1,357
Views
9
CrossRef citations to date
0
Altmetric
Review

The potential of adenoviral vaccine vectors with altered antigen presentation capabilities

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 25-41 | Received 30 Sep 2019, Accepted 30 Dec 2019, Published online: 23 Jan 2020

References

  • Matz KM, Marzi A, Feldmann H. Ebola vaccine trials: progress in vaccine safety and immunogenicity. Expert Rev Vaccines. 2019;18:1229–1242.
  • Second Ebola vaccine to complement “ring vaccination” given green light in DRC [ Internet]. WHO; 2019 [cited 2019 Dec 21]. Available from: https://www.who.int/news-room/detail/23-09-2019-second-ebola-vaccine-to-complement-ring-vaccination-given-green-light-in-drc
  • Afkhami S, Yao Y, Xing Z. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens. Mol Ther Methods Clin Dev. 2016;3:16030.
  • Rollier CS, Reyes-Sandoval A, Cottingham MG, et al. Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol. 2011;23:377–382.
  • Deal C, Pekosz A, Ketner G. Prospects for oral replicating adenovirus-vectored vaccines. Vaccine. 2013;31:3236–3243.
  • Rauschhuber C, Noske N, Ehrhardt A. New insights into stability of recombinant adenovirus vector genomes in mammalian cells. Eur J Cell Biol. 2012;91:2–9.
  • Arthur JF, Butterfield LH, Roth MD, et al. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther. 1997;4:17–25.
  • Dietz AB, Vuk-Pavlovic S. High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood. 1998;91:392–398.
  • Di Nicola M, Siena S, Bregni M, et al. Gene transfer into human dendritic antigen-presenting cells by vaccinia virus and adenovirus vectors. Cancer Gene Ther. 1998;5:350–356.
  • Kirk CJ, Mule JJ. Gene-modified dendritic cells for use in tumor vaccines. Hum Gene Ther. 2000;11:797–806.
  • Zhong L, Granelli-Piperno A, Choi Y, et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol. 1999;29:964–972.
  • Tillman BW, de Gruijl TD, Luykx-de Bakker SA, et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol. 1999;162:6378–6383.
  • Chan RC-F, Pang X-W, Wang Y-D, et al. Transduction of dendritic cells with recombinant adenovirus encoding HCA661 activates autologous cytotoxic T lymphocytes to target hepatoma cells. Br J Cancer. 2004;90:1636–1643.
  • Vorburger SA, Hunt KK. Adenoviral gene therapy. Oncologist. 2002;7:46–59.
  • Danthinne X, Imperiale MJ. Production of first generation adenovirus vectors: a review. Gene Ther. 2000;7:1707–1714.
  • Kamen A, Henry O. Development and optimization of an adenovirus production process. J Gene Med. 2004;6(Suppl 1):S184–92.
  • De Santis O, Audran R, Pothin E, et al. Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study. Lancet Infect Dis. 2016;16:311–320.
  • Ouedraogo A, Tiono AB, Kargougou D, et al. A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite malaria vaccine in Burkinabe healthy adults 18 to 45 years of age. PLoS One. 2013;8:e78679.
  • O’Hara GA, Duncan CJA, Ewer KJ, et al. Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J Infect Dis. 2012;205:772–781.
  • Bett AJ, Dubey SA, Mehrotra DV, et al. Comparison of T cell immune responses induced by vectored HIV vaccines in non-human primates and humans. Vaccine. 2010;28:7881–7889.
  • Broderick M, Myers C, Balansay M, et al. Adenovirus 4/7 vaccine’s effect on disease rates is associated with disappearance of adenovirus on building surfaces at a military recruit base. Mil Med. 2017;182:e2069–e2072.
  • Baden LR, Walsh SR, Seaman MS, et al. First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001). J Infect Dis. 2013;207:240–247.
  • Ayalew LE, Kumar P, Gaba A, et al. Bovine adenovirus-3 as a vaccine delivery vehicle. Vaccine. 2015;33:493–499.
  • De Vleeschauwer AR, Zhou X, Lefebvre DJ, et al. A canine adenovirus type 2 vaccine vector confers protection against foot-and-mouth disease in guinea pigs. Vaccine. 2018;36:2193–2198.
  • Baron MD, Iqbal M, Nair V. Recent advances in viral vectors in veterinary vaccinology. Curr Opin Virol. 2018;29:1–7.
  • Shen CF, Lanthier S, Jacob D, et al. Process optimization and scale-up for production of rabies vaccine live adenovirus vector (AdRG1.3). Vaccine. 2012;30:300–306.
  • Ferreira TB, Alves PM, Aunins JG, et al. Use of adenoviral vectors as veterinary vaccines. Gene Ther. 2005;12(Suppl 1):S73–83.
  • Xiang ZQ, Yang Y, Wilson JM, et al. A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology. 1996;219:220–227.
  • Choi Y, Chang J. Viral vectors for vaccine applications. Clin Exp Vaccine Res. 2013;2:97–105.
  • Tatsis N, Fitzgerald JC, Reyes-Sandoval A, et al. Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood. 2007;110:1916–1923.
  • Quinn KM, Zak DE, Costa A, et al. Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling. J Clin Invest. 2015;125:1129–1146.
  • Yamaguchi T, Kawabata K, Koizumi N, et al. Role of MyD88 and TLR9 in the innate immune response elicited by serotype 5 adenoviral vectors. Hum Gene Ther. 2007;18:753–762.
  • Rhee EG, Blattman JN, Kasturi SP, et al. Multiple innate immune pathways contribute to the immunogenicity of recombinant adenovirus vaccine vectors. J Virol. 2011;85:315–323.
  • Casimiro DR, Chen L, Fu T-M, et al. Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J Virol. 2003;77:6305–6313.
  • Xiang ZQ, Greenberg L, Ertl HC, et al. Protection of non-human primates against rabies with an adenovirus recombinant vaccine. Virology. 2014;450–451:243–249.
  • Jiang G, Shi M, Conteh S, et al. Sterile protection against Plasmodium knowlesi in rhesus monkeys from a malaria vaccine: comparison of heterologous prime boost strategies. PLoS One. 2009;4:e6559.
  • Biswas S, Choudhary P, Elias SC, et al. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure. PLoS One. 2014;9:e107903.
  • Barefoot B, Thornburg NJ, Barouch DH, et al. Comparison of multiple vaccine vectors in a single heterologous prime-boost trial. Vaccine. 2008;26:6108–6118.
  • Boilesen DR, Ragonnaud E, Laursen H, et al. CD8+ T cells induced by adenovirus-vectored vaccine are capable of preventing establishment of latent murine gamma-herpesvirus 68 infection. Vaccine. 2019;37:2952–2959.
  • Santra S, Seaman MS, Xu L, et al. Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J Virol. 2005;79:6516–6522.
  • Bassett JD, Swift SL, Bramson JL. Optimizing vaccine-induced CD8(+) T-cell immunity: focus on recombinant adenovirus vectors. Expert Rev Vaccines. 2011;10:1307–1319.
  • Barnes E, Folgori A, Capone S, et al. Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man. Sci Transl Med. 2012;4:115ra1.
  • Shiver JW, Fu T-M, Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature. 2002;415:331–335.
  • Hung PP, Morin JE, Lubeck MD, et al. Expression of HBV surface antigen or HIV envelope protein using recombinant adenovirus vectors. Nat Immun Cell Growth Regul. 1988;7:135–143.
  • Alkhatib G, Briedis DJ. High-level eucaryotic in vivo expression of biologically active measles virus hemagglutinin by using an adenovirus type 5 helper-free vector system. J Virol. 1988;62:2718–2727.
  • Lasaro MO, Ertl HCJ. New insights on adenovirus as vaccine vectors. Mol Ther. 2009;17:1333–1339.
  • Barouch DH. Novel adenovirus vector-based vaccines for HIV-1. Curr Opin HIV AIDS. 2010;5:386–390.
  • Ulmer JB, Wahren B, Liu MA. Gene-based vaccines: recent technical and clinical advances. Trends Mol Med. 2006;12:216–222.
  • Magalhaes I, Sizemore DR, Ahmed RK, et al. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS One. 2008;3:e3790.
  • Arevalo MT, Xu Q, Paton JC, et al. Mucosal vaccination with a multicomponent adenovirus-vectored vaccine protects against Streptococcus pneumoniae infection in the lung. FEMS Immunol Med Microbiol. 2009;55:346–351.
  • Resende DM, Caetano BC, Dutra MS, et al. Epitope mapping and protective immunity elicited by adenovirus expressing the Leishmania amastigote specific A2 antigen: correlation with IFN-gamma and cytolytic activity by CD8+ T cells. Vaccine. 2008;26:4585–4593.
  • Schuldt NJ, Amalfitano A. Malaria vaccines: focus on adenovirus based vectors. Vaccine. 2012;30:5191–5198.
  • Spencer AJ, Cottingham MG, Jenks JA, et al. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain. PLoS One. 2014;9:e100538.
  • Stewart VA, McGrath SM, Dubois PM, et al. Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared to that with either malaria vaccine alone. Infect Immun. 2007;75:2283–2290.
  • Appaiahgari MB, Saini M, Rauthan M, et al. Immunization with recombinant adenovirus synthesizing the secretory form of Japanese encephalitis virus envelope protein protects adenovirus-exposed mice against lethal encephalitis. Microbes Infect. 2006;8:92–104.
  • Barouch DH, Alter G, Broge T, et al. Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys. Science. 2015;349:320–324.
  • Barouch DH, Liu J, Peter L, et al. Characterization of humoral and cellular immune responses elicited by a recombinant adenovirus serotype 26 HIV-1 Env vaccine in healthy adults (IPCAVD 001). J Infect Dis. 2013;207:248–256.
  • Brown LJ, Rosatte RC, Fehlner-Gardiner C, et al. Oral vaccination and protection of striped skunks (Mephitis mephitis) against rabies using ONRAB(R). Vaccine. 2014;32:3675–3679.
  • Chmielewska AM, Naddeo M, Capone S, et al. Combined adenovirus vector and hepatitis C virus envelope protein prime-boost regimen elicits T cell and neutralizing antibody immune responses. J Virol. 2014;88:5502–5510.
  • Fattori E, Zampaglione I, Arcuri M, et al. Efficient immunization of rhesus macaques with an HCV candidate vaccine by heterologous priming-boosting with novel adenoviral vectors based on different serotypes. Gene Ther. 2006;13:1088–1096.
  • Hartnell F, Brown A, Capone S, et al. A novel vaccine strategy employing serologically different chimpanzee adenoviral vectors for the prevention of HIV-1 and HCV coinfection. Front Immunol. 2018;9:3175.
  • He Z, Wlazlo AP, Kowalczyk DW, et al. Viral recombinant vaccines to the E6 and E7 antigens of HPV-16. Virology. 2000;270:146–161.
  • Keele BF, Li W, Borducchi EN, et al. Adenovirus prime, Env protein boost vaccine protects against neutralization-resistant SIVsmE660 variants in rhesus monkeys. Nat Commun. 2017;8:15740.
  • Ledgerwood JE, Costner P, Desai N, et al. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults. Vaccine. 2010;29:304–313.
  • Liu J, Li H, Iampietro MJ, et al. Accelerated heterologous adenovirus prime-boost SIV vaccine in neonatal rhesus monkeys. J Virol. 2012;86:7829–7835.
  • Lo C-Y, Wu Z, Misplon JA, et al. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus: cold-adapted vaccine versus DNA prime-adenovirus boost strategies. Vaccine. 2008;26:2062–2072.
  • Phillpotts RJ, O’brien L, Appleton RE, et al. Intranasal immunisation with defective adenovirus serotype 5 expressing the Venezuelan equine encephalitis virus E2 glycoprotein protects against airborne challenge with virulent virus. Vaccine. 2005;23:1615–1623.
  • Ragonnaud E, Andersson A-MC, Mariya S, et al. Therapeutic vaccine against primate papillomavirus infections of the cervix. J Immunother. 2017;40:51–61.
  • Raviprakash K, Wang D, Ewing D, et al. A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus. J Virol. 2008;82:6927–6934.
  • Swadling L, Capone S, Antrobus RD, et al. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci Transl Med. 2014;6:261ra153.
  • Tang DC, Zhang J, Toro H, et al. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines. Expert Rev Vaccines. 2009;8:469–481.
  • Thammanichanond D, Moneer S, Yotnda P, et al. Fiber-modified recombinant adenoviral constructs encoding hepatitis C virus proteins induce potent HCV-specific T cell response. Clin Immunol. 2008;128:329–339.
  • Vemula SV, Mittal SK. Production of adenovirus vectors and their use as a delivery system for influenza vaccines. Expert Opin Biol Ther. 2010;10:1469–1487.
  • Zhou Y, Sullivan NJ. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine. Curr Opin Immunol. 2015;35:131–136.
  • Colloca S, Barnes E, Folgori A, et al. Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci Transl Med. 2012;4:115ra2.
  • Butterfield LH, Comin-Anduix B, Vujanovic L, et al. Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother. 2008;31:294–309.
  • Peruzzi D, Dharmapuri S, Cirillo A, et al. A novel chimpanzee serotype-based adenoviral vector as delivery tool for cancer vaccines. Vaccine. 2009;27:1293–1300.
  • Ahi YS, Bangari DS, Mittal SK. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther. 2011;11:307–320.
  • Thorner AR, Lemckert AAC, Goudsmit J, et al. Immunogenicity of heterologous recombinant adenovirus prime-boost vaccine regimens is enhanced by circumventing vector cross-reactivity. J Virol. 2006;80:12009–12016.
  • Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol. 2007;18:546–556.
  • Fougeroux C, Holst PJ. Future prospects for the development of cost-effective adenovirus vaccines. Int J Mol Sci. 2017;18:686.
  • Varnavski AN, Calcedo R, Bove M, et al. Evaluation of toxicity from high-dose systemic administration of recombinant adenovirus vector in vector-naive and pre-immunized mice. Gene Ther. 2005;12:427–436.
  • Varnavski AN, Zhang Y, Schnell M, et al. Preexisting immunity to adenovirus in rhesus monkeys fails to prevent vector-induced toxicity. J Virol. 2002;76:5711–5719.
  • Vlachaki MT, Hernandez-Garcia A, Ittmann M, et al. Impact of preimmunization on adenoviral vector expression and toxicity in a subcutaneous mouse cancer model. Mol Ther. 2002;6:342–348.
  • Nwanegbo E, Vardas E, Gao W, et al. Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clin Diagn Lab Immunol. 2004;11:351–357.
  • Mast TC, Kierstead L, Gupta SB, et al. International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine. 2010;28:950–957.
  • Zaiss AK, Machado HB, Herschman HR. The influence of innate and pre-existing immunity on adenovirus therapy. J Cell Biochem. 2009;108:778–790.
  • Ragonnaud E, Schroedel S, Mariya S, et al. Replication deficient human adenovirus vector serotype 19a/64: immunogenicity in mice and female cynomolgus macaques. Vaccine. 2018;36:6212–6222.
  • Nebie I, Edwards NJ, Tiono AB, et al. Assessment of chimpanzee adenovirus serotype 63 neutralizing antibodies prior to evaluation of a candidate malaria vaccine regimen based on viral vectors. Clin Vaccine Immunol. 2014;21:901–903.
  • Lu S. Heterologous prime-boost vaccination. Curr Opin Immunol. 2009;21:346–351.
  • Barouch DH, Pau MG, Custers JHH V, et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol. 2004;172:6290–6297.
  • Lemckert AAC, Sumida SM, Holterman L, et al. Immunogenicity of heterologous prime-boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-ad5 immunity. J Virol. 2005;79:9694–9701.
  • McCoy K, Tatsis N, Korioth-Schmitz B, et al. Effect of preexisting immunity to adenovirus human serotype 5 antigens on the immune responses of nonhuman primates to vaccine regimens based on human- or chimpanzee-derived adenovirus vectors. J Virol. 2007;81:6594–6604.
  • Pinto AR, Fitzgerald JC, Giles-Davis W, et al. Induction of CD8+ T cells to an HIV-1 antigen through a prime boost regimen with heterologous E1-deleted adenoviral vaccine carriers. J Immunol. 2003;171:6774–6779.
  • Rollier CS, Hill AVS, Reyes-Sandoval A. Influence of adenovirus and MVA vaccines on the breadth and hierarchy of T cell responses. Vaccine. 2016;34:4470–4474.
  • Reyes-Sandoval A, Berthoud T, Alder N, et al. Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infect Immun. 2010;78:145–153.
  • Li P-Y, Yu L, Wu X-A, et al. Modification of the adenoviral transfer vector enhances expression of the Hantavirus fusion protein GnS0.7 and induces a strong immune response in C57BL/6 mice. J Virol Methods. 2012;179:90–96.
  • Richardson JS, Yao MK, Tran KN, et al. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine. PLoS One. 2009;4:e5308.
  • Sridhar S, Reyes-Sandoval A, Draper SJ, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822–3833.
  • Holst PJ, Sorensen MR, Mandrup Jensen CM, et al. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines. J Immunol. 2008;180:3339–3346.
  • Cheng L, Yu L, Wu X, et al. Induction of specific humoral and cellular immune responses in a mouse model following gene fusion of HSP70C and Hantaan virus Gn and S0.7 in an adenoviral vector. PLoS One. 2014;9:e88183.
  • Gomez-Gutierrez JG, Elpek KG, Montes De Oca-Luna R, et al. Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol Immunother. 2007;56:997–1007.
  • Rangel-Colmenero BR, Gomez-Gutierrez JG, Villatoro-Hernandez J, et al. Enhancement of Ad-CRT/E7-mediated antitumor effect by preimmunization with L. lactis expressing HPV-16 E7. Viral Immunol. 2014;27:463–467.
  • Esparza-Gonzalez SC, Troy A, Troudt J, et al. Recombinant adenovirus delivery of calreticulin-ESAT-6 produces an antigen-specific immune response but no protection against a Mycobacterium tuberculosis challenge. Scand J Immunol. 2012;75:259–265.
  • Ma C-L, Wang G-B, Gu R-G, et al. Construction and characterization of calreticulin-HBsAg fusion gene recombinant adenovirus expression vector. World J Gastroenterol. 2010;16:3078–3082.
  • Lasaro MO, Tatsis N, Hensley SE, et al. Targeting of antigen to the herpesvirus entry mediator augments primary adaptive immune responses. Nat Med. 2008;14:205–212.
  • Fougeroux C, Turner L, Bojesen AM, et al. Modified MHC class II-associated invariant chain induces increased antibody responses against plasmodium falciparum antigens after adenoviral vaccination. J Immunol. 2019;202:2320–2331.
  • Draper SJ, Moore AC, Goodman AL, et al. Effective induction of high-titer antibodies by viral vector vaccines. Nat Med. 2008;14:819–821.
  • Forbes EK, de Cassan SC, Llewellyn D, et al. T cell responses induced by adenoviral vectored vaccines can be adjuvanted by fusion of antigen to the oligomerization domain of C4b-binding protein. PLoS One. 2012;7:e44943.
  • Luo L, Li Y, Yong Kang C. Budding and secretion of HIV Gag-Env virus-like particles from recombinant human adenovirus infected cells. Virus Res. 2003;92:75–82.
  • Hoegh-Petersen M, Thomsen AR, Christensen JP, et al. Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load. Vaccine. 2009;27:6723–6730.
  • Andersson A-MC, Holst PJ. Increased T cell breadth and antibody response elicited in prime-boost regimen by viral vector encoded homologous SIV Gag/Env in outbred CD1 mice. J Transl Med. 2016;14:343.
  • Andersson A-MC, Ragonnaud E, Seaton KE, et al. Effect of HIV-1 envelope cytoplasmic tail on adenovirus primed virus encoded virus-like particle immunizations. Vaccine. 2016;34:5344–5351.
  • Schwerdtfeger M, Andersson A-MC, Neukirch L, et al. Virus-like vaccines against HIV/SIV synergize with a subdominant antigen T cell vaccine. J Transl Med. 2019;17:175.
  • Andersson A-MC, Resende M, Salanti A, et al. Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen. Vaccine. 2017;35:1140–1147.
  • Neukirch L, Nielsen TK, Laursen H, et al. Adenovirus based virus-like-vaccines targeting endogenous retroviruses can eliminate growing colorectal cancers in mice. Oncotarget. 2019;10:1458–1472.
  • Jensen BAH, Steffensen MA, Nielsen KN, et al. Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination. Mol Ther. 2014;22:2107–2117.
  • Halbroth BR, Sebastian S, Poyntz HC, et al. Development of a molecular adjuvant to enhance antigen-specific CD8(+) T cell responses. Sci Rep. 2018;8:15020.
  • Capone S, Naddeo M, D’Alise AM, et al. Fusion of HCV nonstructural antigen to MHC class II-associated invariant chain enhances T-cell responses induced by vectored vaccines in nonhuman primates. Mol Ther. 2014;22:1039–1047.
  • Xu H, Andersson A-M, Ragonnaud E, et al. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication. EBioMedicine. 2017;18:204–215.
  • Mikkelsen M, Holst PJ, Bukh J, et al. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain. J Immunol. 2011;186:2355–2364.
  • Sorensen MR, Holst PJ, Pircher H, et al. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control. Eur J Immunol. 2009;39:2725–2736.
  • Holst PJ, Christensen JP, Thomsen AR. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice. J Immunol. 2011;186:3997–4007.
  • Holst PJ, Bartholdy C, Stryhn A, et al. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens. J Gen Virol. 2007;88:1708–1716.
  • Ragonnaud E, Andersson A-MC, Pedersen AE, et al. An adenoviral cancer vaccine co-encoding a tumor associated antigen together with secreted 4-1BBL leads to delayed tumor progression. Vaccine. 2016;34:2147–2156.
  • Ohs I, Windmann S, Wildner O, et al. Interleukin-encoding adenoviral vectors as genetic adjuvant for vaccination against retroviral infection. PLoS One. 2013;8:e82528.
  • Lapuente D, Storcksdieck Genannt Bonsmann M, Maaske A, et al. IL-1beta as mucosal vaccine adjuvant: the specific induction of tissue-resident memory T cells improves the heterosubtypic immunity against influenza A viruses. Mucosal Immunol. 2018;11:1265–1278.
  • Appledorn DM, Aldhamen YA, Depas W, et al. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target. PLoS One. 2010;5:e9579.
  • Gu L, Krendelchtchikova V, Krendelchtchikov A, et al. A recombinant adenovirus-based vector elicits a specific humoral immune response against the V3 loop of HIV-1 gp120 in mice through the “Antigen Capsid-Incorporation” strategy. Virol J. 2014;11:112.
  • Palma C, Overstreet MG, Guedon J-M, et al. Adenovirus particles that display the Plasmodium falciparum circumsporozoite protein NANP repeat induce sporozoite-neutralizing antibodies in mice. Vaccine. 2011;29:1683–1689.
  • Boyer JL, Sofer-Podesta C, Ang J, et al. Protective immunity against a lethal respiratory Yersinia pestis challenge induced by V antigen or the F1 capsular antigen incorporated into adenovirus capsid. Hum Gene Ther. 2010;21:891–901.
  • Matthews QL, Fatima A, Tang Y, et al. HIV antigen incorporation within adenovirus hexon hypervariable 2 for a novel HIV vaccine approach. PLoS One. 2010;5:e11815.
  • Bayer W, Tenbusch M, Lietz R, et al. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection. J Virol. 2010;84:1967–1976.
  • Hansra S, Pujhari S, Zakhartchouk AN. Exploration of New Sites in adenovirus hexon for foreign peptides insertion. Open Virol J. 2015;9:1–6.
  • Koup RA, Lamoreaux L, Zarkowsky D, et al. Replication-defective adenovirus vectors with multiple deletions do not induce measurable vector-specific T cells in human trials. J Virol. 2009;83:6318–6322.
  • Kron MW, Engler T, Schmidt E, et al. High-capacity adenoviral vectors circumvent the limitations of DeltaE1 and DeltaE1/DeltaE3 adenovirus vectors to induce multispecific transgene product-directed CD8 T-cell responses. J Gene Med. 2011;13:648–657.
  • Yang T-C, Millar J, Groves T, et al. The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J Immunol. 2006;176:200–210.
  • Finn JD, Bassett J, Millar JB, et al. Persistence of transgene expression influences CD8+ T-cell expansion and maintenance following immunization with recombinant adenovirus. J Virol. 2009;83:12027–12036.
  • Darrah PA, Patel DT, De Luca PM, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med. 2007;13:843–850.
  • Holst PJ, Orskov C, Thomsen AR, et al. Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination. J Immunol. 2010;184:4431–4439.
  • Larocca RA, Provine NM, Aid M, et al. Adenovirus serotype 5 vaccine vectors trigger IL-27-dependent inhibitory CD4(+) T cell responses that impair CD8(+) T cell function. Sci Immunol. 2016;1:eaaf7643.
  • Jensen S, Steffensen MA, Jensen BAH, et al. Adenovirus-based vaccine against Listeria monocytogenes: extending the concept of invariant chain linkage. J Immunol. 2013;191:4152–4164.
  • Uger RA, Chan SM, Barber BH. Covalent linkage to beta2-microglobulin enhances the MHC stability and antigenicity of suboptimal CTL epitopes. J Immunol. 1999;162:6024–6028.
  • Bartholdy C, Stryhn A, Hansen NJV, et al. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice. Eur J Immunol. 2003;33:1941–1948.
  • Bartholdy C, Stryhn A, Christensen JP, et al. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection. J Immunol. 2004;173:6284–6293.
  • Borges JC, Ramos CHI. Protein folding assisted by chaperones. Protein Pept Lett. 2005;12:257–261.
  • Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995;269:1585–1588.
  • Breloer M, Fleischer B, von Bonin A. In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J Immunol. 1999;162:3141–3147.
  • Ullrich SJ, Robinson EA, Law LW, et al. A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci U S A. 1986;83:3121–3125.
  • Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol. 1994;152:5398–5403.
  • Ciocca DR, Cayado-Gutierrez N, Maccioni M, et al. Heat shock proteins (HSPs) based anti-cancer vaccines. Curr Mol Med. 2012;12:1183–1197.
  • Guzhova IV, Shevtsov MA, Abkin SV, et al. Intracellular and extracellular Hsp70 chaperone as a target for cancer therapy. Int J Hyperth Off J Eur Soc Hyperthermic Oncol North Am Hyperth Gr. 2013;29:399–408.
  • Nieland TJ, Tan MC, Monne-van Muijen M, et al. Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A. 1996;93:6135–6139.
  • Arnold D, Faath S, Rammensee H, et al. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med. 1995;182:885–889.
  • Arnold D, Wahl C, Faath S, et al. Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J Exp Med. 1997;186:461–466.
  • Blachere NE, Li Z, Chandawarkar RY, et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med. 1997;186:1315–1322.
  • Suzue K, Young RA. Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J Immunol. 1996;156:873–879.
  • Suzue K, Zhou X, Eisen HN, et al. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U S A. 1997;94:13146–13151.
  • Huang Q, Richmond JF, Suzue K, et al. In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat shock protein 70 fusion proteins maps to a discrete domain and is CD4(+) T cell independent. J Exp Med. 2000;191:403–408.
  • Su C, Duan X, Wang X, et al. Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice. Vet Microbiol. 2007;124:256–263.
  • Li J, Ye ZX, Li KN, et al. HSP70 gene fused with Hantavirus S segment DNA significantly enhances the DNA vaccine potency against hantaviral nucleocapsid protein in vivo. Vaccine. 2007;25:239–252.
  • Noessner E, Gastpar R, Milani V, et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol. 2002;169:5424–5432.
  • Murshid A, Gong J, Calderwood SK. The role of heat shock proteins in antigen cross presentation. Front Immunol. 2012;3:63.
  • Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2:185–194.
  • Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000;12:1539–1546.
  • Basu S, Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med. 1999;189:797–802.
  • Nair S, Wearsch PA, Mitchell DA, et al. Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides. J Immunol. 1999;162:6426–6432.
  • Sadasivan B, Lehner PJ, Ortmann B, et al. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 1996;5:103–114.
  • Gao B, Adhikari R, Howarth M, et al. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity. 2002;16:99–109.
  • Spee P, Neefjes J. TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol. 1997;27:2441–2449.
  • Cheng WF, Hung CF, Chai CY, et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 2001;108:669–678.
  • Kim JW, Hung C-F, Juang J, et al. Comparison of HPV DNA vaccines employing intracellular targeting strategies. Gene Ther. 2004;11:1011–1018.
  • Hsieh C-J, Kim TW, Hung C-F, et al. Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine. 2004;22:3993–4001.
  • Freigang S, Eschli B, Harris N, et al. A lymphocytic choriomeningitis virus glycoprotein variant that is retained in the endoplasmic reticulum efficiently cross-primes CD8(+) T cell responses. Proc Natl Acad Sci U S A. 2007;104:13426–13431.
  • Ogun SA, Dumon-Seignovert L, Marchand J-B, et al. The oligomerization domain of C4-binding protein (C4bp) acts as an adjuvant, and the fusion protein comprised of the 19-kilodalton merozoite surface protein 1 fused with the murine C4bp domain protects mice against malaria. Infect Immun. 2008;76:3817–3823.
  • Libyh MT, Goossens D, Oudin S, et al. A recombinant human scFv anti-Rh(D) antibody with multiple valences using a C-terminal fragment of C4-binding protein. Blood. 1997;90:3978–3983.
  • Christiansen D, Devaux P, Reveil B, et al. Octamerization enables soluble CD46 receptor to neutralize measles virus in vitro and in vivo. J Virol. 2000;74:4672–4678.
  • Oudin S, Libyh MT, Goossens D, et al. A soluble recombinant multimeric anti-Rh(D) single-chain Fv/CR1 molecule restores the immune complex binding ability of CR1-deficient erythrocytes. J Immunol. 2000;164:1505–1513.
  • Yu X, Zheng Y, Mao R, et al. BTLA/HVEM signaling: milestones in research and role in chronic hepatitis B virus infection. Front Immunol. 2019;10:617.
  • De Sousa Linhares A, Leitner J, Grabmeier-Pfistershammer K, et al. Not all immune checkpoints are created equal. Front Immunol. 2018;9:1909.
  • Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol. 1994;12:259–293.
  • Germain RN. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell. 1994;76:287–299.
  • van Bergen J, Schoenberger SP, Verreck F, et al. Efficient loading of HLA-DR with a T helper epitope by genetic exchange of CLIP. Proc Natl Acad Sci U S A. 1997;94:7499–7502.
  • Sanderson S, Frauwirth K, Shastri N. Expression of endogenous peptide-major histocompatibility complex class II complexes derived from invariant chain-antigen fusion proteins. Proc Natl Acad Sci U S A. 1995;92:7217–7221.
  • Malcherek G, Wirblich C, Willcox N, et al. MHC class II-associated invariant chain peptide replacement by T cell epitopes: engineered invariant chain as a vehicle for directed and enhanced MHC class II antigen processing and presentation. Eur J Immunol. 1998;28:1524–1533.
  • Esposito I. Mechanism of action of MHC class II-associated invariant chain as an adjuvant of Adenovirus based genetic vaccines [dissertation]. Naples (IT): University of Naples Federico II; 2016.
  • Diebold SS, Cotten M, Koch N, et al. MHC class II presentation of endogenously expressed antigens by transfected dendritic cells. Gene Ther. 2001;8:487–493.
  • Sponaas A, Carstens C, Koch N. C-terminal extension of the MHC class II-associated invariant chain by an antigenic sequence triggers activation of naive T cells. Gene Ther. 1999;6:1826–1834.
  • Rowe HM, Lopes L, Ikeda Y, et al. Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol Ther. 2006;13:310–319.
  • Takahashi S, Nakagawa T, Banno T, et al. Localization of furin to the trans-Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J Biol Chem. 1995;270:28397–28401.
  • Baerlecken NT, Nothdorft S, Stummvoll GH, et al. Autoantibodies against CD74 in spondyloarthritis. Ann Rheum Dis. 2014;73:1211–1214.
  • Baraliakos X, Baerlecken N, Witte T, et al. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann Rheum Dis. 2014;73:1079–1082.
  • Lambert P-H, Liu M, Siegrist C-A. Can successful vaccines teach us how to induce efficient protective immune responses? Nat Med. 2005;11:S54–62.
  • Tokoyoda K, Egawa T, Sugiyama T, et al. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity. 2004;20:707–718.
  • Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell. 1994;76:241–251.
  • Mohsen MO, Zha L, Cabral-Miranda G, et al. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123–132.
  • Thrane S, Janitzek CM, Agerbaek MO, et al. A novel virus-like particle based vaccine platform displaying the placental malaria antigen VAR2CSA. PLoS One. 2015;10:e0143071.
  • Thrane S, Janitzek CM, Matondo S, et al. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J Nanobiotechnology. 2016;14:30.
  • Palladini A, Thrane S, Janitzek CM, et al. Virus-like particle display of HER2 induces potent anti-cancer responses. Oncoimmunology. 2018;7:e1408749.
  • Janitzek CM, Peabody J, Thrane S, et al. A proof-of-concept study for the design of a VLP-based combinatorial HPV and placental malaria vaccine. Sci Rep. 2019;9:5260.
  • Brune KD, Leneghan DB, Brian IJ, et al. Plug-and-display: decoration of virus-like particles via isopeptide bonds for modular immunization. Sci Rep. 2016;6:19234.
  • Leneghan DB, Miura K, Taylor IJ, et al. Nanoassembly routes stimulate conflicting antibody quantity and quality for transmission-blocking malaria vaccines. Sci Rep. 2017;7:3811.
  • Brune KD, Howarth M. New routes and opportunities for modular construction of particulate vaccines: stick, click, and glue. Front Immunol. 2018;9:1432.
  • Bruun TUJ, Andersson A-MC, Draper SJ, et al. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination. ACS Nano. 2018;12:8855–8866.
  • Schiller J, Lowy D. Explanations for the high potency of HPV prophylactic vaccines. Vaccine. 2018;36:4768–4773.
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10:787–796.
  • Karacostas V, Nagashima K, Gonda MA, et al. Human immunodeficiency virus-like particles produced by a vaccinia virus expression vector. Proc Natl Acad Sci U S A. 1989;86:8964–8967.
  • Andersson A-MC, Schwerdtfeger M, Holst PJ. Virus-Like-Vaccines against HIV. Vaccines (Basel). 2018;6:10.
  • Schweneker M, Laimbacher AS, Zimmer G, et al. Recombinant modified vaccinia virus ankara generating ebola virus-like particles. J Virol. 2017;91:e00343–e00417
  • Domi A, Feldmann F, Basu R, et al. A single dose of modified vaccinia ankara expressing ebola virus like particles protects nonhuman primates from lethal ebola virus challenge. Sci Rep. 2018;8:864.
  • Goepfert PA, Elizaga ML, Seaton K, et al. Specificity and 6-month durability of immune responses induced by DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis. 2014;210:99–110.
  • Perdiguero B, Sanchez-Corzo C, Sorzano COS, et al. A novel MVA-based HIV vaccine candidate (MVA-gp145-GPN) co-expressing clade C membrane-bound trimeric gp145 Env and Gag-induced virus-like particles (VLPs) triggered broad and multifunctional HIV-1-specific T cell and antibody responses. Viruses. 2019;11:160.
  • Ourmanov I, Brown CR, Moss B, et al. Comparative efficacy of recombinant modified vaccinia virus Ankara expressing simian immunodeficiency virus (SIV) Gag-Pol and/or Env in macaques challenged with pathogenic SIV. J Virol. 2000;74:2740–2751.
  • Chen X, Rock MT, Hammonds J, et al. Pseudovirion particle production by live poxvirus human immunodeficiency virus vaccine vector enhances humoral and cellular immune responses. J Virol. 2005;79:5537–5547.
  • McGettigan JP, Naper K, Orenstein J, et al. Functional human immunodeficiency virus type 1 (HIV-1) Gag-Pol or HIV-1 Gag-Pol and env expressed from a single rhabdovirus-based vaccine vector genome. J Virol. 2003;77:10889–10899.
  • Haglund K, Forman J, Krausslich HG, et al. Expression of human immunodeficiency virus type 1 Gag protein precursor and envelope proteins from a vesicular stomatitis virus recombinant: high-level production of virus-like particles containing HIV envelope. Virology. 2000;268:112–121.
  • Norder M, Becker PD, Drexler I, et al. Modified vaccinia virus Ankara exerts potent immune modulatory activities in a murine model. PLoS One. 2010;5:e11400.
  • Kershaw MH, Hsu C, Mondesire W, et al. Immunization against endogenous retroviral tumor-associated antigens. Cancer Res. 2001;61:7920–7924.
  • Downey RF, Sullivan FJ, Wang-Johanning F, et al. Human endogenous retrovirus K and cancer: innocent bystander or tumorigenic accomplice? Int J Cancer. 2015;137:1249–1257.
  • Lemaitre C, Tsang J, Bireau C, et al. A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the ERK pathway and inducing migration and invasion. PLoS Pathog. 2017;13:e1006451.
  • Li F, Karlsson H. Expression and regulation of human endogenous retrovirus W elements. APMIS. 2016;124:52–66.
  • Perot P, Mullins CS, Naville M, et al. Expression of young HERV-H loci in the course of colorectal carcinoma and correlation with molecular subtypes. Oncotarget. 2015;6:40095–40111.
  • Zhou F, Li M, Wei Y, et al. Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget. 2016;7:84093–84117.
  • Scrimieri F, Askew D, Corn DJ, et al. Murine leukemia virus envelope gp70 is a shared biomarker for the high-sensitivity quantification of murine tumor burden. Oncoimmunology. 2013;2:e26889.
  • Gregory DA, Lyddon TD, Johnson MC. Multiple Gag domains contribute to selective recruitment of murine leukemia virus (MLV) Env to MLV virions. J Virol. 2013;87:1518–1527.
  • Huang AY, Gulden PH, Woods AS, et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci U S A. 1996;93:9730–9735.
  • Takeda J, Sato Y, Kiyosawa H, et al. Anti-tumor immunity against CT26 colon tumor in mice immunized with plasmid DNA encoding beta-galactosidase fused to an envelope protein of endogenous retrovirus. Cell Immunol. 2000;204:11–18.
  • Bronte V, Cingarlini S, Apolloni E, et al. Effective genetic vaccination with a widely shared endogenous retroviral tumor antigen requires CD40 stimulation during tumor rejection phase. J Immunol. 2003;171:6396–6405.
  • Slansky JE, Rattis FM, Boyd LF, et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity. 2000;13:529–538.
  • Miyazawa M, Nishio J, Chesebro B. Protection against Friend retrovirus-induced leukemia by recombinant vaccinia viruses expressing the gag gene. J Virol. 1992;66:4497–4507.
  • Asbach B, Meier JP, Pfeifer M, et al. Computational design of epitope-enriched HIV-1 Gag antigens with preserved structure and function for induction of broad CD8(+) T cell responses. Sci Rep. 2018;8:11264.
  • Lobanova LM, Baig TT, Tikoo SK, et al. Mucosal adenovirus-vectored vaccine for measles. Vaccine. 2010;28:7613–7619.
  • Hodgson SH, Ewer KJ, Bliss CM, et al. Evaluation of the efficacy of ChAd63-MVA vectored vaccines expressing circumsporozoite protein and ME-TRAP against controlled human malaria infection in malaria-naive individuals. J Infect Dis. 2015;211:1076–1086.
  • Nicosia A, Scarselli E, Folgori A, et al. Vaccine T cell enhancer [Patent]. Patent Cooperation Treaty WO/2019/086615. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.