196
Views
25
CrossRef citations to date
0
Altmetric
Original Research

Development of multi-epitope chimeric vaccine against Taenia solium by exploring its proteome: an in silico approach

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 105-114 | Received 02 Jul 2019, Accepted 30 Dec 2019, Published online: 23 Jan 2020

References

  • Prasad KN, Prasad A, Gupta RK, et al. Neurocysticercosis in patients with active epilepsy from a pig farming community. Trans R Soc Trop Med Hyg. 2009;103:144–150.
  • Prasad KN, Prasad A, Verma A, et al. Human cysticercosis and Indian scenario: a review. J Biosci. 2008;33:571–582.
  • O’Neal SE, Flecker RH. Hospitalization frequency and charges for neurocysticercosis, United States, 2003–2012. Emerg Infect Dis. 2015;21(6):969.
  • Vielma JR, Urdaneta-Romero H, Villarreal JDC, et al. Neurocysticercosis: clinical aspects, immunopathology, diagnosis, treatment and vaccine development. Epidemiol. 2014;4(3).
  • Rizvi SA, Saleh AM, Frimpong H, et al. Neurocysticercosis: a case report and brief review. Asian Pac J Trop Med. 2016;9(1):100–102.
  • Reddy DS, Volkmer R. Neurocysticercosis as an infectious acquired epilepsy worldwide. Seizure. 2017;52:176–181. 2nd.
  • Trevisan C, Sotiraki S, Laranjo-González M, et al. Epidemiology of taeniosis/cysticercosis in Europe, a systematic review: eastern Europe. Parasite Vectors. 2018;11(1):569. 30.
  • Wallin MT, Kurtzke JF. Neurocysticercosis in the United States: review of an important emerging infection. Neurology. 2004;63(9):1559–1564.
  • Braae UC, Magnussen P, Ndawi B, et al. Effect of repeated mass drug administration with praziquantel and track and treat of taeniosis cases on the prevalence of taeniosis in Taenia solium endemic rural communities of Tanzania. Acta Trop. 2017;165:246–251.
  • Ash A, Okello A, Khamlome B, et al. Controlling Taenia solium and soil transmitted helminths in a northern Lao PDR village: impact of a triple dose albendazole regime. Acta Trop. 2017;174:171–178.
  • Wu L, Diao Z, Deng X, et al. DNA vaccine against Taenia solium cysticercosis expressed as a modified hepatitis B virus core particle containing three epitopes shared by Taenia crassiceps and Taenia solium. J Nanosci Nanotechnol. 2005;5(8):1204–1210.
  • Flower DR, Macdonald IK, Ramakrishnan K. Davies MN and Doytchinova IA. Computer aided selection of candidate vaccine antigens. Immunome Res. 2010;6(2):S1.
  • Huerta M, De Aluja AS, Fragoso G, et al. Synthetic peptide vaccine against Taenia solium pig cysticercosis: successful vaccination in a controlled field trial in rural Mexico. Vaccine. 2001;20:262–266.
  • Monreal-Escalante E, Govea-Alonso DO, Hernández M, et al. Towards the development of an oral vaccine against porcine cysticercosis: expression of the protective HP6/TSOL18 antigen in transgenic carrots cells. Planta. 2016;243(3):675–685.
  • Ding J, Zheng Y, Wang Y, et al. Immune responses to a recombinant attenuated Salmonella typhimurium strain expressing a Taenia solium oncosphere antigen TSOL18. Comp Immunol Microbiol Infect Dis. 2013;36:17–23.
  • Jayashi CM, Kyngdon CT, Gauci CG, et al. Successful immunization of naturally reared pigs against porcine cysticercosis with a recombinant oncosphere antigen vaccine. Vet Parasitol. 2012;188:261–267.
  • Manoutcharian K, Díaz-Orea A, Gevorkian G, et al. Recombinant bacteriophage-based multiepitope vaccine against Taenia solium pig cysticercosis. Vet Immunol Immunopathol. 2004;99:11–24.
  • Gauci CG, Jayashi CM, Gonzalez AE. Lackenby J and Lightowlers MW. Protection of pigs against Taenia solium cysticercosis by immunization with novel recombinant antigens. Vaccine. 2012;30:3824–3828.
  • Cai X, Yuan G, Zheng Y, et al. Effective production and purification of the glycosylated TSOL18 antigen, which is protective against pig cysticercosis. Infect Immun. 2008;76(2):767–770.
  • Poudel I, Sah K, Subedi S, et al. Implementation of a practical and effective pilot intervention against transmission of Taenia solium by pigs in the Banke district of Nepal. PLoS Negl Trop Dis. 2019;13:e0006838.
  • Tsai IJ, Zarowiecki M, Holroyd N, et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013;496(7443):57.
  • Larsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2(1):2.
  • Del Brutto OH, Grandos G, Talamas O, et al. Genetic pattern of the HLA system HLA A, B, C, DR, DQ antigens in Mexican Patients with parenchymal brain cysticercosis. Hum Biol. 1991;63:85–93.
  • Jain S, Padma MV, Kanga U, et al. Family studies and human leukocyte antigen class II typing in Indian probands with seizures in association with single small enhancing computed tomography lesions. Epilepsia. 1999;40:232–238.
  • Pajuelo MJ, Eguiluz M, Roncal E, et al. Genetic variability of Taenia solium cysticerci recovered from experimentally infected pigs and from naturally infected pigs using microsatellite markers. PLoS Negl Trop Dis. 2017;11(12):e0006087.
  • Larsen MV, Lundegaard C, Lamberth K, et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics. 2007;8(1):424.
  • Jurtz V, Paul S, Andreatta M, et al. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol. 2017;199(9):3360–3368.
  • Horton P, Park KJ, Obayashi T, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(suppl_2):W585–W587.
  • Käll L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 2007;35(suppl_2):W429–W432.
  • Krogh A, Larsson B, Von-Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–580.
  • Saha S, Raghava GPS. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 2006;34(suppl_2):W202–W209.
  • Klein JS, Jiang S, Galimidi RP, et al. Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Des Sel. 2014;27(10):325–330.
  • Hajighahramani N, Nezafat N, Eslami M, et al. Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infect Genet Evol. 2017;48:83–94.
  • Nezafat N, Ghasemi Y, Javadi G, et al. A novel multi-epitope peptide vaccine against cancer: an in silico approach. J Theor Biol. 2014;349:121–134.
  • McNair AT, Dissous C, Duvaux-Miret O, et al. Cloning and characterisation of the gene encoding the 28-kDa glutathione S-transferase of Schistosoma mansoni. Gene. 1993;124(2):245–249.
  • Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook. Humana press; 2005. p. 571–607.
  • Buchan DW, Minneci F, Nugent TC, et al. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res. 2013;41(W1):W349–W357.
  • Khatoon N, Pandey RK, Prajapati VK. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep. 2017;7(1):8285.
  • Bhattacharya D, Nowotny J, Cao R, et al. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res. 2016;44(W1):W406–W409.
  • Ko J, Park H, Heo L, et al. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40(W1):W294–W297.
  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(suppl_2):W407–W410.
  • Mishra BB, Mishra PK, Teale JM. Expression and distribution of Toll like receptors in the brain during Neurocysticercosis. J Neuroimmunol. 2006;181:46–56.
  • Verma A, Prasad KN, Gupta RK, et al. Toll-like receptor 4 polymorphism and its association with symptomatic neurocysticercosis. J Infect Dis. 2010;202:1219–1225.
  • Ponomarenko J, Bui HH, Li W, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9(1):514.
  • Comeau SR, Gatchell DW, Vajda S, et al. ClusPro: a fully automated algorithm for protein–protein docking. Nucleic Acids Res. 2004;32(suppl_2):W96–W99.
  • Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12(2):255.
  • Jabbar B, Rafique S, Salo-Ahen OM, et al. Antigenic peptide prediction from E6 and E7 oncoproteins of HPV Types 16 and 18 for therapeutic vaccine design using immunoinformatics and MD simulation analysis. Front Immunol. 2018;9(3000). eCollection 2018. doi:10.3389/fimmu.2018.03000.
  • Yang J, Roy A, Zhang Y. Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013;29(20):2588–2595.
  • Pritam M, Singh G, Swaroop S, et al. Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum. BMC Bioinformatics. 2019;19(Suppl 13):468.
  • Arora N, Tripathi S, Singh AK, et al. Micromanagement of immune system: role of miRNAs in helminthic infections. Front Microbiol 13;8:586(2017). doi: . eCollection 2017.
  • Xu J, Feng Y, Jeyaram A, et al. Circulating plasma extracellular vesicles from septic mice induce inflammation via MicroRNA- and TLR7-dependent mechanisms. J Immunol. 2018;201(11):3392–3400.
  • Lightowlers MW, Donadeu M. Designing a minimal intervention strategy to control Taenia solium. Trends Parasitol. 2017;33(6):426–434

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.