nov 27. [epub ahead of print] PMID: 30481259.
  • McKinney BA, Lareau C, Oberg AL, et al. The integration of epistasis network and functional interactions in a GWAS implicates RXR pathway genes in the immune response to smallpox vaccine. PLos ONE. 2016;11(8):e0158016.
  • Lareau CA, White BC, Montgomery CG, et al. dcVar: a method for identifying common variants that modulate differential correlation structures in gene expression data. Front Genet. 2015;6:312.
  • Lareau CA, White BC, Oberg AL, et al. An interaction quantitative trait loci (iQTL) tool implicates epistatic functional variants in an apoptosis pathway in smallpox vaccine eQTL data. Genes Immun. 2016 Jun;17(4):244–250.
  • Breiman L. Random Forests. Mach Learn. 2001;45:5–32.
  • Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. J Royal Stat Soc Ser B. 2011;73(3):273–282.
  • Reif DM, Motsinger-Reif AA, McKinney BA, et al. Integrated analysis of genetic and proteomic data identifies biomarkers associated with adverse events following smallpox vaccination. Genes Immun. 2009;10(2):112–119.
  • Krstajic D, Buturovic LJ, Leahy DE, et al. Cross-validation pitfalls when selecting and assessing regression and classification models. J Cheminform. 2014 Mar 29;6(1):10.
  • Le TT, Simmons WK, Misaki M, et al. Differential privacy-based evaporative cooling feature selection and classification with relief-F and random forests. Bioinformatics. 2017 Sep 15;33(18):2906–2913.
  • Davis MM, Tato CM, Furman D. Systems immunology: just getting started [Review]. Nat Immunol. 2017 Jun 20;18(7):725–732.
  • Ovsyannikova IG, Salk HM, Kennedy RB, et al. Gene signatures associated with adaptive humoral immunity following seasonal influenza A/H1N1 vaccination. Genes Immun. 2016 Aug 18;17(7):371–379.
  • Goff PH, Hayashi T, Martinez-Gil L, et al. Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses. J Virol. 2015 Mar;89(6):3221–3235.
  • Nakaya HI, Clutterbuck E, Kazmin D, et al. Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood. Proc Natl Acad Sci USA. 2016 Jan 11;113(7):1853–1858.
  • Hung IF, Zhang AJ, To KK, et al. Immunogenicity of intradermal trivalent influenza vaccine with topical imiquimod: a double blind randomized controlled trial. Clin Infect Dis. 2014 Nov 1;59(9):1246–1255.
  • Hung IF, Zhang AJ, To KK, et al. Topical imiquimod before intradermal trivalent influenza vaccine for protection against heterologous non-vaccine and antigenically drifted viruses: a single-centre, double-blind, randomised, controlled phase 2b/3 trial. Lancet Infect Dis. 2016 Feb;16(2):209–218.
  • Poland GA, Kennedy RB, McKinney BA, et al. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin Immunol. 2013 Jun 4;25(2):89–103.
  • Pulendran B. Systems vaccinology: probing humanity’s diverse immune systems with vaccines. Proc Natl Acad Sci USA. 2014 Aug 26;111(34):12300–12306.
  • Guy MK, Page RL, Jensen WA, et al. The Golden Retriever Lifetime Study: establishing an observational cohort study with translational relevance for human health. Phil Trans R Soc B. 2015;370:20140230. http://dx.doi.org/10.1098/rstb.2014.0230.
  • Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010;17(7):1055–1065.
  • Swanson KA, Settembre EC, Shaw CA, et al. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proc Natl Acad Sci USA. 2011 Jun 7;108(23):9619–9624.
  • Tretyakova I, Nickols B, Hidajat R, et al.Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice. Virology. 2014;468–470:28–35.
  • Kudchodkar SB, Choi H, Reuschel EL, et al. Rapid response to an emerging infectious disease - Lessons learned from development of a synthetic DNA vaccine targeting Zika virus. Microbes Infect. 2018 Dec;20(11–12):676–684.
  • Pardi N, Hogan MJ, Pelc RS, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017 Feb 02;543(7644):248–251.
  • Deering RP, Kommareddy S, Ulmer JB, et al. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin Drug Deliv. 2014 Jun;11(6):885–899.
  • Ferlenghi I, Clarke M, Ruttan T, et al. Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell. 2001 Mar;7(3):593–602.
  • O’Hagan DT, Friedland LR, Hanon E, et al.Towards an evidence based approach for the development of adjuvanted vaccines. Curr Opin Immunol. 2017;47:93–102.
  • Lal H, Poder A, Campora L, et al. Immunogenicity, reactogenicity and safety of 2 doses of an adjuvanted herpes zoster subunit vaccine administered 2, 6 or 12 months apart in older adults: results of a phase III, randomized, open-label, multicenter study. Vaccine. 2018 Jan 2;36(1):148–154.
  • Mosca F, Tritto E, Muzzi A, et al. Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci USA. 2008;105(30):10501–10506.
  • Rappuoli R, Siena E, Finco O. Will systems biology deliver its promise and contribute to the development of new or improved vaccines? Systems biology views of vaccine innate and adaptive immunity. Cold Spring Harb Perspect Biol. 2018 Aug 1;10:8.
  • Chung AW, Alter G. Systems serology: profiling vaccine induced humoral immunity against HIV. Retrovirology. 2017 Dec 21;14(1):57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.